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Abstract

Trial-and-error learning is a universal strategy for establishing which actions are beneficial

or harmful in new environments. However, learning stimulus-response associations solely

via trial-and-error is often suboptimal, as in many settings dependencies among stimuli and

responses can be exploited to increase learning efficiency. Previous studies have shown

that in settings featuring such dependencies, humans typically engage high-level cognitive

processes and employ advanced learning strategies to improve their learning efficiency.

Here we analyze in detail the initial learning phase of a sample of human subjects (N = 85)

performing a trial-and-error learning task with deterministic feedback and hidden stimulus-

response dependencies. Using computational modeling, we find that the standard Q-learn-

ing model cannot sufficiently explain human learning strategies in this setting. Instead,

newly introduced deterministic response models, which are theoretically optimal and trans-

form stimulus sequences unambiguously into response sequences, provide the best expla-

nation for 50.6% of the subjects. Most of the remaining subjects either show a tendency

towards generic optimal learning (21.2%) or at least partially exploit stimulus-response

dependencies (22.3%), while a few subjects (5.9%) show no clear preference for any of the

employed models. After the initial learning phase, asymptotic learning performance during

the subsequent practice phase is best explained by the standard Q-learning model. Our

results show that human learning strategies in the presented trial-and-error learning task go

beyond merely associating stimuli and responses via incremental reinforcement. Specifi-

cally during initial learning, high-level cognitive processes support sophisticated learning

strategies that increase learning efficiency while keeping memory demands and computa-

tional efforts bounded. The good asymptotic fit of the Q-learning model indicates that these

cognitive processes are successively replaced by the formation of stimulus-response asso-

ciations over the course of learning.

Author summary

Humans and other animals can learn how to respond to novel stimuli by incrementally

strengthening or weakening associations between stimuli and responses based on feed-

back. Q-learning, which is based on a delta learning rule, has been established as the
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standard computational model for associative learning. By comparing the Q-learning

model with alternative computational models, we investigate human learning strategies in

a simple trial-and-error learning task, where stimuli mapped onto responses one-to-one

and correct responses were invariably rewarded. We find that humans can learn more effi-

ciently than predicted by the Q-learning model in this setting. Specifically, we show that

some subjects systematically went through the response options and made inferences

across stimuli to improve their learning speed and avoid unnecessary errors during the ini-

tial learning phase. However, after the initial learning phase, the Q-learning model pro-

vided a better prediction than the competing models. We conclude that human learning

behavior in our experimental task can be best explained as a mixture of sophisticated learn-

ing strategies involving high-level cognitive processes at the beginning of learning, and

associative learning facilitating further performance improvements at later learning stages.

Introduction

Learning rewarded stimulus-response associations via trial-and-error can be a powerful strat-

egy, which has been employed successfully in complex learning tasks [1]. However, human

learning strategies in trial-and-error learning tasks typically go beyond merely associating sti-

muli and responses via reinforcement. Instead, it has been shown that humans employ high-

level cognitive capabilities like working memory and attention to make learning more efficient

by exploiting hidden or overt structure in the environment [2–6]. For example, it was shown

that subjects can quickly reactivate previously learned response strategies [7] and incorporate

information on unselected response options to improve learning efficiency [8–10]. Building

on a long history of research on associative learning [11, 12], recent studies increasingly

employed advanced modeling approaches like reinforcement learning or Bayesian and Hidden

Markov models to explain human learning strategies in various learning tasks [13–15]. Specifi-

cally, Q-learning models have been adapted or extended to account for high-level cognitive

processes engaged during learning. For instance, Collins et al. have shown in a series of studies

that by adding a working memory module to the standard Q-learning model, human learning

can be better explained than by pure associative learning [2, 16, 17], see also [18]. Selective

attention also plays an important role in human learning, as demonstrated in studies employ-

ing extended reinforcement learning models to capture attention-related processes in multidi-

mensional environments [19, 20]. For example, Leong et al. showed that an extended

reinforcement learning model with separate weights for different stimulus dimensions can

capture attention-related processes in a trial-and-error learning task [21]. Moreover, several

studies have shown that humans incorporate implicit relations and hidden task structure into

their learning strategy to make learning more efficient [4, 22–24]. Specifically in probabilistic

settings, it was shown that when updating internal beliefs about reward probabilities, humans

integrate information about unchosen stimuli-response pairs into the updating process both

in tasks overtly presenting the outcome of the unchosen options and in tasks with implicit out-

come contingencies [8–10, 14, 15, 25–27]. Using probabilistic reward schemes, including fluc-

tuating reward probabilities or dependencies, these studies showed that modified Q-learning,

Bayesian or Hidden Markov models, approximating optimal performance in the respective

learning tasks, outperformed the standard Q-learning model serving as a baseline for compari-

son with the more sophisticated models.

Here we show that even in a simple learning task with deterministic feedback, human learn-

ing strategies can be surprisingly complex. Specifically, we introduce novel deterministic
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response pattern models to test whether subjects explore response options in a fixed order dur-

ing the initial learning phase. These deterministic models are compared to three alternative

models, which are the standard Q-learning model reflecting pure associative learning, a

generic optimal model that fully exploits hidden stimulus-response dependencies, and an

intermediate model that exploits dependencies less efficiently than the optimal learning model

but more efficiently than the Q-learning model.

