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Abstract

Sex-biased demographic events (“sex-bias”) involve unequal numbers of females and

males. These events are typically inferred from the relative amount of X-chromosomal to

autosomal genetic variation and have led to conflicting conclusions about human demo-

graphic history. Though population size changes alter the relative amount of X-chromo-

somal to autosomal genetic diversity even in the absence of sex-bias, this has generally

not been accounted for in sex-bias estimators to date. Here, we present a novel method

to identify sex-bias from genetic sequence data that models population size changes

and estimates the female fraction of the effective population size during each time epoch.

Compared to recent sex-bias inference methods, our approach can detect sex-bias that

changes on a single population branch without requiring data from an outgroup or knowl-

edge of divergence events. When applied to simulated data, conventional sex-bias estima-

tors are biased by population size changes, especially recent growth or bottlenecks, while

our estimator is unbiased. We next apply our method to high-coverage exome data from

the 1000 Genomes Project and estimate a male bias in Yorubans (47% female) and Euro-

peans (44%), possibly due to stronger background selection on the X chromosome than

on the autosomes. Finally, we apply our method to the 1000 Genomes Project Phase 3

high-coverage Complete Genomics whole-genome data and estimate a female bias in

Yorubans (63% female), Europeans (84%), Punjabis (82%), as well as Peruvians (56%),

and a male bias in the Southern Han Chinese (45%). Our method additionally identifies

a male-biased migration out of Africa based on data from Europeans (20% female). Our

results demonstrate that modeling population size change is necessary to estimate sex-

bias parameters accurately. Our approach gives insight into signatures of sex-bias in sex-

ual species, and the demographic models it produces can serve as more accurate null

models for tests of selection.
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Author summary

Sex-biased demographic events involve unequal numbers of females and males, and is

referred to as “sex-bias”. In humans, short-range migrations (e.g., due to marriage prac-

tices) are known to be sex-biased, and some long-range migrations, such as the one out of

Africa, are hypothesized to be sex-biased. The recent availability of large-scale genomic

sequencing data provides a unique opportunity to study sex-bias in human populations.

However, existing sex-bias methods do not account for population size changes, like

expansions and bottlenecks, or can only estimate a single sex-bias parameter on a popula-

tion branch, which can lead to incorrect conclusions. We developed a sex-bias method

which explicitly models population size changes, and we show that it outperforms com-

peting methods on simulated data. When applied to human genetic data, our method

identifies an overall female sex-bias in globally-distributed populations and a male-biased

bottleneck in Europeans. Our method can also be used to assess sex-bias in other sexual

species.

Introduction

Human population-genetic studies generally assume that the proportions of reproducing

females and males are equal. However, human history contains sex-biased demographic events

(“sex-bias”) which are defined by having unequal female and male effective population sizes,

NF
e and NM

e . Some examples of sex-bias include matrilocality (the practice of females remaining

in their place of birth after marriage), and conversely, patrilocality [1, 2]; patrilineal inheritance

in herder groups [3]; polygamy, the practice of a male having multiple female sexual partners,

and polyandry, which is the opposite; female- and male-biased migration; and sexual selection.

These factors, along with a variance in reproductive success that is greater in males than

females [4, 5], cause male and female effective sizes to differ [6, 7].

Initial studies of human sex-bias compared mitochondrial to Y-chromosomal data due to

their uniparental inheritance (maternal and paternal, respectively). Recent studies have com-

pared X-chromosomal to autosomal data [8–11] to take advantage of their multiple indepen-

dent loci [12, 13]. Most of these studies found evidence for female bias in human populations.

Although Labuda et al. initially found evidence for male bias based on recombination rates

[14], their conclusion changed to one of a female bias after an error in their analysis was cor-

rected [15, 16]. These studies used standard sex-bias estimators of Q, the ratio of X-chromo-

somal to autosomal effective population sizes. In a neutrally-evolving population of constant

size with no migration, Q is 0.75 when there is no sex-bias; Q is greater than 0.75 when there is

a female bias and less than 0.75 when there is a male bias. Other recent sex-bias studies ana-

lyzed admixture fraction on the X-chromosome and autosomes and found evidence for sex-

biased admixture in human populations.

Since they have different effective sizes, the X chromosome and autosomes recover genetic

diversity following a population size change at different rates, even in the absence of sex-bias

[17]. Previous studies considered whether population size change alone could explain the pat-

terns of X-chromosomal and autosomal genetic variation observed in human populations.

Though a study of genomic resequencing data estimated a large Q value consistent with a bot-

tleneck more than 100,000 years ago followed by recent growth, they rejected this explanation

based on simulations [18]. A more recent study, which found that Q increases with distance

from genes, studied the impact of human demographic histories on Q̂p (i.e., Q estimated from
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π, average pairwise sequence diversity) and found it was only slightly biased by realistic size

changes [19]. The common estimators of sex-bias, Q̂p and Q̂FST
, Q estimated from FST, are sen-

sitive to sex-biases at different time scales in the context of realistic human demographic his-

tory [20]. A study assessing a male-biased Out-of-Africa bottleneck found evidence for a more

severe bottleneck on the X chromosome than the autosomes in European and East Asians but

was not able to estimate the proportion of females during the bottleneck with their FST-based

inference method [21, 22]. Although these studies characterized patterns of relative X-chromo-

somal to autosomal variation, they did not explicitly model population size change, nor did

they provide estimates of the proportion of females during specific epochs. A recent study by

Clemente et al. developed a tree-based method, KimTree, to estimate sex-bias parameters for

each population branch from multi-population X-chromosomal and autosomal data [23].

Although they found evidence for an overall female bias in human populations and a male bias

in Oceanians, their inference could be biased for one of the following reasons, among others:

their method assumes a constant population size during epochs, and they did not remove

genic regions from their human data, which could be under evolutionary constraints. Further-

more, their method requires data from multiple populations, limiting its applicability.

Here, we present a novel method to estimate sex-bias from X-chromosomal and autosomal

sequence data. It models demographic history jointly from X-chromosomal and autosomal

site frequency spectra and explicitly models complex demographic events, including exponen-

tial growth and multiple bottlenecks. Our method estimates the proportion of females overall

as well as during each time epoch. In simulations, our method has good power to detect a true

sex-bias for a range of demographic histories and performs well when the method of Clemente

et al. does not. We apply our method to globally-distributed human populations from the 1000

Genomes Project [24] and compare sex-bias estimates based on exome data to those from

whole-genome sequencing data. Our sex-bias estimates, which account for population size

changes, give new insight into human demographic history and the male-biased migration out

of Africa.

Results

First, we present a framework to infer sex-biased demography while modeling population size

changes. Next, we apply our method to data simulated under one of three demographic mod-

els: constant size, a two-epoch expansion, or a three-epoch bottleneck. Finally, we apply our

method to exome and whole-genome sequence data from the 1000 Genomes Project.

