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Abstract: Enterprise systems typically produce a large number of logs to record runtime states
and important events. Log anomaly detection is efficient for business management and system
maintenance. Most existing log-based anomaly detection methods use log parser to get log event
indexes or event templates and then utilize machine learning methods to detect anomalies. However,
these methods cannot handle unknown log types and do not take advantage of the log semantic
information. In this article, we propose ConAnomaly, a log-based anomaly detection model composed
of a log sequence encoder (log2vec) and multi-layer Long Short Term Memory Network (LSTM).
We designed log2vec based on the Word2vec model, which first vectorized the words in the log
content, then deleted the invalid words through part of speech tagging, and finally obtained the
sequence vector by the weighted average method. In this way, ConAnomaly not only captures
semantic information in the log but also leverages log sequential relationships. We evaluate our
proposed approach on two log datasets. Our experimental results show that ConAnomaly has good
stability and can deal with unseen log types to a certain extent, and it provides better performance
than most log-based anomaly detection methods.

Keywords: log anomaly detection; log sequence encoder; LSTM

1. Introduction

With the increase of many people’s needs, the complexity of modern systems is increas-
ing day by day. The more complex the system, the greater the likelihood of vulnerabilities
that an invader may exploit to launch attacks. As a result, anomaly detection has become an
important task in building trusted computer systems [1]. An accurate and effective anomaly
detection model can reduce abnormal damage to the system, which is very important for
business management and system maintenance. Logs are widely used to record important
events and system status in operating systems or other software systems. Since system
logs contain noteworthy events and runtime states, they are one of the most valuable data
sources for anomaly detection and system monitoring [2].

Logs are semi-structured text data.One of the important tasks is anomaly detection
in logs [3]. It is different from computer vision [4–6], digital time series [7–9] and graphic
data [10]. In fact, the traditional way of handling log anomalies is very inefficient.Operators
manually check system logs based on their domain knowledge by matching regular expres-
sions or searching keywords (such as error and Failure). However, this anomaly detection
method is not suitable for large-scale systems.

More and more works start to apply schemes to process the logs automatically. Ex-
isting log-based system anomaly detection methods can be roughly classified into two
categories: one is based on log event indexes, such as PCA [11], Invariant Mining [12],
Deeplog [13], and QLLog [14]. The other is based on log templates, such as LogAnomaly [15]
and LogRobust [16]. Although both of these two methods first parse the logs, there are two
differences: one is that the log event index-based method converts the log to the event
index, while the log template-based method removes the numeric information in the log to
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obtain the log invariant (event template). For instance, the log template of log “Received
block blk_7503483334202473044 of size 233,217 from /10.250.19.102” is “Received block *
of size * from *”. The other is that the first method is to encode the log event index number
(e.g., using a one-hot encoding), and the other is to vectorize the log template. Although the
event template-based methods can utilize semantic information in log messages compared
to the event index-based methods, they cannot handle the log template that has not been
seen. Moreover, both methods are highly dependent on the log parser [17–21], especially
for log event index-based approaches. The performance of the log event index-based
approach degrades significantly when the log parsers are incorrect [22].

Although log templates are structured, they are still text data. Most of the input of ma-
chine learning models needs to be digital data, not text. Therefore, extracting the features
of the log template or deriving its digital representation is the core step. Meng et al. [23]
form the log event vector by the frequency and weights of words. The log event vector is
transformed into the log sequence vector as the input of the anomaly detection model. The
transformation from word vector to log event vector or log sequence vector is called coor-
dinate transformation. However, the frequency and weight of words ignore the relevance
between words. Recently, More and more works start to apply natural language processing
(NLP) methods for the log event vectorization, especially word2vec, which generates word
vectors based on the positional relationship of words. However, if word2vec is directly
used in the system log template, it will generate a huge word space and cause unneces-
sary waste of resources. Therefore, this article has made corresponding improvements to
the model.

In this article, we propose ConAnomaly, an anomaly detection method that takes ad-
vantage of both the semantic relationships of log messages like the template-based method
and the sequential relationships between logs. In the ConAnomaly model, we improve
the word2vec [24–26] model to obtain the log2vec that preprocess logs. It vectorizes the
log content and removes invalid information through part of speech tag [27]. Finally,
multi-layer LSTM [28] and other models are used for anomaly detection. We evaluated
our proposed method on BGL [11] and HDFS [29] datasets. Experimental results show that
ConAnomaly is versatile and has excellent detection performance.

