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Abstract: The statistical procedures as outlined by the European Medicines Agency (EMA) and
United States Food and Drug Administration (FDA) guidelines for bioequivalence testing of highly
variable drugs (HVDs) are complex. Additionally, the sample size is affected by clinical study
designs or practical real-world problems, such as dropout rate or study budget. To overcome these
difficulties, we propose a model-based approach for the selection of a study design with a sample
size that satisfies the bioequivalence criteria using simulation studies based on a pharmacokinetic
(PK) model. The designed approach was implemented using a simulation procedure considering
some conventionally measured factors, such as geometric mean ratio and within-subject coefficient
of variation, with various PK information important in determining bioequivalence. All simulation
results were assessed according to the EMA and FDA guidelines. Furthermore, power calculations
from simulation results were interpreted with regard to PK characteristics and compared among 2 × 2,
3 × 3, and 2 × 4 crossover designs to determine the efficient design considering appropriate sample
size and duration of the clinical study. The proposed approach can be applied to bioequivalence
studies of all drugs. However, the current study was targeted at HVDs, which are highly likely to
require detailed decision making for sample size and study design.

Keywords: highly variable drugs; reference-scaled average bioequivalence; pharmacokinetic model

1. Introduction

A bioequivalence study is performed to evaluate the therapeutic equivalence between
the reference (branded) formulation and test formulation by showing that a test formulation
is absorbed into the body at the same rate and extent as a reference formulation. The average
bioequivalence (ABE) approach is a method for bioequivalence assessment between two
formulations and is suggested by regulatory agencies such as the European Medicines
Agency (EMA) and the United States Food and Drug Administration (FDA) [1,2]. The 2 × 2
clinical trial crossover design is generally used for determining the ABE through the use
of two formulations, two sequences, and two periods. Pharmacokinetic (PK) parameters
for the assessment of bioequivalence are determined from drug plasma concentration,
which is the area under the concentration versus time curve (AUC), and the peak drug
concentration (Cmax). To evaluate bioequivalence, a 90% confidence interval (CI) for the
geometric least square mean ratio (GMR) between a test and a reference formulation is
calculated for the Cmax and AUC. The two formulations are considered to be bioequivalent
when both confidence intervals fall within the bioequivalence acceptance range of 80–125%.
This procedure is called the two one-sided test procedure (TOST) [3,4].

A within-subject variability of PK parameters is a major determinant of bioequivalence
because a high within-subject variability increases the 90% CI of the GMR. If the resultant
90% CI falls outside the aforementioned bioequivalence acceptance range, bioequivalence
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cannot be inferred for the two drugs, even when the GMR is close to 100%. In particular,
a drug is called a highly variable drug (HVD) when its within-subject variability of the
Cmax or AUC ≥ 0.294. In bioequivalence studies for HVDs, a larger sample size may be
needed to satisfy the bioequivalence acceptance criteria owing to their large within -subject
variabilities. However, a high variability in Cmax or AUC is related to the dispositional
characteristics of drugs, which is less connected to formulation performance assessment [5].
The EMA and FDA have raised concerns regarding conducting bioequivalence studies
using large sample sizes for reasons not related to the safety and efficacy of the drug [5,6].
They suggested that the reference-scaled average bioequivalence (RSABE) approach with a
GMR restriction of 80–125% be applied for the bioequivalence tests of HVDs [2,5–8]. The
RSABE approach is a method in which the acceptance range of bioequivalence is expanded
from 80–125% as the within-subject variability of the reference product (σWR) increases [9].

The RSABE approach is applied when the SWR, which is the estimated σWR, is >0.294,
or the within–subject coefficient of variation (within-subject CV or intra-subject CV) is >30%.
Otherwise, bioequivalence is tested using the unscaled average bioequivalence method,
that is, considering the conventional acceptance range. In other words, even for drugs
known as HVDs, the RSABE approach is not applied when SWR < 0.294. Additionally, there
are various components that complicate the statistical procedures for bioequivalence tests
of HVDs, viz., GMR constraints and the implementation of RSABE [10]. These components
are also closely related to each other in bioequivalence test procedures, which could make
it difficult to calculate theoretical sample sizes. Because of these difficulties, Tothfalusi and
Endrenyi [10] suggested a sample size calculation method for bioequivalence assessment
of HVDs through simulation studies using the linear mixed model (LMM). This simulation
study reported the minimum sample size required at the predefined conditions of statistical
power, type I error, within-subject CV, and GMR.