Theoretical framework: Population of constant size

We initially assume a constant per-site mutation rate, μ, shared by the X chromosome and

autosomes, and that mutation occurs as a Poisson process [25]. We later account for unequal

male and female mutation rates. For a population with Nm males and Nf females where Nm +

Nf = N, the total number of individuals, the inbreeding effective sizes of the autosomes and X

chromosome can be derived using a coalescent argument [13]. In terms of the proportion of

breeding females p = Nf/N, these effective sizes are:

NA
e ðpÞ ¼ 4pð1 � pÞN ð1Þ

NX
e ðpÞ ¼

9pð1 � pÞ
2ð2 � pÞ

N ð2Þ

We drop p from the left-hand side for notational convenience. The autosomal effective size
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(NA
e ) is maximized at N when p = 0.5 and is less than N otherwise; the X-chromosomal effective

size (NX
e ) is always less than N (Fig 1A). We define these reductions of effective size due to sex-

bias (i.e. p 6¼ 0.5) as the reduction factors fAðpÞ ¼ NA
e =N and fXðpÞ ¼ NX

e =N. The ratio NX
e =N

A
e

increases with p (Fig 1B) and is greater than 1 for very female biased values (p> 0.875), in

agreement with classic results (Fig 1C).

The unfolded site frequency spectrum (SFS) for a sample of n chromosomes is the random

vector (S1, S2, . . ., Sn−1). Under the Poisson random field model, the Si’s are independent Pois-

son-distributed entries with mean θF(i) (see Eq 2 of [25] for the definition of F(i)). The proba-

bility of observing si sites with i derived and (n − i) ancestral mutations under neutrality, given

a population-scaled mutation rate of θ = 4Neμ and the demographic model D, is:

pðSi ¼ sijy;DÞ ¼ e� yFðiÞ
ðyFðiÞÞsi

si!
ð3Þ

The maximum likelihood estimator (MLE) of θ for a sample of n chromosomes with a total

of S segregating sites (i.e. S ¼
Pn

i¼1
Si) is as follows, where the subscripts A and X denote the

Fig 1. Effective population size and sex-bias. (A) Expected autosomal (NA
e ) and X-chromosomal (NX

e ) effective population sizes as a function of the proportion

females (p) for N = 1000 individuals. When p = 0.5, there is no sex-bias, as denoted by the gray line. (B) The ratio of X-chromosomal to autosomal effective sizes,

NX
e =N

A
e , increases with p. This ratio is 0.75 when there is no sex-bias (p = 0.5, gray line) and is undefined when p is 0 or 1. (C) Inset of A: when p is greater than 0.875

(to the right of the gray line), NX
e is greater than NA

e , so NX
e =NA

e is greater than 1.

https://doi.org/10.1371/journal.pgen.1008293.g001
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autosomes and X chromosome, respectively (see also Eq 13 of [25]):

ŷA ¼
SA

PnA � 1

i¼1
FAðiÞ

ð4Þ

ŷX ¼
SX

PnX � 1

j¼1
FXðjÞ

ð5Þ

To test for sex-bias in a population of constant size, we develop a likelihood ratio test

(LRT). Under the null hypothesis, the parameters ŷA and ŷX are consistent with p = 0.5; under

the alternate hypothesis, they are not. Let LA and LX be the physical length (e.g., in base pairs)

of the sequenced autosomal and X-chromosomal loci. The Poisson density in Eq 3 can be com-

bined with the MLEs in Eqs 4 and 5 to give distributions of the number of autosomal and X-

chromosomal segregating sites:

SA � PoisðyA � LA �
XnA � 1

i¼1

FAðiÞÞ ð6Þ

SX � PoisðyX � LX �
XnX � 1

j¼1

FXðjÞÞ ð7Þ

We combine the definition θ = 4Neμ with Eqs 1 and 6 to get the expectation of SA and with

Eqs 2 and 7 to get the expectation of SX:

E½SA� ¼ 4pð1 � pÞNm� LA �
XnA � 1

i¼1

FAðiÞ ð8Þ

E½SX� ¼
9pð1 � pÞ
2ð2 � pÞ

Nm� LX �
XnX � 1

j¼1

FXðjÞ ð9Þ

Taking the ratio of SA to SX and solving for p, we obtain our estimator of the effective pro-

portion of females overall, ~p, in terms of the site frequency spectrum densities FA and FX:

~p ¼ 2 �
9SALX

PnX � 1

j¼1
FXðjÞ

8SXLA

PnA � 1

i¼1
FAðiÞ

ð10Þ

To estimate ~p for a particular epoch t, we use the effective sizes NA
et and NX

et for that epoch:

~pt ¼ 2 �
9� 4NA

etmLA

8� 4NX
etmLX

ð11Þ

Using Eqs 6 and 7, we can write a joint likelihood for the autosomal and X-chromosomal data:

Lðy; pjSA; SXÞ ¼
YnA � 1

i¼1

PðSi;A ¼ si;AjyAÞ
YnX � 1

i¼1

PðSi;X ¼ si;XjyXÞ

¼
YnA � 1

i¼1

e� yAFAðiÞ
ðyAFAðiÞÞ

si;A

si;A!

YnX � 1

i¼1

e� yXFXðiÞ
ðyXFXðiÞÞ

si;X

si;X!

ð12Þ
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For a population of constant size, this likelihood reduces to the likelihood in [18], which we

can use to define a likelihood ratio test for sex-bias. Under the null hypothesis of p = 0.5 (i.e.

no sex-bias), θA = θ and θX = 3/4 × θ based on Eqs 1 and 2. Substituting these into Eq 12, we

obtain the MLE of θ based on autosomal and X-chromosomal data under the null hypothesis:

~y0 ¼
SA þ SX

LA �
PnA � 1

i¼1
FAðiÞ þ 3=4� LX �

PnX � 1

j¼1
FXðjÞ

ð13Þ

Under the alternative hypothesis of sex-bias (p 6¼ 0.5), we instead use the reduction factors

in θA = fA(p) × θ and θX = fX(p) × θ and obtain the MLE of θ as:

~y ¼
SA þ SX

fAðpÞ � LA �
PnA � 1

i¼1
FAðiÞ þ fXðpÞ � LX �

PnX � 1

j¼1
FXðjÞ

ð14Þ

We evaluate the log of the likelihood in Eq 12 at y ¼ ~y0 to obtain the null log-likelihood,

LL0, and at y ¼ ~y to obtain LL1, the alternative log-likelihood. The likelihood ratio test statistic,

Λ = −2(LL0 − LL1), is approximately w2
1
-distributed.

Theoretical framework: Population of non-constant size

We define a demographic history as a set of population sizes (Ne1, Ne2, . . .NeT) which go for-

ward in time (i.e., Ne1 is the ancestral population size) and correspond to a set of T − 1 size

changes and T epoch durations. The size changes~n ¼ ðn1; n2; . . . ; nT� 1Þ, which occur instan-

taneously or exponentially, are defined as the size at the end of an epoch relative to the ances-

tral population size. The epoch durations~t ¼ ðt1; t2; . . . ; tTÞ are in units of genetic time

scaled by the ancestral population size. We assume the X chromosome has the same demo-

graphic model (i.e. number and kind of size changes) as the autosomes. To assess sex-bias in a

population, we test nested X-chromosomal models defined in terms of the female fraction of

the effective size during an epoch, pt, t = 1. . .T:

Model 0: no sex-bias. p is 0.5 for every epoch, so NX
t ¼ 0:75� NA

t .

Model 1: constant sex-bias. pt is the same for every epoch, so NX
t ¼ c� NA

t for a constant c.

Model T: varying levels of sex-bias. pt can vary among epochs, so NX
t ¼ ct � NA

t for a con-

stant ct.