The key contributions of this article can be summarized as follows:

• We use the part of speech of the vocabulary as the standard for preliminary filtering
of the log content, which reduces unnecessary waste of computing resources. To the
best of our knowledge, our work is the first to utilize this to weight features.

• This study provides new insights to handle unseen log templates and reduce the
dependence on the log parser on the market.

• We proposed ConAnomaly, which considers the semantic information in the log
message into the log sequential anomaly detection, which improves the detection
performance to a certain extent.

The rest of this article is organized as follows. We introduce the related work in
Section 2 and present the theory of our work in Section 3. Besides, an overview of our
scheme has two main components: log2vec and a model for anomaly detection. Finally, we
evaluate the performance of the proposed model in Section 4 and conclude this work in
Section 5.

2. Related Work

Log-base anomaly detection mainly consists of three steps: log parsing, feature extrac-
tion, and anomaly detection. We review the related works for each step.

2.1. Log Parsing

Log parsing extracts the log template or log event from the raw log. Figure 1 shows the
parsing result of a raw log “081109 203518 143 INFO dfs.DataNode$DataXceiver: Receiving
block blk_-1608999687919862906 src: /10.250.19.102:54106 dest: /10.250.19.102:50010” that
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come from the HDFS dataset.It is parsed into log template “Receiving block <*> src: /<*>
dest: /<*>” and event “E5”. Here ‘<*>’ is a wildcard to match parameters.

Figure 1. Example of log parsing.

There have been many studies on log parsing, e.g., Drain [21] and Spell [30]. Drain is an
online log parsing method based on a fixed depth tree. When a new raw log message arrives,
Drain preprocesses it using simple regular expressions based on domain knowledge. Then
search for a log group, that is, for the leaf node of the tree by following specially designed
rules encoded in the number of internal nodes. If the appropriate log group is found, the
log messages will match the log events stored in that log group. Otherwise, a new log group
is created based on the log message. It achieves high performance compared to many other
log parser methods. The spell is an LCS-based [31] online stream processing log parsing
method for structured stream parsing of event logs. It can dynamically accept log input,
process the input in real-time, and constantly generate new log templates. In addition, He et
al. Designed and implemented a parallel log parser (POP) on Spark, a large data processing
platform.The original logs were divided into constants and variables, and the same log
events were combined into the same cluster group through hierarchical clustering.

2.2. Feature Extraction

Extracting the feature of logs is the basis of anomaly detection. Generally, researchers
select features from system logs, including log templates, event occurrences, event in-
dex, log variables and encode them through one-hot encoding or other weight methods.
Lin et al. [2] parsed logs into log events using the log abstraction technique and convert
them to vectors. Log sequences were represented as a vector of weight in an N-dimensional
space after calculating the weight for each event, where N is the number of unique events.
In DeepLog [13], besides the log events, it also considers the variant characteristics in
the logs. Hua et al. [32] modeled the sample data as Hermitian positive-definite (HPD)
matrices, and the geometric median of a set of HPD matrices is interpreted as an estimate
of the clutter covariance matrix (CCM). Then By manifold filter, a set of HPD matrices
are mapped to another set of HPD matrices by weighting them, that consequently im-
proves the discriminative power by reducing the intra-class distances while increasing the
inter-class distances.

In addition, more and more work start applying natural language processing(NLP)
methods to log preprocessing, such as bag-of-words [33], TF-IDF [34], and word2vec.

He et al. [35] form the event count vector for each log sequence by counting the occur-
rence number of each log event, whose basic idea origins from bag-of-words. Lin et al. [2]
propose an approach named LogCluster which turns each log sequence into a vector by
Inverse Document Frequency (IDF) and Contrast-based Event Weighting. Meng et al. [15]
propose a framework to model a log stream as a natural language sequence. They propose a
novel, simple feature extraction method, template2vec, to extract the semantic information
hidden in log templates by a distributional lexical-contrast embedding model (dLCE). The
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word vector is transformed to the log event vector. In this way, the semantic relationship of
logs can be learned effectively.

2.3. Anomaly Detection

The existing anomaly detection methods based on log data are mainly classified into
three categories, which are graph model-based [36–38], probability analysis-based [39] and
machine learning based detection methods [40]. Anomaly detection based on graph is
used to model the sequence relationship, association relationship, and log text content. The
anomaly detection based on probability statistics adopts correlation analysis, comparison,
etc., to calculate the correlation probability between log and anomaly.