Methods

Ethics statement

Our sample consisted of healthy human subjects performing a behavioral task in front of a

computer (that is, no fMRI, no TMS or so involved). Since participation in this task was not

associated with any physical/emotional risk or discomfort, according to our funding agency

(German Research Association, DFG) and German law we did not require an approval by our

local review board. All participants were informed about the purpose and the procedure of the

study and gave written informed consent prior to the experiment.

Experimental task

Subjects performed a simple stimulus-response learning task with deterministic feedback

(N = 85), see also [28]. All subjects (31.8% male, mean age 24.3 years, with a range from 18 to

36 years) were informed about the purpose and procedure of the experiment and gave written

informed consent prior to taking part in the experiment, in accordance with the Declaration

of Helsinki. Subjects were mainly recruited from a pool of students from the Technische Uni-

versität Dresden and were paid a fixed amount of 5€ or received credit points for their partici-

pation. In each learning block, a novel set of four stimuli was introduced and subjects had to

learn the correct responses to the four stimuli (see Fig 1). The set of responses remained con-

stant across blocks and consisted of the four keys d, f, k, l on a computer keyboard, corre-

sponding to the left middle, left index, right index and right middle finger. Each stimulus was

associated with a unique correct response, i.e. stimuli mapped onto responses one-to-one.

Before performing the task, subjects were instructed that each learning block comprises four

different symbols and that responses can be given with the four fingers, but subjects were not

informed about the one-to-one property of the stimulus-response mappings. See S1 Text for

detailed information on the task instructions. Feedback was given deterministically, i.e. cor-

rect/incorrect responses were invariably indicated by positive/negative feedback.

Q-learning

The standard Q-learning model served as a baseline for comparison with more sophisticated

models [29]. In Q-learning, associations between stimuli and responses are expressed as Q-val-

ues (action values or associative weights), which were set to zero initially and were updated

after each trial with learning rate α 2 (0, 1] based on the following learning rule:

After positive feedback for stimulus-response pair Si, Rj:

qtþ1
ij ¼ ð1 � aÞq

t
ij þ a

After negative feedback for stimulus-response pair Si, Rj:

qtþ1
ij ¼ ð1 � aÞq

t
ij � a

Response probabilities were determined via the softmax response selection rule with noise

parameter τ� 0:

Deterministic response strategies in a trial-and-error learning task
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Given Si, the probability for selecting response Rj was:

pij ¼ exp
qij
t

� ��X

k

exp
qik
t

� �

For the special case τ = 0 (noise-free response selection), responses were selected uniformly

among the responses with maximal Q-values.

Note that the Q-learning model updates its associative weights for each stimulus-response

(S-R) pair separately, i.e. independently of the other stimulus-response pairs. Hence, this

model cannot directly capture dependencies among different stimulus-response-outcome

(S-R-O) combinations. Specifically, Q-learning cannot exploit the one-to-one property of the

S-R mappings, i.e. the fact that once a response has been associated with a stimulus, this

response can be excluded for the other three stimuli.

Free optimal play (FOP)

Based on the literature discussed in the introduction, we hypothesized that subjects may show

a tendency towards optimal behavior, i.e. exploit the dependencies among S-R pairs, rather

than learning S-R associations independently via reinforcement. In order to maximize

expected reward while concurrently minimizing expected uncertainty, the following optimal

learning strategy can be employed: Given the 4 stimuli and 4 responses, there are 4! = 24 possi-

ble S-R mappings. At the beginning of a learning block, there is no evidence against any of

Fig 1. The trial-and-error learning task. A: In each learning block, subjects had to learn the correct responses to four novel stimuli

(N = 85). Stimuli mapped onto responses one-to-one, i.e. each stimulus was associated with a unique correct response. Each subject

performed 20 learning blocks. B: Stimuli were presented in randomized order, and subjects responded with one of the four keys d, f,
k, l on a computer keyboard. After response selection, subjects were provided with feedback indicating a correct response via

auditory feedback or an incorrect response via the word ‘error’ written on the screen. Blocks ended when each stimulus had been

performed correctly eight times or maximally after 70 trials. C: Response times were limited to 2150 ms, feedback was presented for

500 ms, followed by an inter-trial interval of 500 ms.

https://doi.org/10.1371/journal.pcbi.1006621.g001
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these 24 mappings, thus the probability for each mapping is assumed to be 1/24 (see Fig 2).

After each trial, the set of S-R mappings that are consistent with the observed S-R-O history is

updated. For each S-R pair, the probability of being correct can be computed by averaging

across the set of consistent S-R mappings. Selecting the most likely responses according to this

procedure maximizes expected reward and minimizes expected uncertainty, hence this strat-

egy is optimal for the presented task, see S1 Appendix for a technical discussion. Moreover,

Fig 2. Computation of response probabilities. The four stimuli can map one-to-one onto the four responses in 24 different ways,

depicted by the 24 matrices, with rows corresponding to stimuli and columns to responses. As feedback was deterministic, reward

was delivered either with probability zero or one, indicated by the white and black squares, respectively. Overall probabilities (shown

below the binary matrices) could be computed by averaging across the mappings that were consistent with the S-R-O history. A: At

the beginning of a learning block, all 24 mappings were included in the set of consistent mappings. In the presented example, the

subject chose response d in the first trial (solid box), which is optimal (i.e. provides the maximal likelihood of being rewarded), as

were the other three response options (dashed boxes). B: The resulting negative feedback led to the exclusion of all S-R mappings

that mapped stimulus S1 onto response d (indicated by the red no sign). In the next trial, the subject responded to stimulus S2 with l,
resulting in negative feedback again. This response was not optimal, as response d was more likely than response l. C: Based on the

feedback information, four additional mappings could be excluded. In the third trial, the subject responded with f to stimulus S3,

which was correct (but not optimal a-priori). D: Only three S-R mappings are consistent with the S-R-O history at this point.