These models are implemented by constraining the X-chromosomal size change and epoch

duration parameters, ~nX and ~tX , by the autosomal parameters ~nA and ~tA , and their likelihoods

are used in the likelihood ratio tests for sex-bias (see S1 Text, “Likelihood ratio tests for sex-

bias: general form”). In addition to the examples we give for a two-epoch model below (“Sex-

bias tests for a two-epoch model”) and a three-epoch bottleneck model (see S1 Text, “Likeli-

hood ratio tests for sex-bias: bottleneck model”), sex-bias tests for arbitrarily complex demo-

graphic models can be defined.

Sex-bias tests for a two-epoch model

A population at mutation-drift equilibrium changes from its original size of N0 to size N1 (i.e.

the fold-size change ν is N1/N0) at time τ (Fig 2). Though a population expansion is shown in the

figure, the same framework is used for a population contraction. There are two free X-chromo-

somal parameters, νX and τX, so there are three X-chromosomal models, Models 0, 1, and 2, and

two likelihood ratio tests. Model 0 has no sex-bias (p = 0.5) and the following constraints ensure

that the effective size of the X chromosome is 3/4 that of the autosomes: νX = νA, τX = 4/3 × τA,

A novel sex-bias inference method that accounts for population size changes
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θX = 4/3 × θA. Model 1 has a constant sex-bias (p is constant) and these constraints ensure that

the X-chromosomal effective sizes are a constant scaling of the autosomal effective sizes: νX = νA,

τX = 1/c × τA, and θX = c × θA for some constant c. The final model, Model 2, corresponds to

varying sex-bias (p varies), and its constraints ensure that the size changes happen at the same

time as measured in generations: νX = c2/c1 × νA, τX = 1/c2 × τA, θX = c1 × θA.

Joint likelihoods for the ith model, i = 0, 1, 2, based on the autosomal log-likelihood llA and

X-chromosomal log-likelihood lli, are: LL0 = llA + ll0, LL1 = llA + ll1, and LL2 = llA + ll2. A test

for constant sex-bias is based on Λ0 = −2 × (LL0 − LL1) and one for varying sex-bias is based

on Λ1 = −2 × (LL1 − LL2). The best-fitting model has an estimate of the effective proportion of

females overall, ~p, and during each epoch, ~pt , t = 1. . .T.

Results from simulations

Constant population size. We simulated single nucleotide polymorphism (SNP) data at

independent sites from a population of constant size (for details, see Materials and methods).

Fig 2. Sex-bias tests for a two-epoch demographic model. Each plot is a demographic model with time on the x-axis and effective population size on the y-axis.

For a two-epoch model, there are three possible X-chromosomal models, one for each sex-bias scenario: Model 0 has no sex-bias (p = 0.5), Model 1 has a

constant sex-bias (p 6¼ 0.5), and Model 2 has a changing sex-bias. The likelihoods of the autosomal and X-chromosomal models are used in the likelihood ratio

tests. In these examples, epochs in gray have no sex-bias, those in blue have a male bias, and those in red have a female bias.

https://doi.org/10.1371/journal.pgen.1008293.g002
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On data simulated under the null (p = 0.5), our test for sex-bias is calibrated and our estimators

of p and θ are unbiased (S1 Fig). On data simulated under the alternative (p = 0.2), our test has

good power (S2 Fig). The power of our test for sex-bias (denoted “LRT”) and a test based on

the standard estimator Q (denoted “θ test”) is in Fig 3. For a small number of segregating sites

(an average of 427), our test has moderate power overall; although the Q-based test has better

power to detect a female bias, it has almost no power to detect a male bias (Fig 3A). Increasing

Fig 3. Sex-bias tests applied to a simulated population of constant size. Power of the likelihood ratio test for sex-bias (“LRT”) compared to a standard (“θ test”)

applied to unlinked SNPs for (A) a small number of segregating sites (427) and (B) a large number of segregating sites (4253). Power of tests applied to partially

linked SNPs for (C) a small number (637) and (D) a large number (6367) of segregating sites. The dashed green line is at the false positive rate of 0.05.

https://doi.org/10.1371/journal.pgen.1008293.g003
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the number of segregating sites to an average of 4250 sites increases the power of both tests

(Fig 3B). Both tests have less power on data simulated with linkage characteristic of human

populations (Fig 3C and 3D), as expected.

Population expansion. Population expansions are characteristic of recent human history

and perturb the ratio of X-chromosomal to autosomal genetic diversity, even in the absence

of sex-bias [17]. We simulated a sample of 500 chromosomes from a population which under-

went a 55-fold expansion 205 generations ago (Fig 4A), which are parameters estimated from

Fig 4. Test statistics for simulated recent growth. (A) A demographic model with recent growth (55x, 205 generations ago) was used to

simulate data with a constant sex-bias for a sample of 500 chromosomes with independent sites. Test statistics for (B) a constant sex-bias,

Λ0, and (C) changing sex-bias, Λ1, are shown for a range of the proportion of females, p. The critical value is denoted by the dashed line.

https://doi.org/10.1371/journal.pgen.1008293.g004
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European genetic data [26]. We simulated either a constant sex-bias or no sex-bias for values

of p from 0.2 to 0.8. Applied to this data, our test for constant sex-bias is well-powered (Fig

4B), except when p = 0.4. This is because the expected value of NX
e =N

A
e is 0.703 when p = 0.4,

which is close its expected value of 0.75 when p = 0.5 under the null (Eqs 1 and 2). This test

has less power on a smaller sample of 40 chromosomes (S3A Fig) and more power on a larger

sample of 5000 chromosomes (S4A Fig). Our test for changing sex-bias is unbiased on 500

chromosomes (Fig 4C) as well as on 40 or 5000 chromosomes (S3B and S4B Figs). We next

compared our estimator of the proportion of females, ~p, to the estimator pπ, which is calculated

from pairwise sequence diversity (π) of the autosomes and X chromosome [18] and is biased

by population size change, even in the absence of sex-bias [17]. Applied to simulated data, our

estimator ~p is unbiased for all values of p because it accounts for population expansion (Fig 5).

Conversely, pπ is biased under the null (p = 0.5) and performs poorly for small values of p: for

a strong male bias of p = 0.2, the median pπ estimate is 0.305.

Population bottleneck. The bottleneck model in Fig 6A is a simplified version of the Out-

of-Africa bottleneck estimated from European individuals [26]. We first simulated a sample of

100 chromosomes under this model with a constant sex-bias. Applied to this data, our test for

constant sex-bias has large LRT statistics Λ0 (Fig 6B) and a power of 1 for all values of p due

to the large number of simulated segregating sites (approximately 20,000 sites for autosomal

data). Our test for changing sex-bias has small test statistics Λ1 and a negligible false positive

rate for all values of p. Our estimator of the overall effective proportion of females ~p is unbiased

(Fig 6C, blue). The estimator pπ works well when p = 0.8, but becomes increasingly biased as p
decreases: for the strong male bias of p = 0.2, the median of pπ is -0.12 (Fig 6C, red). The pπ-

based test might have low power for small p because NX
e =N

A
e is perturbed less from its expected

value by a reduction from 0.5 than the analogous increase: for example, NX
e =N

A
e is perturbed

less from 0.75 when p = 0.2 than when p = 0.8 (Fig 1A). This results in an asymmetrical pπ bias

curve (Fig 6C).