At present, the machine learning-based method mainly utilizes the LSTM model
to infer whether the log is abnormal or not by judging the log sequential relationships.
Deeplog [13] leverages LSTM to model the sequence of log keys for a particular type of log,
automatically learning normal patterns from normal log data to identify system exceptions.
References [41,42] analyze the application of various LSTM models in anomaly detection,
such as bidirectional LSTM and stacked LSTM.

2.4. Limitation of Previous Models

The limitations are as follows:

• The existing log-based anomaly detection system is very effective, which mostly
depends on the existing log parser tools. If the tool is not available for the current log
data set, the model may not perform well. Moreover, they cannot handle unknown
log events or templates. In DeepLog, it utilizes Spell, an unsupervised streaming
parser that parses incoming log entries in an online fashion based on the idea of the
longest common subsequence (LCS), to preprocess log files. Its input for classification
is a window w of the h most recent log keys. That is, w = mt−h, . . . , mt−2, mt−1, where
each mi is the log key from the log entry ei. However, if an undefined log instance is
printed in a real-time environment, there is a risk that the model will crash or make
incorrect predictions.

• Logs as unstructured data have two characteristics: one is that there is a temporal
relationship between logs, which is a manifestation of the workflow; The second is
that the log itself has semantics. But most of the tools available take advantage of only
the first feature of logs in the anomaly detection part. For example, in LogCluster, the
clustering method is leveraged to cluster log sequences that are similar in sequences.

In this paper, we propose ConAnomaly, which utilizes both the semantic and sequen-
tial relationships of logs to detect anomalies. Our approach also addresses the limitations of
the previous approaches to some extent. For example, in most previous detection models,
if the incoming log is slightly different from the defined log template, it will be treated as
unknown data. However, since our method is to build a database of the vocabulary of
the log content, most of the vocabulary used in the log content is not very different, the
occurrence of unknown data will be greatly reduced.

3. Design of ConAnomaly
3.1. Overview

The overview of ConAnomaly is shown in Figure 2. The first step is log parsing,
which extracts the log content from the original log files and then removes the numbers
and punctuation marks in the log by regular matching. Each log is a set of words in
the semi-structured text. Inspired by word2Vec, we propose a digital method, log2vec,
which effectively converts the obtained log invariant into a vector sequence. The detail
of this model will be described in the next section. The last step is to utilize the multi-
layer LSTM to learn the log sequential relationship and to conduct anomaly detection
through modeling.
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Figure 2. The framework of ConAnomaly.

3.2. Log2vec

Word2vec, also known as word embeddings, turns words in natural language into
dense vectors that computers can understand, and maps words that have similar meanings
to nearby locations in the vector space [43]. However, it cannot be directly used in the
vectorization process of the logs. Firstly, some words in the log are invalid words, such
as “to” and “can”, but it cannot filter them. Second, it targets at vocabulary and cannot
vectorize sentences. Last but not least, if the log is not filtered, the word vector space will
be large, which will be an unnecessary waste of computing resources. Therefore, we make
some improvements to word2vec. We propose log2vec, a sentence representation method,
which can get rid of the invalid word in logs and effectively construct log vectors.

As shown in Figure 3, log2vec includes three steps in the learning stage: (1) use the
word2vec model to vectorize the word in the log content. (2) Tag the words in the obtained
lexicon with part of speech. The vectors of words with part of speech labels ’CC’, ’TO’,
’IN’ and ’MD’ (as shown in Table 1) were set as zero vectors. (3) Calculate log vectors by
weighted averaging the vectors of the words in the corresponding log invariants.

Figure 3. Example of log2vec.
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Table 1. The meaning of the filtered part of speech tag.

The Name of the Part of Speech Tag Meaning

’CC’ coordinating conjunction
’TO’ ’to’
’IN’ preposition/subordinating conjunction

’MD’ modal (could, will)

Moreover, the log vectors in the BGL dataset are serialized by batch processing.
However, this approach cannot be leveraged directly to the HDFS dataset, because the
number of logs in the HDFS log block is different. Therefore, before batch processing, it is
necessary to truncate or padding the log blocks in HDFS.

3.3. Log Anomaly Detection

The flow of anomaly detection is shown in the solid line box in Figure 2. We firstly
leverage multilayer LSTM to learn sequential relationships between logs, then use the full
connection(FC) [44] layer to make the linear transformation of the learning results and map
them to the label space, and finally use the softmax layer to do normalization processing.