Eventually, only the correct S-R mapping will remain. See S1 Appendix for a technical discussion of the procedure.

https://doi.org/10.1371/journal.pcbi.1006621.g002
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FOP is the most liberal optimal strategy in the sense that any response sequence generated by

an optimal strategy can also be generated by FOP.

The strategy of selecting a response that is maximally likely to be correct is termed free opti-

mal play (FOP) in the following. Note that several responses can be maximally likely, i.e. this

learning strategy does not necessarily determine a unique response. As this procedure required

tracking the consistency of all 24 S-R mappings and computing averages across subsets of S-R

mappings, it seemed unlikely that the subjects implemented this strategy. Yet, we hypothesized

that there might be a trend towards this optimal strategy. Indeed, if subjects occasionally

exploited the one-to-one property of the S-R mappings, free optimal play might provide a bet-

ter fit to the data than Q-learning.

As in Q-learning, response selection probabilities in the FOP model were determined by a

softmax rule:

Given Si, the probability for selecting response Rj was:

pij ¼ exp
p̂ij

t

� ��
X

k

exp
p̂ik

t

� �

with p̂ij denoting the probabilities as computed by the FOP scheme (Fig 2).

Binarized play (BP)

To test whether the subjects tracked the fine-grained differences between response probabili-

ties as provided by FOP, or alternatively, only excluded responses that had already been

assigned to a different stimulus, we implemented a simpler version of free optimal play, termed

binarized play (BP), that was no longer optimal. The probabilities p̂ij as computed by the FOP

model were transformed into a simplified distribution by making all nonzero probabilities uni-

form, i.e. for a given stimulus Si, the BP probabilities �pij were defined as

�pij ¼

(
1=
P

k1p̂ ik>0 if p̂ij > 0

0 if p̂ij ¼ 0

For example, for a given stimulus Si, a vector of response probabilities p̂i ¼ ð0:6; 0; 0:3; 0:1Þ,

computed according to FOP, was transformed into �pi ¼ ð0:33; 0; 0:33; 0:33Þ.

Response selection probabilities were again computed via the softmax rule:

Given Si, the probability for selecting response Rj was:

pij ¼ exp
�pij

t

� ��
X

k

exp
�pik

t

� �

Deterministic response patterns (DRPs)

Instead of tracking all 24 S-R mappings as required by FOP, the task could also be optimally

performed with reduced memory and computational demands by means of deterministic

response strategies. In contrast to FOP, responses are tested in a fixed order for all stimuli, for

instance by going from left to right on the keyboard (dfkl). In case of negative feedback, the

next response according to the response order is tested at the subsequent presentation of the

stimulus. Alternatively, if the response is correct, it is logged in for the respective stimulus, and

the response is excluded for the remaining stimuli, i.e. the next response to test in the fixed

order is the next response that has not yet been assigned to any stimulus (see Fig 3).

Deterministic response strategies in a trial-and-error learning task
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From a theoretical point of view, the order by which the responses are tested is arbitrary,

i.e. any of the 24 possible response orders could be used to perform the task. However, we

hypothesized that from a human perspective, certain response orders, like dfkl (going from left

to right) or lkfd (going from right to left), might be easier to implement than others.

The deterministic response pattern (DRP) models were implemented as follows: For a

given stimulus Si, the response Rj determined by the respective response order (either the des-

ignated or correct response) was set to probability one (i.e. ~pij ¼ 1) and the other three

responses were set to probability zero (i.e. ~pik ¼ 0 for k 6¼ j). This degenerate distribution was

transformed into a response selection probability distribution via the softmax rule:

Given Si, the probability for selecting response Rj was:

pij ¼ exp
~pij

t

� ��
X

k

exp
~pik

t

� �

Under the presence of response selection noise (τ> 0), the updating procedure was defined

in the following way: If the selected response deviated from the designated response due to

response selection noise, only positive feedback led to an update, whereas negative feedback

left the internal state of the model unchanged. Although this implementation does probably

not fully capture human behavior, it was selected to keep the updating procedure of the DRP

models as simple as possible. Moreover, this procedure was motivated by the fact that a devia-

tion from the DRP could either occur as a backward deviation with respect to the response

Fig 3. Example for a deterministic response pattern. Using the response order dfkl, the deterministic response pattern unfolds in

the following way: Before trial 1, all four stimuli are to be responded by the first response of the response order, which is response d
in this example. Due to the negative feedback in trial 1, the designated response for stimulus S1 is set to the next response according

to the response order, which is f in this example. In the second trial, responding with d to stimulus S2 results in positive feedback,

thus response d is logged in as the correct response for this stimulus. Importantly, due to the one-to-one property of the S-R

mappings, the response d is blocked for the other three stimuli, thus the designated responses for stimuli S3 and S4 are set to the next

unoccupied response, which is f. In trial 3, response f is logged in for stimulus S1, and the designated responses for stimuli S3, S4 are

set to the next response according to the response order, which is response k in this example. In trial 4, responding with k to stimulus

S3 results in negative feedback. At this point, again due to the one-to-one property of the S-R mapping, one can conclude that the

correct response to stimulus S3 must be l. Moreover, although stimulus S4 has not yet been presented at this point, its correct

response k can already be inferred.

https://doi.org/10.1371/journal.pcbi.1006621.g003
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order, in which case the deviating response had been falsified before and updating was not

necessary, or as a forward deviation, and in this case an update based on negative feedback

would involve an invalid jump over possibly correct responses, thereby potentially corrupting

the DRP procedure.