Fig 5. Estimates of p for simulated recent growth. Bias of sex-bias estimators applied to data simulated with recent growth (55x, 205 generations

ago) and a constant sex-bias. The true proportion of females, p0, is on the x-axis and the bias of the estimator, p̂ � p0, is on the y-axis. Our

estimator, ~p, models population size change and is unbiased; the estimator pπ, which is based on pairwise sequence diversity π, does not model

population size change and is biased for small values of p0.

https://doi.org/10.1371/journal.pgen.1008293.g005

A novel sex-bias inference method that accounts for population size changes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008293 September 20, 2019 10 / 25

https://doi.org/10.1371/journal.pgen.1008293.g005
https://doi.org/10.1371/journal.pgen.1008293


We next simulated a bottleneck with a changing sex-bias, where the proportion of females

is p1 outside the bottleneck (i.e., before and after the bottleneck) and p2 during the bottleneck.

We applied the test for changing sex-bias to this data and report power in the off-diagonal

entries of Fig 7A; false positive rates are on the diagonal, where sex-bias is constant. The test

Fig 6. Simulated bottleneck with constant sex-bias. Bottleneck simulations with a constant proportion of females, p0. (A) Autosomal

demographic model with time on the x-axis and effective population size on the y-axis. (B) Test statistics for the test for constant sex-bias, Λ0, with

the parametric bootstrap critical value in gray. (C) Bias of estimators of the proportion of females, p̂ � p0, is shown for our estimator, ~p, and the

estimator based on pairwise sequence diversity, pπ. Our estimator is unbiased while the pπ is increasingly biased for small p0 and at times negative.

https://doi.org/10.1371/journal.pgen.1008293.g006
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Fig 7. Simulated bottleneck with changing sex-bias. Test for changing sex-bias applied to bottleneck simulations with a proportion of

females of p1 outside the bottleneck and p2 during the bottleneck. (A) Off-diagonal entries are power: values greater than 0.85 are in

blue, values between 0.85 and 0.10 are in light yellow, and values less than 0.10 are in orange. Entries on the diagonal are false positive

rates and are in gray. (B, C) Data was simulated with a female bias outside the bottleneck (p1 = 0.8) and a varying proportion of females

during the bottleneck, p2. Our method produces separate estimates for p1 and p2 (~p, in blue), while the the π-based estimator produces

one estimate (pπ, in red). Bias of estimators of the proportion of females (B) outside the bottleneck, p̂ � p1, and (C) during the

bottleneck, p̂ � p2, is shown for both methods. The π-based estimator is biased when p1 and p2 differ (here, when p2 is not 0.8), whereas

our estimator is unbiased.

https://doi.org/10.1371/journal.pgen.1008293.g007
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has power of 1.0 when the values of p1 and p2 differ by at least 0.2 on the grid of p values,

which are 0.1 apart. The distribution of the test statistic Λ1 is shown in S5 Fig. A single statistic

such as Qπ cannot discriminate between a constant sex-bias and one that is changing over

time. This is demonstrated by the simulation with an overall female bias (p1 = 0.8) and a male-

biased bottleneck (p2 = 0.2) in S6 Fig: the estimator pπ based on Qπ is 0.473, which corresponds

to slight male bias overall; in contrast, our method recovers the true values of p1 and p2 corre-

sponding to a sex-biased bottleneck. Sex-bias estimates for simulations with p1 = 0.8 with all

values of p2 are shown in Fig 7B and 7C: while our estimator ~p is unbiased and recovers the

true parameters p1 and p2, pπ is intermediate between the two values, so its bias varies with p2.

Estimates of the proportion of females for both methods and for all values of p1, p2, and p3 are

in S1 Table. For strongly male-biased bottlenecks where p2 is 0.1 or 0.2, Qπ estimates are down-

wardly biased. For example, a simulated female bias of p1 = 0.6 and male-biased bottleneck of

p2 = 0.1 has an estimated Qπ of 0.505, which corresponds to a nonsensical pπ of -0.226, while

our estimator recovers the true values of p. This highlights the importance of estimating sex-

bias in the context of a demographic history.

Comparison to KimTree. To compare the performance of our method to a recent sex-

bias inference method that uses data from multiple populations, KimTree [23], we applied

both methods to multi-population data simulated with sex-biased bottlenecks (S10A Fig).

KimTree estimates the one value of the effective sex ratio (ESR), which we refer to as the pro-

portion of females p, per population branch. To estimate the ESR prior to a population split,

KimTree requires data from an outgroup, so we simulated a third population to estimate the

ESR for branch 4. All three populations were simulated with a pervasive female bias (p1 = 0.8)

and a male-biased bottleneck (p2 = 0.2) with parameters similar to those used in the “Popula-

tion bottleneck” simulations above: a male-biased bottleneck occurs on branch 4 before popu-

lations 1 and 2 split, which affects both of those populations, and another occurs on branch 3,

which only affects population 3. Applied to this data, KimTree estimates a female bias for

all branches and does not detect the changing sex-bias on branches 3 or 4 (S10B Fig). This

could be because KimTree estimates only one ESR per branch or because it does not model

population size changes. We next applied our method with a bottleneck demographic model

to each marginalized, single-population site frequency spectrum. Our method, which produces

one ESR estimate per epoch per population, correctly estimates a male bias during the bottle-

neck and a female bias outside the bottleneck in all three populations (S10C Fig). In addition,

our method is much faster than KimTree: per simulation replicate, KimTree took approxi-

mately 31 hours with 6 parallel threads, whereas our method took approximately 10.4 minutes

with a single thread, making our method approximately 175 times faster if multi-threading is

ignored.

Applications to sequence data

1000 Genomes Project exomes. To estimate sex-bias in human populations, we first

applied our method to high-coverage exome data from the 1000 Genomes Project (approxi-

mately 30x coverage). We restricted our analysis to synonymous sites as in other studies of

human demographic histories from exome data [27, 28]. Autosomal and X-chromosomal SFS

for a European population (CEU) and the African Yoruban population (YRI) are shown in S7

Fig. Europeans (S7A Fig) have an excess of rare X-chromosomal variants relative to the auto-

somes, which is expected given recent rapid growth in Europeans, while Yorubans have a slight

relative excess of rare autosomal variants (S7B Fig). The ratio of mutation rates α = μM/μF is a

free parameter in our model, so we perform a grid search over α to maximize the joint autoso-

mal-and-X-chromosomal likelihood (Eq 12). The maximum likelihood value of α is 3, in
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agreement with a previous estimate from human pedigree data [29]. The proportion of females

estimated by our method, ~p, for Europeans and Yorubans fit with different demographic mod-

els are in Table 1. Yorubans fit with a misspecified constant population size have an estimated

~p which is 0.359. A more realistic two-epoch model with old growth (a 2.02x expansion 221

thousand years ago) has a higher likelihood and gives a ~p of 0.465, corresponding to a male

bias. For the European population, using a misspecified constant size model gives a nonsensi-

cal ~p of -0.019 and lower likelihood. A two-epoch model with recent growth (23x expansion

4.7 thousand years ago) has a higher likelihood and gives a ~p of 0.080. A more realistic model,

consisting of a 0.93x bottleneck 51 thousand years ago followed by exponential growth that

increased the population’s size by 51x [26], has the highest likelihood and gives a ~p of 0.435. In

both populations, the best-fitting models are male-biased: ~p ¼ 0:465 for Yorbans with an old

growth model and ~p ¼ 0:435 for Europeans with a bottleneck followed by recent exponential

growth.