3.3.1. Lstm

The long short-term memory model (LSTM) is a popular recursive neural network
structure, which has been proved to be able to predict data sequence effectively. As shown
in Figure 4, LSTM controls cell state by three gates, which are respectively called the
forgotten gate, input gate, and output gate.

Figure 4. Lstm structure.

A forgotten gate is a sigmoid unit that leveraged to determine what information needs
to be discarded in the cell state. It outputs a vector between 0 and 1 by operating on ht−1
and xt. The value of 0 to 1 in this vector indicates what information in the cell state is
retained or discarded. 0 means no reservation, 1 means all reservations. The formula is
as follows:

ft = σ(W f ∗ [ht−1, xt] + b f ) (1)

The input gate and the candidate cell choose what new information to add to the cell
state. First, an input gate is used to determine which information to update, and then ht−1
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and xt are used to obtain new candidate cell information through a tanh layer that may be
updated into the cell information. The formula is as follows:

it = σ(Wi ∗ [ht−1, xt] + bi) (2)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc) (3)

A part of the old cell information is forgotten by the forgotten gate selection while
a part of the candidate cell information is added by the input gate to get the new cell
information Ct. Equation (4) is the update operation.

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

After updating the cell state, the final output of the model is obtained through the
operation of the output gate. The formula is as follows:

ot = σ(Wo ∗ [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

3.3.2. FC

The core operation of a fully connected network is a matrix-vector product.

y = W ∗ X + b (7)

The essence of this layer is the linear transformation from one feature space to another.
This layer is used to make a weighted sum of the features of the previous design, turning
the hidden layer space back into the label space.

3.3.3. Softmax

The softmax function [45], also known as the normalized exponential function, aims
to show the results of multiple classifications in the form of probability.

Assumed that there has an array Y, and yi represents the ith element in Y, then the
softmax value of this element is:

Si =
yi

∑j yj
(8)

4. Experiment

In this section, we first describe the experimental dataset and evaluation metrics,
and then compare the performance of ConAnomaly on large system log data with ex-
isted methods. Lastly, we investigate the performance impact of various parameters in
this model.

4.1. Experiment Setting
4.1.1. Datasets

We conduct our experiments on two datasets: the HDFS dataset and the BGL dataset.
The summary statistics for the two datasets are listed in Table 2. The followings are the
detailed information for the log datasets:

• BGL
There are 4,747,963 logs in the BGL dataset, which are collected from a BlueGene/L
supercomputer system at Lawrence Livermore National Labs. Each BGL log was
manually labeled as either normal or anomalous, and 348,469 logs were anomalous.

• HDFS
The HDFS dataset consists of 11,175,629 logs collected from more than 200 Amazon
EC2 nodes that run Hadoop-based jobs. Program execution in the HDFS system
usually involves a block of logs. Based on this theory, 575,061 blocks of logs are
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obtained, among which 16,838 blocks were labeled as anomalous by experts. Unlike
BGL data, HDFS logs have identifiers recorded for each job execution.

In the following experiments, for both datasets, we first separate the normal and
anomalous logs, and then, 80% of logs are extracted from both types of logs as the training
data (according to the timestamps of logs), the rest are the testing data. Moreover, to solve
the problem of data imbalance, SMOTE algorithm is used to synthesize the data.

Table 2. Summary of log data.

Datasets #Time Span #of Logs #of Anomalies

HDFS 38.7 h 11,175,629 16,838 (blocks)
BGL 7 months 4,747,963 348,469 (logs)

4.1.2. Baselines

We compare ConAnomaly with five unsupervised baseline methods. These methods
are briefly described as follows:

• LogCluster: This article proposes an approach that clusters the logs to ease log-
based problem identification. Besides, it utilizes a knowledge base to check if the log
sequences occurred before.

• DeepLog: It proposes DeepLog, a deep neural network model utilizing Long Short-
Term Memory (LSTM), to model a system log as a natural language sequence.

• LogAnomaly: LogAnomaly is a framework to model a log stream as a natural lan-
guage sequence. It can detect both sequential and quantitive log anomalies simultane-
ously, which has not been done by any previous work.

• LogRobust: LogRobust extracts semantic information of log events and represents
them as semantic vectors. It utilizes an attention-based Bi-LSTM model to detect
anomalous log sequences.

• HitAnomaly: This work proposes a log-based anomaly detection model utilizing a hi-
erarchical transformer structure to model both log template sequences and parameter
values.