Remarks on the computational models

The Q-learning, BP, FOP and DRP models cover different types of learning ranging from low-

level associative learning to more sophisticated learning strategies involving inferences across

different S-R pairs. The Q-learning model, which represents low-level associative learning,

only strengthens or weakens the association between the currently presented stimulus and

selected response based on the provided feedback information without drawing inferences

from this information about the remaining S-R pairs. Associative learning is suboptimal on

the presented learning task, as the one-to-one property of the S-R mappings is not utilized by

this learning approach. In contrast, the FOP model optimally exploits feedback information by

excluding all S-R mappings that are incompatible with the information. While solving the

learning task optimally, the FOP strategy requires storing which of the 24 S-R mappings are

consistent with the observed history of S-R-O combinations as well as computing response

probabilities by averaging across consistent S-R mappings. It seems unlikely that the subjects

could accurately implement this strategy during the relatively fast-paced experiment. However,

the FOP model might capture an unspecific tendency towards optimality, that is, this model

might provide a better explanation than the Q-learning model for response data of subjects

that at least occasionally drew inferences based on the one-to-one property of the S-R map-

pings. Similarly, the BP model, which represents a more coarse-grained version of the FOP

model, might provide the best explanation for response data of subjects which only partially

exploited the one-to-one property of the S-R mappings without taking subtle differences

between response probabilities into account. Both the FOP and the BP models are rather

employed with the intention to capture unspecific tendencies towards optimality in the

human response data than to demonstrate that the subjects accurately implemented the

respective strategies. Instead of implementing the cognitively demanding FOP strategy, we

hypothesized that some subjects might have implemented DRP strategies, which retain opti-

mality while requiring less cognitive resources than FOP. Specifically, instead of storing con-

sistency/inconsistency for 24 S-R mappings, DRP strategies only require storing the currently

designated test responses and correct responses for four stimuli in working memory. More-

over, instead of computing response probabilities by averaging across different S-R mappings,

the DRP procedures only require step-by-step testing of the responses using a fixed response

order. Thus, we hypothesized that some subjects might have implemented a DRP strategy in

order to minimize the number of errors while keeping working memory and computational

efforts bounded.

Maximum likelihood estimates

All models were fitted to the data by maximizing the log-likelihood of the data given the mod-

els, i.e. parameters were selected such that the actual responses were maximally likely given the

models. The models were fitted on data of the initial learning phase of the learning blocks 6 to

20 (i.e. excluding blocks 1 to 5) to ensure that learning strategies had stabilized, since subjects

had not been instructed on the one-to-one property of the S-R mappings before performing

the task and thus had to adapt their learning strategies within the first few blocks. Models were

fitted on data of the initial learning phase, which started at trial 1 and ended when all four sti-

muli were performed correctly at least once, i.e. the trial in which the fourth stimulus was

Deterministic response strategies in a trial-and-error learning task
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performed correctly for the first time marked the end of the initial learning phase in each

learning block. This was motivated by the fact that the DRP, FOP and BP models make no spe-

cific predictions for the subsequent practice phase following initial learning, besides the gen-

eral prediction that correct responses are selected, up to a certain degree of fidelity determined

by the noise parameter τ. Note that in contrast to the other models, the Q-learning model does

make specific predictions for the practice phase, since S-R association strengths continuously

increase with every correct repetition during the practice phase. Model parameters, consisting

of the response selection noise τ 2 (0, 1/6.0, 1/5.8, 1/5.6, . . ., 1/0.2) for the DRP, FOP, BP and

Q-learning models, and the learning rate α 2 (0.05, 0.10, 0.15, . . ., 1.00) for the Q-learning

model, were fitted separately for each subject on the initial learning phases of the learning

blocks 6 to 20.

Model comparisons

Based on the maximum likelihood estimates, we determined for each subject which model

provided the best fit to the initial learning phase, i.e. which model obtained the highest log-

likelihood score (see S1 Fig, for additional group-level analyses see S2 Text). As expected, the

response orders dfkl (going from left to right on the keyboard) and lkfd (from right to left)

were ranked first and second among the DRP models, while the third-ranked response order

was kfdl, which corresponds to the rather implausible sequence right index finger, left index

finger, left middle finger, right middle finger, indicating a false positive hit for this response

pattern. Thus, to be on the conservative side and avoid excessive statistical testing, we dis-

carded all response orders but dfkl and lkfd and constrained our model space to the five models

DRP dfkl, DRP lkfd, FOP, BP and Q-learning for subsequent analyses.