1000 Genomes Project whole genomes. We next analyzed 159 unrelated females from

five populations from Phase 3 of the 1000 Genomes Project who were sequenced to high cover-

age on the Complete Genomics platform [24]. We restricted our analysis to non-coding

regions of chromosomes 7 and X, which are approximately the same physical size (�150MB)

[30]. To filter this data, we removed regions that might have been subject to natural selection

or are prone to sequencing error (for details, see Materials and methods). We also removed

regions closer than 0.2cM to the nearest gene to reduce differential strengths of background

selection, the effect of purifying selection on linked loci, on the X chromosome and autosomes

as in [19]. On this filtered data, we fit single-population extrapolations of demographic models

used in previous studies of these populations [27, 28]. To reduce the impact of linkage on our

inference (specifically, the differential linkage on the autosomes and the X chromosome), we

used a conventional bootstrap to estimate standard errors of parameters. Full likelihood ratio

testing outcomes are in S2 Table, and the best-fitting model results are shown in Fig 8, which

are based on the underlying data in S3 Table.

Our method estimates a constant sex-bias (i.e., ~p differs from 0.5) for all populations except

Europeans (Fig 8A). The best-fitting model for Yorubans (YRI) with older growth and a small

amount of recent growth (“Old growth”) has a constant female bias of ~p ¼ 0:63. The best-fit-

ting model for Punjabis from Lahore (PJL) is the complex model involving an older expansion,

a bottleneck during the Out-of-Africa migration, and recent exponential growth (“complex”),

and has a female bias (~p ¼ 0:815). The Southern Han Chinese (CHS) are also best fit by the

complex model and are inferred to have a male bias (~p ¼ 0:450), which is consistent with the

previous observation of more drift on the X chromosome relative to the autosomes in East

Asians than in Europeans [31]. Peruvians (PEL) have a slight overall female bias for the best-

fitting bottleneck model (“bottleneck”), which might capture recent sex-biased admixture.

We note that our estimated confidence intervals are conservative: although the LRT result for

Table 1. Sex-bias estimates from 1000 Genomes Project exome data. Our method run with the specified demographic models for Yorubans (YRI) and Europeans (CEU)

gives estimates of the proportion of females, ~p, in the last column. The best-fitting models (“Growth” for YRI, “Bottlegrowth” for CEU) are consistent with a slight male

bias. Constant models do not estimate any population size change parameters as denoted by “N/A”, and “kya” stands for “thousands of years”.

Population Model Population size change parameter estimates ~p

YRI Constant N/A 0.359

YRI Growth 2.02x expansion 221 kya 0.465

CEU Constant N/A -0.019

CEU Growth 23x expansion 4.7 kya 0.080

CEU Bottlegrowth 0.93x bottleneck 51 kya, 51x exponential growth starting 5.1 kya 0.435

https://doi.org/10.1371/journal.pgen.1008293.t001
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Southern Han Chinese and Peruvians is a constant sex-bias where p differs from 0.5, the confi-

dence intervals for p for these populations overlap 0.5 slightly. The best-fitting model for Euro-

peans (CEU) is the complex model (S8 Fig) with a changing sex-bias (Fig 8B): our method

infers a male-biased bottleneck during the Out-of-Africa migration ( ~p2 ¼ 0:204) and a female

bias outside the bottleneck ( ~p1 ¼ 0:843). The exome results from Yorubans and Europeans do

not have this signal, which could be due to the differential strengths of background selection

on the X chromosome and autosomes [12]. Since purifying selection is stronger on the X chro-

mosome, it decreases genetic diversity more on the X chromosome than on the autosomes and

reduces NX
e more than NA

e ; indeed, the estimated proportion of females is lower from exome

data than from whole-genome sequencing data. Taken together, these results describe a female

bias in human populations with a male-biased bottleneck, which is estimated well from non-

coding genetic data.

Discussion

Human sex-bias studies have reached conflicting conclusions due to the type of genomic loci

and statistics used [20]. An important confounder is population size change, which can bias

sex-bias inferences. To this end, we developed a sex-bias inference method that accounts for

demographic history and takes X-chromosomal and autosomal genetic data as input. When

applied to coalescent simulations, our method has better power than conventional estimators

to estimate an overall sex-bias for arbitrary demographic histories; in addition, our method

Fig 8. Sex-bias estimates from 1000 Genomes Project high-coverage whole genomes. Estimates of and 95% confidence intervals for the proportion of females

from our method for the best-fitting demographic model for each population. Demographic models are defined in the main text. (A) Our method infers a

constant proportion of females, ~p, for Yorubans (best demographic model: old growth), Punjabis (complex model), Southern Han Chinese (complex model),

and Peruvians (bottleneck model). (B) Our method infers a changing proportion of females for Europeans (complex model) with a female bias outside

bottleneck ( ~p1 , “non-bottleneck”) and a male bias during the bottleneck ( ~p2 , “bottleneck”).

https://doi.org/10.1371/journal.pgen.1008293.g008
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can detect a changing sex-bias. We also applied our method to human data from the 1000

Genomes Project [24].

There are two main issues with conventional approaches that test for sex-bias with a single

summary statistic such as Q. The first issue is that the null expectation of Q is not 0.75 for a

population which has changed in size, so a test comparing Q to 0.75 for a population of non-

constant size can be underpowered or have false positives [20]. The second issue is that a single

summary statistic cannot localize the source of sex-bias to a particular time epoch. For exam-

ple, for data simulated with a bottleneck and varying amount of sex-bias (S1 Table), a popula-

tion with no sex-bias (p = 0.5) which underwent a female-biased bottleneck (p = 0.7) has a Q of

0.731, which is similar to the Q of 0.737 that a population with a strong female bias (p = 0.8)

and strongly male-biased bottleneck (p = 0.2) has. As a result, these scenarios cannot be distin-

guished by Q alone. Based on simulated data, our test for sex-bias is more powerful than one

based on Q and is well-powered for demographic events relevant to human history, such as

recent expansions and bottlenecks.

Decreasing p from 0.5 by some amount, as for a male bias, changes NX
e =N

A
e more than

increasing p by the same amount, as for a female bias (Eqs 1 and 2). Despite this, our test for a

changing sex-bias has good power for all values of p on data simulated with a bottleneck. How-

ever, a sex-bias estimator that does not account for population size change, such as pπ, is more

biased when p is small (i.e. for a male bias). In bottleneck simulations with a strong male bias,

pπ is downwardly biased and at times negative. This is because the strong, recent bottleneck

combined with the strong male bias reduces X-chromosomal genetic diversity more than auto-

somal genetic diversity.

Bottlenecks with a changing proportion of females are relevant to human history, particu-

larly since some bottlenecks correspond to long-range migrations which are hypothesized to

have been sex-biased. A bottleneck alone biases conventional sex-bias estimators [17]. Applied

to data simulated with a bottleneck under the null of constant sex-bias (p1 = p2 = p3 = 0.5), a

conventional estimator is biased and estimates a persistent male bias (pπ = 0.399), whereas our

sex-bias estimator is unbiased ( ~p1 ¼ 0:503, ~p2 ¼ 0:496, ~p3 ¼ 0:500). Using our method, we

find evidence for a male-biased bottleneck out of Africa and have good power to detect such a

sex-bias based on simulated data. To our knowledge, this is the first direct test of this hypothe-

sis based on whole-genome sequence data.