4.1.3. Implementation

All the experiments are conducted on a Windows machine with Intel Core 3.40 GHz
CPU and 8 GB memory. ConAnomaly is implemented through Pytorch [46] and we refer
to the results from the corresponding literature for the three baseline methods.

4.1.4. Evaluation Metrics

Precision, recall, and F1-score are used to evaluate the accuracy of anomaly detection
methods. Precision shows the percentage of true anomalies among all anomalies detected;
Recall measures the percentage of anomalies in the dataset being detected; F1-score is the
harmonic average of the two indexes.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + TN
(10)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

TP (True Positive) refers to the real case, that is, the real situation is positive, and the
predicted situation is also positive.

FP (False Positive) means false positive example, the real situation is negative, and the
predicted situation is positive.
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FN (False Negative) refers to a false negative example, that is the real situation is
positive, and the predicted situation is negative.

4.2. Evaluation on BGL Dataset

Figure 5 shows the performance of ConAnomaly compared to five baseline methods
over the BGL dataset. ConAnomaly achieves the highest recall among the six methods,
having an F1 score of 0.98. LogAnomaly and ConAnomaly can detect anomalies with
a more than 95% F1-score, which demonstrates that the semantic information of the log
is helpful for log anomaly detection. LogAnomaly generates more false alarms than
ConAnomaly because it does not address the problem that the new log does not match
the old log template and that the log data is not balanced. LogCluster does not achieve
good detection accuracy on BGL data. The poor performance of LogCluster is caused by
the high dimensional sparsity of the event count matrix. As a result, log clustering makes
it difficult to distinguish between anomalies and normal conditions, which often results in
a large number of false positives.

Figure 5. Evaluation on BGL dataset.

At the same time, we found that the BGL dataset has certain particularity. Table 3
shows a partial digitized BGL log sequence. The numbers in the table represent the
different types of log events, for example, ’149’ represents logs that can be extracted as
“External Input Interrupt (.*) (.*) (.*) tree Receiver (.*) in Resynch mode” (as shown in
Table 4). As you can see from Table 3, the logs in the BGL dataset are highly stacked,
which means that logs of the same type are always repeated consecutively. Based on
this phenomenon, we believe that the BGL dataset is not very representative. Further-
more, we wanted to explore the detection capabilities of ConAnomaly on datasets with
identifiers, so we did a similar experiment on the HDFS dataset.
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Table 3. Partially digitized BGL logs.

Sequences Id Log Sequences Based on the Fixed Window

s1 22 12 22 12 22 12 22 22 12 22 12 22 12 22 12 22 12 12 12 22

s2 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168
168 168 168 168

s3 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168
168 168 168 168

s4 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168
168 168 168 168

s5 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189 189
189 189 189 189

s6 201 149 201 149 201 149 201 149 201 149 201 149 201 149 201 149
201 149 201 149

s7 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168
168 168 168 168

s8 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168
168 168 168 168

s9 305 305 305 305 305 305 305 305 305 305 305 305 305 305 305 305
305 305 305 305

Table 4. Partially digitized BGL logs.

The Number in Table 3 The Log Template It Represents

12
(.*) microseconds spent in the rbs signal handler during
(.*) calls. (.*) microseconds was the maximum time for
a single instance of a correctable ddr.

22 (.*) total interrupts. (.*) critical input interrupts. (.*)
microseconds total spent on critical input interrupts

149 external input interrupt (.*) (.*) (.*) tree receiver (.*) in
resynch mode

168
gister: machine state register: machine state register:
machine state register: machine state register: machine
state register:

189 interrupt threshold...0
201 Lustre mount FAILED : (.*) : point /p/gb1
305 program interrupt: unimplemented operation..0

4.3. Evaluation on HDFS Dataset
4.3.1. Experiment Result

Figure 6 shows the performance of ConAnomaly over the HDFS dataset. ConAnomaly
achieves the best accuracy among those methods and HitAnomaly has an F1-score of 0.98
as the second. Both ConAnomaly and HitAnomaly utilize word vectors. However, Hi-
tAnomaly transforms the log template into a fixed dimensional vector, while ConAnomaly
vectorizes the contents of the logs.

In fact, many existing detection methods perform well on HDFS datasets (over 90%).
This is mainly due to the log parser, which extracts the log template on the HDFS dataset
very accurately. Because of this, most log processing methods use a log parser, such as the
rest of the five methods in Figure 6 except ConAnomaly.
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Figure 6. Evaluation on HDFS dataset.