Only reporting which model scored the highest likelihood is in general not very informa-

tive, since the difference between the log-likelihood scores of the best and second best model

can be arbitrarily small. Thus, we tested subject-wise whether one of the five models fitted the

initial learning phase significantly better than competing models by conducting nonparamet-

ric Wilcoxon signed-rank tests across the log-likelihood values of the 15 blocks of interest. The

five models were compared in an order corresponding to the quality of their predictions: As

the DRP models make the most specific predictions on the learning strategy, we first tested for

each subject whether either the DRP dfkl or DRP lkfd model fitted significantly better than the

respective competing four models by conducting four pairwise one-sided Wilcoxon signed-

rank tests across the 15 blocks of interest, using a significance threshold of p< 0.05. That is, if

the DRP dfkl model fitted the initial learning phase of a given subject significantly better

than the DRP lkfd, FOP, BP and Q-learning models (all four tests resulted in p< 0.05), the

respective subject was assigned to the DRP subsample. Subjects were also assigned to the

DRP subsample if the DRP lkfd model fitted significantly better than the DRP dfkl, FOP, BP

and Q-learning models. If neither the DRP dfkl nor the DRP lkfd model outperformed the

competing models, we tested whether the FOP model fitted significantly better than the

BP and Q-learning models, as the FOP model makes more specific predictions than BP and

Q-learning. That is, subjects were assigned to the FOP subsample if the FOP model fitted the

initial learning phase significantly better than the BP and Q-learning models (both tests

resulted in p< 0.05). For the remaining subjects, we tested whether the BP model fitted signifi-

cantly better than Q-learning on the initial learning phase, and subjects were assigned to the

BP subsample if this was the case. Finally, we tested whether Q-learning fitted significantly

better than FOP or BP on the remaining subjects, and those subjects were assigned to the

Q-learning subsample.

Deterministic response strategies in a trial-and-error learning task
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Results

Based on this model comparison procedure, we found that the DRP models provided the best

fit for 43 of 85 subjects (50.6%), with 36 subjects following the dfkl pattern and 7 subjects fol-

lowing the lkfd pattern (see Fig 4). A tendency towards generic optimal learning, as expressed

by a better fit of FOP than BP and Q-learning, was found for 18 subjects (21.2%), while 19 sub-

jects (22.3%) exploited the stimulus-response dependencies at least partially, as indicated by a

better fit of BP than Q-learning. The remaining 5 subjects (5.9%) were assigned to none of the

model-specific subsamples. Specifically, Q-learning did not fit significantly better than FOP or

BP on the initial learning phase for any subject. Model parameter estimates are shown, sepa-

rately for the three subsamples, in S2 Fig.

Learning curves

Besides predictiveness, the generative performance of computational models is an important

indicator for their ability to explain effects observed in the actual data [30]. To evaluate the

generative performance of the five models, we generated response data with N = 1000 repeti-

tions for each block, using the respective subject-specific maximum likelihood model parame-

ters. To evaluate the generative performance of the models in terms of learning dynamics, we

compared the learning curves generated by the models with the actual learning curves of the

subjects (see Fig 5). While the FOP and BP models provided better fits than Q-learning for the

initial learning phase on all three subsamples, the DRP models further improved the fit com-

pared to FOP and BP within the first few trials on the DRP subsample. The Q-learning model

provided the best asymptotic fit on all three subsamples, as the DRP, FOP and BP models

Fig 4. Result of the model comparison procedure. The trial-and-error learning task was performed by N = 85

subjects. For each subject, it was tested in descending order (see main text for details) which model provided the best

fit for the initial learning phase. For 43 subjects (50.6%), the DRP models outperformed the FOP, BP and Q-learning

models, with 36 subjects following the dfkl response pattern and 7 subjects following the lkfd pattern. Of the remaining

subjects, 18 subjects (21.2%) showed a tendency towards generic optimal learning, while 19 subjects (22.3%) partially

exploited stimulus-response dependencies. Q-learning was never significantly better than FOP or BP on the initial

learning phase. Five subjects (5.9%) could not be assigned to a model-specific subsample.

https://doi.org/10.1371/journal.pcbi.1006621.g004
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made no specific predictions for the practice phase following initial learning beyond the gen-

eral prediction that correct responses are selected with a certain degree of fidelity determined

by the response selection noise parameter τ.

Optimal and suboptimal errors

While learning curves are typically used to characterize the temporal dynamics of learning

processes, they are rather uninformative in terms of the circumstances by which different

Fig 5. Learning curves for the three subsamples. A: Learning curves of the initial learning phase from trial 1 to 17. For the DRP

subsample, the DRP, FOP and BP models provided a markedly better fit to the human learning curve than the Q-learning model.

The DRP models improved the fit compared to the FOP and BP models for the first few trials. Within the FOP subsample, again

both FOP and BP outperformed Q-learning, with the FOP model providing a marginally better fit than the BP model. For the BP

subsample, the FOP and BP learning curves were indistinguishable but again fitted markedly better than Q-learning. Vertical lines

indicate standard errors of the mean. B: Learning curves of the initial learning phase from trial 1 to 32. These data are shown for the

sake of completeness in addition to the truncated learning curves shown in A. As the initial learning phase ended in 75% of the

blocks before trial 18, estimates became increasingly unreliable after trial 17, see also S5 Fig. C: Learning curves including trials of the

initial learning phase and the subsequent practice phase. While the DRP, FOP and BP models became stationary when the initial

learning phase ended, the Q-learning model further strengthened its associations between stimuli and responses, resulting in the best

asymptotic fit on all three subsamples. Note that maximum likelihood estimates of the response selection noise parameter τ were

consistently larger than zero, thus the asymptotic performance of the DRP, FOP and BP models was below 100%.