A recent method by Clemente et al., KimTree, estimates sex-bias from multi-population

data [23]. Our method compliments KimTree in that both offer insight into sex-bias, and each

one has a different focus. Our method operates on data from a single population and explicitly

models population size changes, while KimTree requires multi-population data and does not

explicitly model population size change. Since KimTree estimates one effective sex ratio (i.e.,

the proportion of females) per branch, it cannot detect sex-bias that changes on a single

branch; our method can, and we have shown in simulations that it has good power to do so.

Our method does not require an outgroup or knowledge of divergence events, and so can be

applied to datasets where multi-population data is not available, including those from ancient

samples. In addition, our method is much faster than KimTree: our method ran on a laptop in

a few hours with a single thread, whereas KimTree took several days to run, even when multi-

ple threads were used.

Applied to 1000 Genomes Project whole-genome sequence data, our method infers a perva-

sive female bias in globally-distributed populations. This is consistent with human anthropo-

logical literature, which suggests that males have a greater variance in reproductive success

than females [5]. In addition, our method identifies a male-biased bottleneck out of Africa

based on data from Europeans; the lack of this signal in the other non-African populations
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may be due to insufficient sample sizes or misspecified demographic models. Finally, our

method infers a male bias in the Southern Han Chinese, which is consistent with previous

observations. Our results are generally in agreement with those from KimTree, which found

either a female bias or no bias in most human populations, and a male bias on the branch

ancestral to Europeans and Asians [23]. From filtered, putatively neutral whole-genome

sequence data far from genes, our method infers a more extreme female bias than Clemente

et al., possibly because their estimates are downwardly biased by their inclusion of genic

regions, their inability to account for sex-bias that changes along a population branch, or their

assumption of a constant population size.

To assess whether sex-bias estimation from exome data is appropriate, we analyzed synony-

mous sites as in previous studies [26–28]. We used a range of demographic models and

obtained estimates of the proportion of females ranging from negative values to nearly 0.5.

For the best-fitting demographic models, ~p is 0.465 for Yorubans and 0.435 for Europeans,

similar to previously-obtained π-based estimates from non-genic sites closest to genes [19].

Our results also agree with those from another exome study [12] even though it only assessed

three values of p, and we assessed the full range of p. Then, sex-bias inference from exomes is

most likely confounded by background selection.

We make some assumptions in our framework. We use an average mutation rate for the

autosomes, μA, and an average rate for the X chromosome, μX. Though the mutation rate varies

across the genome, we use a single SFS for each type of locus, autosomal and X-chromosomal,

so mutation rate differences are averaged in the scaled mutation rate parameter, θ. This SFS

and θ are used together to estimate demographic parameters, as is standard in demographic

inference literature. In addition, though we do not require that SNPs be thinned to remove

linkage disequilibrium before estimating sex-bias from genomic data, we recommend estimat-

ing parameter standard errors with a conventional bootstrap, as commonly done in demo-

graphic inference [27].

Our implementation of the sex-bias method we developed uses the program @a@i [27], and

any demographic inference program that calculates likelihoods will work (e.g. fastsimcoal
[32]). Our method could be extended to test for sex-biased admixture or to analyze multiple

populations simultaneously, which would expand its utility. In addition, although we only con-

sider common variation (minor allele frequency> 0.05) from which our method has good

power to detect older sex-bias, if high-confidence rare variant calls are available, our method

could be used to infer more recent sex-bias. This work underscores the importance of model-

ing demographic history when estimating sex-bias, and our results give new insight into sex-

bias in human populations. Our method can infer sex-bias in any sexual population and pro-

vides better null models for selection scans than competing methods, producing a more accu-

rate view of population histories.

Materials and methods

Accounting for unequal male and female mutation rates

To allow for unequal male and female mutation rates in our framework, we assume a constant

female per-site mutation rate, μf, and a constant male per-site mutation rate, μm, with ratio

given by α. For a given value of μA and α, we obtain the value μX as in [33] and used in [18]:

mX ¼ mA �
2� ð2þ aÞ

3� ð1þ aÞ
ð15Þ

In humans, α is greater than 1, which corresponds to a male mutation bias [34]. These values

of μA and μX can be substituted into Eqs 11, 13 and 14.
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A novel sex-bias inference method

We developed a novel method to estimate sex-bias from genetic data and that uses custom

demographic functions written in the python programming language. Our method first esti-

mates autosomal parameters then optimizes X-chromosomal parameters, some of which are

constrained by the autosomal parameter estimates (see S1 Text, “Likelihood ratio tests for sex-

bias: general form”). To estimate demographic parameters, we use the program @a@i, which

uses a diffusion approximation to the one-locus, two-allele Wright-Fisher process [27]. To esti-

mate parameters from simulated data, we used the “log_fmin” function in @a@i, which uses the

Nelder-Mead optimizer. For both simulated and genetic data, if parameter bounds are hit, we

re-start the optimizer from a randomly perturbed point. To estimate parameters from the

1000 Genomes Project data, we perform a grid search over parameters, start @a@i’s optimizer

from the grid search optimum, and take the best point as the maximum likelihood point. For

the complex demographic models used in the 1000 Genomes Project whole-genome data anal-

ysis, we fixed the parameter values of an older African growth event and the time of the Out-

of-Africa bottleneck [28] and optimized more recent events. For samples of more than 20 indi-

viduals, we use a fine grid (“minGrid” = 150) and a smaller @a@i timescale of 10−4 to improve

model fitting (S9 Fig). To construct parametric bootstrap confidence intervals, the following

procedure is repeated 100 times. A bootstrap sample is simulated with the coalescent simula-

tion program ms [35] using the demographic model, estimated parameters, and linkage struc-

ture of the original dataset. We then estimated demographic parameters with @a@i. For each

parameter, the 95% confidence interval is estimated as the range of the central 95% of boot-

strap samples for that parameter. In the case of ~p, a bootstrap sample is generated based on

autosomal and X-chromosomal data.

Simulating a population of constant size

We first simulated data from independent sites from 1000 unlinked regions that are 5kb in

length. To do so, we drew the number of segregating sites for the autosomes and X chromo-

some as a Poisson random variable with mean parameter given by Eqs 8 and 9, respectively.

We first simulated data under the null hypothesis (p = 0.5) and calculated the estimators ~p and

~y with Eqs 6, 13 and 14 as well as the likelihood ratio test statistic Λ for each simulated set of

autosomal and X-chromosomal data. We used the distribution of Λ to obtain the empirical

critical value of c� = 3.787. We then simulated data under the alternative hypothesis for p rang-

ing from 0.2 to 0.8 in steps of 0.1, and calculated power with respect to c�.
We next simulated partially linked sites with ms. We simulated 10,000 independent samples

of a 5KB locus in 10 males and 10 females using a per-site mutation rate of 0.001 and a per-site

recombination rate of 0.001. Assuming an ancestral population size Ne = 104, we calculated the

population size-scaled mutation rate θ and the population size-scaled recombination rate ρ
based on the proportion of females p:

y
A
¼ fAðpÞy ¼ 4pð1 � pÞy

y
X
¼ fXðpÞy ¼

9pð1 � pÞ
2ð2 � pÞ

y

rA ¼ fAðpÞr ¼ 4pð1 � pÞr

rX ¼ fXðpÞ � ð2pÞ=ð1þ pÞr ¼
9pð1 � pÞ
2ð2 � pÞ

2p
1þ p

Autosomal and X-chromosomal data were simulated separately for p ranging from 0.2 to 0.8

in steps of 0.1; commands are in S1 Text, “Simulation Commands: Population of constant
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size”. We formed datasets of two different sizes, 5kb and 50kb, by combining simulated loci.