4.3.2. Analysis of ConAnomaly

We first investigate the effect of window size and the number of layers on performance
in ConAnomaly. As shown in the following figures, we varied the value of one parameter
while using the default values for the others (the control variates method), and reported
the results over the HDFS dataset.

Figure 7 shows the influence of the number of LSTM network layers (n-layer) in
ConAnomaly. We observe that when the value of n-layer is greater than 2, the ConAnomaly
model is not very sensitive to a different number of layer settings and the detection
performances of the model are almost the same when n-layer = 2 and n-layer = 6. However,
a greater number of parameters lead to a longer training time and prediction time. With
this factor in mind, we choose a smaller n-layer (n-layer = 2).

Figure 7. The impact of n-layer on the performance of ConAnomaly.
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Figure 8 presents the performance impact of window size in ConAnomaly. Window
size refers to the maximum distance between the current and predicted word within a log.
As can be seen from the figure, in general, the precision of ConAnomaly is fairly stable
with concerning different window sizes while it has an impact on the recall of the model.
When the window size value is equal to 3, the model has the highest recall value. The
smaller the window size, the worse the semantic relevance of the logs the system learns.
The larger the size of the Widow, the easier it will be to overfit the model.

Figure 8. The impact of window size on performance of ConAnomaly.

4.3.3. Experiment Based on the Unseen Logs

In this section, we evaluate the robustness of our model based on unseen log types. The
log types are compared by the final representation of the different block_id log sequences.

First, we explore the log distribution rules of the HDFS data set. As can be seen from
Figure 9 and Table 5, the number of log types increases rapidly between the first 10% and
40% of data ordered by the log timestamp. After random shuffling, the log types are close
to linear distribution. That means log data of HDFS have an obvious update before 50%
data. The HDFS data is suitable for evaluating the robustness of the model.

Table 5. Log types distribution on HDFS dataset.

Percentage of Data Divided by Timestamp Divided in Random

0.1 4232 4097
0.2 8601 6275
0.3 12,344 7873
0.4 13,500 9451
0.5 13,835 10,660
0.6 14,503 11,855
0.7 14,959 12,938
0.8 15,212 13,959
0.9 15,547 14,846
1 15,802 15,802
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Figure 9. Log types distribution on HDFS dataset.

As shown in Table 6, data of 1%, 10%, 20%, and 50% in the dataset were respectively
adopted as the test set, and then the number of log types in the training set, test set, and
those not in the training set but appearing in the test set (the unseen log types) were
counted. The results showed that the F1-score increased as the unseen log types decreased.
At the same time, we observe that when the training data accounts for 1%, the detection
performance of ConAnomaly is also higher than 90%, which indicates that our model has
good stability and can deal with unseen log types to a certain extent.

Table 6. Statistics of unseen log types on HDFS dataset (the first row is training ratio).

1% 10% 20% 50%

# in training 991 4201 6296 10,778
# in testing 15,719 14,878 13,896 10,549

# unseen in training 14,811 11,601 9506 5024
F1-score 0.95 0.97 0.98 0.98

However, in the experiment, we find that ConAnomaly presents the phenomenon of
a single category of prediction when it predicts data, such as the predicted results are all
normal. When the training data accounts for 10%, this phenomenon occurs 22 times. For
this limitation of the model, we will conduct further research.

5. Conclusions

This article proposes ConAnomaly, an anomaly detection method that takes advantage
of both the semantic relationships of log messages like the template-based method and
the sequential relationships between logs. We designed a novel log sequence encoder to
obtain log sequence representations and built its classification model based on the lstm
mechanism. We evaluated our proposed method on two log datasets. Our experimental
results demonstrate that ConAnomaly has outperformed other existing log-based anomaly
detection methods and has a strong versatility.

One of our future work directions is to incorporate the structure of the attention
mechanism into the task of log-based anomaly prediction, and we may consider the
parameters in logs.
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The following abbreviations are used in this manuscript:

log2vec log sequence encoder
LSTM Long Short Term Memory Network
PCA Principal component analysis
word2vec Word-to-vector
BGL BlueGene/L
HDFS HDFS distributed file system
LCS the longest common subsequence
dLCE Distributional lexical-contrast embedding model
template2vec template-to-vector
NLP Natural language processing
dLCE Distributional lexical-contrast embedding model
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