https://doi.org/10.1371/journal.pcbi.1006621.g005
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types of errors occurred during learning. To evaluate the generative performance of the models

in terms of their ability to reproduce specific types of errors that occurred during initial learn-

ing, the errors were assigned to different categories. The first category consisted of ‘optimal

errors’, defined as errors that occurred although the subject (or model) had chosen an optimal

response, i.e. a response with maximal probability according to optimal (noise-free) FOP. The

second category consisted of ‘suboptimal errors’, defined as errors that occurred for responses

with nonzero, but not maximal probability according to noise-free FOP. Using these defini-

tions, we found that the DRP models generated error distributions similar to those actually

observed in the DRP subsample, whereas the FOP, BP and Q-learning models could not repro-

duce the actual distributions (see Fig 6). Specifically, the variability of the number of optimal

errors generated by the FOP, BP and Q-learning models was much lower than actually

observed. Moreover, these three models produced considerably more suboptimal errors than

actually observed within the DRP and FOP subsamples. The results of an extended analysis of

error types, including errors that could have been avoided completely with optimal play, can

be found in S3 Fig.

Fig 6. Joint distributions of optimal and suboptimal errors for the three subsamples. Optimal errors were defined

as errors occurring when a response with maximum probability of being correct was selected and followed by negative

feedback. Suboptimal errors were defined as errors occurring when a response with nonzero probability of being

correct, but not maximum probability of being correct, was selected and followed by negative feedback. For each

subject, the actual and modeled number of errors was averaged across blocks, i.e. each data point represents mean

values of an individual subject. A: For the DRP subsample, the DRP models generated error distributions similar to

those produced by the subjects, whereas the variability of optimal errors and the average number of suboptimal errors

produced by the FOP, BP and Q-learning models were markedly different from the observed human data. B: Within

the FOP subsample, the FOP, BP and Q-learning models again failed to reproduce the variability of optimal errors and

the average number of suboptimal errors observed in the actual data. C: For the BP subsample, the three models

generated approximately the same number of suboptimal errors as the subjects, but again failed to reproduce the

variability of optimal errors.

https://doi.org/10.1371/journal.pcbi.1006621.g006
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Why did the FOP, BP and Q-learning models only poorly fit the optimal and suboptimal

errors? The Q-learning model acquired stimulus-response associations independently for each

S-R pair, hence it could not distinguish between optimal and suboptimal errors, as the compu-

tation of response probabilities required inferences across S-R pairs. Moreover, the BP model

could also not distinguish between optimal and suboptimal errors, as by definition differences

between optimal and suboptimal response probabilities were removed before response selec-

tion. While the FOP model could distinguish between optimal and suboptimal errors, and

indeed produced slightly better fits for these two error types than the BP and Q-learning mod-

els (see S3 Fig), the variability of optimal errors was still considerably reduced compared to the

actual data, but also compared to the DRP models (see Fig 6 and S3 Fig). The reason for this

reduced variability is that the number of optimal errors produced by FOP is independent of

the stimulus sequences. More specifically, under noise-free FOP, the distribution of the num-

ber of optimal errors invariably converges towards the distribution shown in S4B Fig for any

stimulus sequence. In contrast, for the DRP models, the number of optimal errors varies as a

function of the stimulus sequences, as shown in S4A Fig.

Discussion

Using computational models to analyze the initial learning phase of a trial-and-error learning

task with deterministic feedback and hidden stimulus-response dependencies, we found that

about 50% of the subjects employed deterministic response patterns to increase learning effi-

ciency. Most of the remaining subjects either showed a tendency towards generic optimal

learning, or performed better than predicted by pure associative learning by partially exploit-

ing stimulus-response dependencies. A detailed analysis of specific error types showed that

only the DRP model could generate the variability found in the human data, whereas the other

three models were unable to reproduce this variability.

We followed a modeling approach that has been employed by a variety of studies before

[2, 5, 8–10, 19, 20]: The standard Q-learning model served as a baseline for comparison with

more sophisticated models that either partially exploited task structure (BP) or approximated

optimal performance (FOP), and found that the more sophisticated models provided a better

fit to the data than the standard reinforcement learning model. This finding is in line with

other studies that have compared pure associative learning with more sophisticated learning

strategies in settings with probabilistic feedback [7, 14, 15, 25, 27], deterministic feedback

[17, 23], or both types of feedback [31]. Specifically, we found that the BP model provided a

better fit to the data than the Q-learning model for a significant fraction of the subjects, which

can be unambiguously attributed to certain inferences based on the one-to-one property of the

stimulus-response mappings. More specifically, the BP model differed from Q-learning with

respect to errors that could have been avoided by excluding responses that had been assigned

to other stimuli in previous trials, as indicated by marked differences in specific error catego-

ries between these two models across all three subsamples (that is, error categories ‘correct for

different stimulus’, ‘both correct for different stimulus and repeatedly wrong’ and ‘neither cor-

rect for different stimulus nor repeatedly wrong’, see S3 Fig). Hence, there is good evidence

that these subjects exploited the fact that once a response had been assigned to a stimulus, it

could be excluded for other stimuli. Similar findings have been reported before for trial-and-

error learning tasks featuring two stimuli and probabilistic feedback [8–10, 14, 15, 25, 26].