The values ~p, ~y, Λ, and critical value c� were calculated analogously to those for simulated

independent sites.

We compare the power of our LRT to a test based on Q. We calculated Q̂ as ŷX=ŷA and esti-

mated confidence intervals with a bootstrap. For partially linked sites simulated in ms, Q̂ is cal-

culated as p̂X=p̂A, and confidence intervals are calculate using a bootstrap over independent

iterations.

Simulating population expansion

We simulated a population of which underwent an instantaneous ten-fold expansion 100 gen-

erations ago with ms. We simulated a sample of 40 individuals with mutation rate of 1.5 × 10−8

per site. As in the simulations for a population of constant size, the X chromosome per-site

mutation rate and recombination rate are functions of p, the proportion of females. For each p
ranging from 0.2 to 0.8 in steps of 0.1, we simulated datasets of 5kb and generated 10,000 inde-

pendent datasets. We made X-chromosomal and autosomal site frequency spectrum and per-

formed likelihood ratio tests (see Results, “Sex-bias tests for a two-epoch model”) for each

dataset.

Simulating population bottlenecks

We simulated a bottleneck with the parameters estimated from European genetic data [26].

The population starts at size 14,500 at 5840 generations ago, experiences a bottleneck to 1861

individuals lasting from 2040 to 920 generations ago, then expands to its final size of 100,000.

We simulated sex-bias during epochs by setting effective sizes of X chromosomes and auto-

somes as per Eqs 1 and 2. The per-site mutation rate is 1.5 × 10−8, the locus length is 100Kb,

and 50 females are simulated by sampling 100 X chromosomes and 100 autosomes. We aver-

aged 105 independent ms simulation iterations to construct the autosomal and the X-chromo-

somal site frequency spectrum. We simulated the same proportion of females before and after

the bottleneck. We tested for sex-bias with the likelihood ratio framework for a bottleneck (see

S1 Text, “Likelihood ratio tests for sex-bias: bottleneck model”).

Simulation for comparison to KimTree method

We simulated data with ms for three populations with a female bias (p1 = 0.8). After popula-

tion 3 splits off, the population ancestral to population 1 and 2 experiences a male-biased

bottleneck (p2 = 0.2) on branch 4, as does population 3 on branch 3 (S10A Fig). We used the

same bottleneck parameters (magnitude and times) as in “Simulating population bottlenecks”

above. We sampled 100 autosomes and X chromosomes from 50 diploid females per popula-

tion and performed 100 replicate simulations. We estimated the estimated sex ratio (ESR) for

each branch with KimTree [23] and used the program arguments recommend in the manu-

script and program documentation: -npilot 20 -lpilot 500 -burnin 10000 -length 20000 -thin

20. We applied our method with a bottleneck model to each marginal frequency spectrum of

populations 1, 2, and 3. KimTree was run multi-threaded (6 threads) and our method was run

with a single thread.

Mutation rate parameters used in analysis of human data

Since the male germline per-site mutation rate is higher than the female rate [12], X-chromo-

somal and autosomal per-site mutation rates differ. In the 1000 Genomes Project exome analy-

sis, we estimate α = μM/μF via a grid search. In the 1000 Genomes Project whole-genome data
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analysis, we assume a value of 3 for α (close to the empirical value of 3.6 from [34]), which cor-

responds to an X-chromosomal to autosomal mutation rate ratio of 5/6 (Eq 15). When esti-

mating α via a grid search, θX is a free parameter in the X-chromosomal optimization and we

perform a grid search to obtain the value of θX that results in the best overall likelihood and

the optimal value of α for the dataset. When assuming an α value of 3, it is used to constrain X-

chromosomal parameters based on autosomal parameters: we use an autosomal per-site muta-

tion rate of 1.2 × 10−8 [29] and divide it by the value of E½NX
e =N

A
e �. Then, the X-chromosomal

model is optimized using the @a@i Poisson model where θ is a fixed input parameter.

1000 Genomes Project exome data

We analyzed males and females from the 1000 Genomes Project exome pilot data (2012-03-17

release date). We annotated exome variant calls with SNPeff [36] and kept only synonymous

variants. We analyzed chromosome X and chromosome 22, each of which has approximately

3000 segregating sites in the exome targeted sequencing study. We constructed folded site

frequency spectra for the European (CEU) and Yoruban (YRI) population samples. The chro-

mosome 22 SFS has a higher dimension than the chromosome X SFS for both populations

because the samples contain males and females. As a result, we projected the chromosome 22

SFS down to the dimension of the chromosome X SFS using the hypergeometric projection

[27] for visual comparison and analysis.

1000 Genomes Project whole-genome data

We downloaded the VCF file from the 1000 Genomes Project FTP site for Complete Genomics

SNP calls (release date 2013-08-08) for 159 females from the following five populations: Yoru-

bans (YRI), Punjabis (PJL), Southern Han Chinese (CHS), Peruvians (PEL), and Europeans

(CEU). We restricted our analysis to females to control for any differences in assembly and

variant calling between males and females. Of the six individuals sequenced based on two cell

types (blood and LCL), and we kept calls from one cell type. We used VCFTools [37] version

v0.1.13 to remove multi-allelic SNPs and retain biallelic SNPs with quality VQHIGH. We used

to plink [38] to set Complete Genomics half-calls to missing and remove the X chromosome

pseudo-autosomal regions.

We excluded sites with more than 5% missing genotypes. Sites were filtered as in “Filtering

1000 Genomes Project whole-genome data” below and used to construct autosomal and the

X-chromosomal site frequency spectra. The length of each locus is defined as the number of

bases where a confident call is made (reference, variant, etc.) which was not removed by the fil-

ters described earlier. The locus length is used to convert from time in genetic (i.e., coalescent)

units to time in generations and to calculate per-base statistics. To adjust the callable length for

SNPs removed during filtering, we multiplied the locus length by the ratio of remaining SNPs

to original SNPs. For SFS projected down with a hypergeometric projection, the locus length

was similarly adjusted by multiplying by the ratio of SNPs in the projected SFS to the number

of SNPs in the original SFS. We do not thin SNPs to remove linkage disequilibrium because

the expected values of the SFS are the same for independent sites and for partially linked sites,

so demographic point estimates are not affected [27]. Confidence intervals were constructed

with standard errors estimated from a conventional bootstrap of 1MB blocks across 100 itera-

tions. We used the average per-site mutation rate of 1.5 × 10−8.

Filtering 1000 Genomes Project whole-genome data

For analyses described in “1000 Genomes Project whole-genome data” above, we stratified vari-

ants by their genetic distance to the closest gene in centimorgans (cM) by using closestBed
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[39] to get the closest gene boundary to each SNP in physical units (basepairs, bp). We then

used a linear interpolation on the HapMap sex-averaged recombination map to convert SNP

and gene boundary positions to genetic units (cM), and took their difference as the distance

of the SNP to the closest gene. We restricted attention to SNPs at least 0.2cM from the nearest

gene as in [19] because they are expected to be less affected by background selection. We also

removed regions which are putatively under selection, prone to sequencing error, or cause

differences in local mutation rates which are contained in the following UCSC tracts [30]:

phastConsElements46wayPlacental, simpleRepeat, centeromere/telomere, gap, cpgIslandExt,

genomicSuperDups, knownGene, selfChain, rnaCluster, intronEst.

Program availability

The python source code for our sex-bias inference method and its documentation are freely

available for download at https://github.com/shailamusharoff/sex-bias-inference/.

Supporting information

S1 Text. Simulation commands and likelihood ratio test for sex-bias. We give example ms

simulation commands to generate autosomal and X-chromosomal data from a population

which experienced no sex-bias (p = 0.5) or a male bias (p< 0.5). We describe the general form

of the likelihood ratio tests for sex-bias. We also specify all sex-bias models for a bottleneck

demographic history and define all parameters, along with their units.

(PDF)

S1 Fig. Constant population size simulations with no sex-bias. Estimators from our sex-bias

inference method applied to data simulated for a population of constant size under the null

hypothesis (p = 0.5). Parameter estimates across simulations recover the true parameter in red

for (A) the proportion of females, ~p and (B) the scaled mutation rate, θ. (C) Test statistics have

a critical value in blue corresponding to a false discovery rate of 0.05.

(TIF)

S2 Fig. Constant population size simulations with male sex-bias. Estimators from our sex-

bias inference method applied to data simulated from a population of constant size under

the alternative hypothesis (p = 0.2). Parameter estimates across simulations recover the true

parameter in red for (A) the proportion of females, ~p and (B) the scaled mutation rate, θ. (C)

Test statistics of true discoveries are beyond the critical value in blue.

(TIF)

S3 Fig. Recent growth simulations: Small sample size. We simulated a population which

underwent recent growth (55x, 205 generations ago) and varied the amount of constant sex-

bias for a small sample of 40 chromosomes. Test statistics for our test of (A) constant sex-bias,

Λ0, and (B) changing sex-bias, Λ1, are shown.

(TIF)

S4 Fig. Recent growth simulations: Large sample size. We simulated a population which

underwent recent growth (55x, 205 generations ago) and varied the amount of constant sex-

bias for a large sample of 5000 chromosomes. Test statistics for our test of (A) constant sex-

bias, Λ0, and (B) changing sex-bias, Λ1, are shown.

(TIF)

S5 Fig. Test statistics from bottleneck simulations with a changing sex-bias. We simulated

a population which experienced a bottleneck and has the same proportion of females before

and after the bottleneck. The gray facet labels are the proportion of females outside the
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bottleneck (p1) and the x-axis is the proportion of females during the bottleneck (p2; here

“prop2”). Test statistics for a changing sex-bias (Λ1, here “lambda.1.2.val”) are shown with the

parametric bootstrap critical value as a horizontal gray line.

(TIF)

S6 Fig. Estimated proportion of females from a male-biased bottleneck. We show sex-bias

estimators from simulations with a female bias outside the bottleneck (p1 = 0.8) and a male

bias during the bottleneck (p2 = 0.2). Our estimator ~p in green (“SFS”), recovers the true value

of (A) p1 and (B) p2, denoted by the gray horizontal line. The estimator pπ in red (“π”), gives a

single biased estimate.

(TIF)

S7 Fig. 1000 Genomes Project exome site frequency spectra. Folded site frequency spectra

(SFS) for 1000 Genomes Project exomes of (A) Europeans (CEU) and (B) Yorubans (YRI).

Autosomal SFS (red, “Auto”) were projected down to have the same dimensions as X-chromo-

somal SFS (blue, “chrX”). The expected SFS based on the standard neutral model is in dark

gray (“snm”).

(TIF)

S8 Fig. Demographic model log-likelihoods for 1000 Genomes Project Europeans, whole-

genome sequence data. Autosomal demographic model log-likelihoods from 1000 Genomes

Project European (CEU) whole-genome sequence data. The best-fitting model, a complex

model (“three epoch growth”), has the largest log-likelihood.

(TIF)

S9 Fig. The @a@i timescale and grid parameters affects recovery of simulation parameters.

Log-likelihoods of data simulated under a two-epoch model for a grid of fold-size changes, ν
(“nu”), on the x-axis and times, τ (“tau”), on the y-axis. The true simulation parameter is

denoted by a black dot, light blue regions have better log-likelihoods, and dark blue regions

have poorer log-likelihoods. (A) With the default @a@i timescale parameter of 1e−3 and a

coarse grid, the true point does not have the best likelihood. (B) With a smaller timescale

parameter of 1e−4 and a finer grid, the true point has the best likelihood.

(TIF)

S10 Fig. Comparison of our method to KimTree on data simulated with sex-biased bottle-

necks. Data simulated from three populations, each of which experience a sex-biased bottle-

neck. (A) Multi-population tree model where populations are nodes. The contemporary

populations 1, 2, and 3 are sampled. A male-biased bottleneck occurs on branches 3 and 4

where the proportion of females outside the bottleneck, p1, is 0.8 and the proportion of females

during the bottleneck, p2, is 0.2. The proportion of females is 0.8 on branches 1 and 2. (B) Kim-

Tree estimates a female bias on each branch (ξ) and does not detect the male-biased bottle-

necks because it cannot fit sex-bias parameters that change on a branch. (C) Our method

correctly estimates a female bias outside the bottleneck (“p1”) and a male during the bottleneck

(“p2”) in all three populations.

(TIF)

S1 Table. Estimated proportion of females from bottleneck simulations with a changing

sex-bias. Sex-bias estimates from a simulated population that experienced a bottleneck with a

proportion of females p1 before the bottleneck, p2 during the bottleneck, and p3 after the bottle-

neck. True values are in columns 1-3, our estimators are in columns 4-6, and the single π-

based estimator pπ is in column 7 (“p_pi”). Our method recovers true parameters well whereas
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pπ is biased by size changes and changing sex-bias.

(XLSX)

S2 Table. Likelihood ratio testing outcomes from 1000 Genomes Project whole-genome

sequencing data. Test for sex-bias applied to globally-distributed populations. The best-fitting

demographic model is shown. For the sex-bias test comparing the X-chromosomal models X0

and X1, the likelihood ratio test statistic and p-value are shown on the line with “X1” in the

“X-chromosomal model” column, and analogously for the changing sex-bias test comparing

the models X1 and X2. Values that are not estimated by a model are denoted by “-”. For mod-

els with a bottleneck (“Complex” and “Bottleneck”), “p1_hat” is the estimated proportion of

females outside the bottleneck and “p2_hat” is the estimated proportion of females during the

bottleneck. The best-fitting X-chromosomal model based on the nested likelihood ratio tests is

in bold.

(XLSX)

S3 Table. Sex-bias estimates from 1000 Genomes Project whole-genome sequencing data.

Data underlying Fig 8. For each population, estimates, standard errors, and lower and upper

bounds of a 95% confidence interval are shown for the estimated proportion of females from

the best-fitting model. All populations except Europeans have a single estimate of p, and Euro-

peans have an estimate p1 (“p1”) outside the bottleneck and p2 (“p2”) during the bottleneck.

(XLSX)
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