More surprisingly perhaps, the BP model was outperformed by the FOP model on another

significant fraction of the sample. This can be unambiguously attributed to differences in opti-

mal and suboptimal errors, since the two models performed similarly with respect to other

error types. These differences indicate that subjects of the FOP subsample did not only exclude
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responses previously assigned to other stimuli, as reflected by BP, but also exploited more sub-

tle S-R-O dependencies corresponding to FOP; for instance the fact that when a response was

rejected for some stimulus, its probability of being correct for one of the remaining open sti-

muli increased compared to the other available responses (cf. ‘After trial 1’ in Fig 2). Similar

trends towards optimal task performance based on the integration of task structure into learn-

ing strategies have been reported before [3–5, 8].

The novel contribution of the results presented here is that they demonstrate that human

learning strategies can be characterized beyond a general trend towards the optimal learning

strategy. For 50% of the subjects, the initial learning phase was better explained by the DRP

models than by FOP. Thus, these subjects did not select responses arbitrarily from the set of

theoretically optimal responses, as predicted by FOP, but instead implemented a response

selection procedure that determined a unique response in every trial. On the presented trial-

and-error learning task with deterministic feedback, this was a highly adaptive learning strat-

egy: Although being equivalent to FOP from a theoretical point of view, DRPs were more effi-

cient from the human perspective as they considerably reduced working memory and

computational demands. Indeed, using DRPs, only the correct or designated response for each

stimulus had to be maintained in working memory, whereas FOP required tracking all 24 S-R

mappings. Computational costs were also significantly reduced, as the DRPs only required

counting up to the next free response in case of negative feedback or storing the correct

response in case of positive feedback, whereas FOP required computing response probabilities

by averaging across all S-R mappings consistent with the S-R-O history. Moreover, subjects

could choose their preferred response order, which was arbitrary from a theoretical point of

view, but not from the human perspective, as evidenced by the strongly non-uniform distribu-

tion across response orders (S1 Fig).

In order to successfully employ DRPs, subjects were required to reliably update their inter-

nal representations of task states on a trial-to-trial basis. Such an explicit and rapid updating of

S-R-O contingencies, involving high-level cognitive processes and especially short-term main-

tenance of S-R-O information in working-memory, has also been reported before in studies

on instruction-based and one-shot learning [5, 32–35]. In these learning paradigms, subjects

were either explicitly instructed on S-R contingencies [36–39], or had to infer instantaneously

the correct response [40–42] or S-O causalities [5] in a single trial. Specifically, by investigating

different types of S-R-O contingencies [43, 44] and learning conditions [45, 46], several studies

have shown that the explicit instruction of S-R-O contingencies facilitates an almost error-free

task performance right from the start of the practice phase. In the light of these studies, the

findings presented here suggest that subjects employing DRPs might have divided the trial-

and-error learning task implicitly into an exploration phase where they established the correct

S-R links (equivalent to the initial learning phase defined for the computational models), and a

subsequent practice phase where the S-R associations were consolidated via repetition.

Together with the good asymptotic fit of the Q-learning model on the practice phase, our find-

ings suggest that the high-level cognitive system supporting stimulus-response processing dur-

ing initial learning is successively replaced by an associative system performing automatized,

low-level stimulus-response transformations.

Limitations and open questions

In the present study, a trial-and-error learning task with deterministic feedback was analyzed

in detail using different computational models. While the employed computational models

provided novel insights into human learning strategies in this specific setting, it remains an

open question to which extent similar learning strategies can be detected in modified versions
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of the task. For example, it remains unclear how learning strategies are impacted by changes of

the number of stimuli, type of feedback, assignment of response keys and other factors. Specifi-

cally, manipulating feedback probabilities would help to assess whether the deterministic

nature of the task is central for the presented findings or not. In this context, it would also be

interesting to investigate how a variable bonus (as implemented in other studies on associative

learning) would impact learning strategies, compared to the fixed payments used in the cur-

rent study. Moreover, the computational models employed here did not provide a unified the-

ory about human learning in the investigated setting but instead only covered separate aspects

of the involved learning processes. Specifically, the DRP, FOP and BP models could explain

human learning better than Q-learning during the initial learning phase, whereas asymptotic

learning performance was better predicted by the Q-learning model. Thus, further progress

could be made by constructing a unified model that is able to predict the entire learning curve.

This might be achieved by combining the models employed here using a mixture parameter

that is estimated on the data (c.f. [2, 16, 18]). Another interesting avenue for future research

might be to compare the DRP, FOP and BP models not only to the most basic version of Q-

learning as employed here, but to more sophisticated associative learning models that allow the

integration of task structure, as proposed by Gershman [47]. Further model extensions might

incorporate response time data, maybe in the form of drift-diffusion models [48, 49]. More-

over, limitations and open questions of the current study not only concern the computational

models per se, but also potential connections between the computational models and more

general measures of cognitive performance. Given that only some subjects implemented DRPs,

it is conceivable that whether or how accurate DRPs are implemented might correlate with

interindividual measures of cognitive capacities like working memory capacity or fluid intelli-

gence across subjects. In summary, the findings presented here might be seen as a first step

towards a better understanding of human learning strategies in specific deterministic settings.

Conclusion

Using a computational modeling approach, we showed that the subjects performed the pre-

sented trial-and-error learning task using highly adaptive and efficient learning strategies.

While 50% of the subjects implemented deterministic response strategies in order to optimize

task performance while keeping memory and computational demands bounded, most of the

remaining subjects showed a general tendency to exploit hidden stimulus-response dependen-

cies. These sophisticated learning strategies go beyond the incremental reinforcement of stim-

ulus-response associations via feedback, and instead reflect the engagement of high-level

cognitive processes during the initial learning phase.

Supporting information

S1 Fig. Preliminary model comparison including all 24 DRP response orders and the FOP,

BP and Q-learning models. For each subject, it was determined which of the 27 models pro-

vided the largest log-likelihood score based on response data of the initial learning phase. Most

subjects were best fitted either by the DRP dfkl, DRP lkfd, FOP or BP models. The response

orders dfkl and lkfd correspond, respectively, to going from left to right and from right to left

on the computer keyboard, which seem to be reasonable response strategies from a human

perspective (while from a theoretical perspective, all 24 response orders are equivalent). In

contrast, the third-ranked DRP response order kfdl corresponds to the rather implausible

sequence right index finger, left index finger, left middle finger, right middle finger, and the

fourth-ranked response order fkld corresponds also to an implausible sequence (left index fin-

ger, right index finger, right middle finger, left middle finger). Note that the preliminary
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model comparison reported here is based on the best-ranked model for each subject, with the

difference between the best and second best model potentially being arbitrarily small. Thus, the

fact that for a few subjects some implausible response orders obtained the highest log-likelihood

score seems to reflect a bias in the model comparison procedure: Simply by submitting a larger

number of models from the same class to the model comparison procedure, it becomes more

likely that a model of this class obtains the highest score. To remove this bias from subsequent

analyses, we constrained the model space to the five models DRP dfkl, DRP lkfd, FOP, BP and

Q-learning, and conducted statistical tests for model comparison, reported in the main text.

(TIF)

S2 Fig. Maximum likelihood estimates of the model parameters, shown separately for the

three subsamples. Response selection noise τ was fitted for all four models DRP, FOP, BP and

Q-learning, while the learning rate α was only included in the Q-learning model. Response

selection noise τ was optimized along the range 0, 1/6, 1/5.8, . . ., 1/0.2 (31 values), and the

learning rate α was selected from the range 0.05, 0.10, . . ., 1.0 (20 values). Parameters were fit-

ted separately for each subject on response data of the initial learning phase.

(TIF)

S3 Fig. Extended analysis of error types of the initial learning phase. Errors were catego-

rized into 7 different types. Optimal errors were defined as errors that occurred when a

response with maximum probability of being correct was selected. Suboptimal errors were

defined as errors that occurred when a response with nonzero probability, but not maximal

probability, was selected. Errors were categorized as ‘repeatedly wrong’ if negative feedback

had been received before for the respective S-R pair. Errors were categorized as ‘correct for a

different stimulus’ if a response was selected that had been assigned to a different stimulus in

earlier trials. Errors were categorized as ‘both repeatedly wrong and correct for a different

stimulus’ if both criteria were fulfilled. Errors were categorized as ‘neither repeatedly wrong

nor correct for a different stimulus’ if an indirect inference would have led to the correct

response, as for example in step 5 of Fig 3, where the correct response for the fourth stimulus

was inferred based on the one-to-one property of the S-R mappings. Finally, errors were cate-

gorized as ‘after first correct’ if the respective S-R pair had been performed correctly before.

For each subject, the number of errors of each type was averaged across the 15 blocks of inter-

est. The plots show median, first- and third quartile, and minimum and maximum values

across the subjects of the respective sample. A: Data of the DRP subsample. As also depicted in

Fig 6 of the main text, the DRP models performed considerably better than the other models

in terms of optimal and suboptimal errors. The FOP model showed at least a tendency towards

the actual data for these two error types, but all three models (FOP, BP and Q-learning) failed

to reproduce the high variability of optimal and suboptimal errors found in the actual data.

Moreover, the Q-learning model was unable to exploit the one-to-one property of the S-R

mappings, as can be seen by the high rate of ‘correct for a different stimulus’, ‘both repeatedly

wrong and correct for a different stimulus’ and ‘neither repeatedly wrong nor correct for a dif-

ferent stimulus’ errors. B: Data of the FOP subsample. As in A, the FOP model showed a

slightly better fit in terms of optimal and suboptimal errors than the BP and Q-learning mod-

els, but none of the three models could reproduce the high variability of these error types. C:

Data of the BP subsample. Again, all three models showed much lower variability in terms of

optimal and suboptimal errors than observed in the actual data.

(TIF)

S4 Fig. Distributions of optimal errors under optimal (noise-free) play. A: For any stimulus

sequence, the number of optimal errors produced by the 24 response orders invariably resulted
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in the shown distribution. B: For a large number of repetitions, the number of errors under

free optimal play converged to the same distribution as in A on any stimulus sequence.

(TIF)

S5 Fig. Histograms of block length and initial learning phase length. A: Histogram of the

overall block length, including blocks 6 to 20 from all subjects (N = 85). The maximum of 70

trials was never reached after block 5. B: Histogram of the initial learning phase length for

blocks 6 to 20. The third quartile (trial no. 17) was taken as cut-off in Fig 5A, indicated by the

black/gray shading.

(TIF)

S1 Text. Task instructions.

(PDF)

S2 Text. Additional group-level analyses.

(PDF)

S1 Appendix. Optimality of FOP.

(PDF)
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