A previous study that directly employed the LMM had limitations in implementing
an efficient design with an appropriate sample size. First, the investigators had difficulties
reflecting physiologic characteristics for test and reference drugs to the LMM. For example,
it can be difficult for the LMM to express the correlation between individual PK parameters
in a simulation study. Second, the study approach only considered the calculation of sample
sizes for HVDs; therefore, it could not facilitate the selection of an efficient design. However,
bioequivalence studies for HVDs are highly likely to have a problem of design selection
because the SWR for HVDs cannot be calculated in a 2 × 2 design and can only be obtained
using 3-period or 4-period replicated designs. Even for drugs reported as HVDs, there
could be cases where the SWR is estimated to be <0.294 [11]. Researchers should consider
the possibility that a 2 × 2 design with a sufficiently large sample size is more efficient
than a 2 × 4 design or a 3 × 3 design. Additionally, the budget for clinical trials should
be considered, as the cost is determined based on the trial design. Furthermore, there is a
realistic problem related to study completion, that is, the dropout rate or the number of
hospitalizations could increase during the study period. These factors should be considered
during the planning phase of clinical trials to optimize cost-effectiveness and efficiency in
drug development. To address these considerations, approaches integrating PK principles
and simulations into drug development have been widely discussed as useful tools for
decision-making [12–17]. Kim et al. [15] studied BE results under scenario 1 (multiple-dose,
2-period, crossover design, BE studies with ABE) and scenario 2 (single-dose,4-period, fully
replicated design, BE studies with RSABE) based on a PK-model based simulation. Karalis
and Macheras [16] performed a simulation study with PK parameters to compare the
method proposed by EMA with existing methods in two-stage BE designs. Cai et al. [17]
performed a PK model-based simulation study to evaluate the operating characteristics of
a partial-block randomized crossover design for a drug with a long half-life. However, the
results of these studies are not directly applicable to considering sample size and clinical
trial design simultaneously in bioequivalence assessment of HVDs.

We propose a novel simulation approach based on PK models to compensate for the
limitations of the LMM-based method. The proposed PK-model based simulation approach
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presents a computational tool for simultaneously determining an efficient study design
and appropriate sample size that satisfy bioequivalence criteria. Because studies are based
on PK models, the relationship between PK parameters (e.g., clearance and volume of
distribution) can directly be applied to the simulations. Researchers can also investigate
various within-subject variabilities of PK parameters using these simulations. Furthermore,
the proposed simulation procedure can incorporate realistic factors, such as the dropout
rate, into the studies. The integration of these various information can provide a more
useful decision-making basis than the LMM-based method in terms of selecting clinical trial
designs and sample sizes. Because the results from the simulations could be interpreted in
terms of PK properties or other considerations. The reported PK model-based approach
can be applied to all drugs, making it easy to provide useful information for clinical trial
planning. However, drugs with within-subject CV values < 30% employ the ABE approach
with a 2 × 2 crossover design and therefore have fewer considerations than HVDs. For
this reason, we focused on HVDs, which are highly likely to require more sophisticated
decisions with regards to selecting a clinical design because of evaluating bioequivalence
using a complex procedure.

2. Results
2.1. Comparison between an Existing Study and the Current Study

The PK parameters in “variability for comparisons with a previous study” in Table 1
were selected to generate conditions similar to those of a previous study [10] in terms of
individual effects and within-reference CVs. The simulation results for the conditions are
shown in Figure 1 (Supplementary File S1). The figures show that the statistical power
increased according to the total number of trials (N). In the three figures with a CV of 0.3,
the shapes of the power curves based on the EMA and FDA guidelines were similar. The
statistical powers observed from the previous simulation study, indicated as points in the
figure, were slightly below or similar to the power curves of the present simulation, except
in one case. One of the previous results generated as per the FDA (90% power) showed
slightly higher power than the current results; however, the difference between them was
not large. These similar results indicate that the approach based on the PK model was
reliable in that the power reported in the previous study can similarly be obtained when
using the proposed approach under the conditions outlined in Table 1.

Table 1. Simulation parameters for the two-compartment pharmacokinetic model.

Parameter Typical Value
Variability for Simulation Study Variability for Comparisons with

the Previous Study

BSV WSV Correlation BSV WSV Correlation

CL (×103 L/h) 29.4 0.91 -
0.5

0.91 - 0.5
Vc (×103 L) 14.6 1.17 - 1.17 -
Q (×103 L/h) 1.04 1.33 -

0.5
1.33 - 0.5

Vp (×103 L) 57.3 1.20 - 1.20 -
Ka (1/h)

Test formulation 1.34 0.42 0.1
0.8

0.42 0 1.0
Reference formulation 1.31 0.42 0.1 0.42 0

F
Test formulation 0.90–1.1 0.7 0.20–0.55

0.9
0.7 0.294 1.0

Reference formulation 1.0 0.7 0.20–0.55 0.7 0.294
Concentration

Additive error (pg/mL) - - 20 - - 0 -
Proportional error - - 0.15 - - 0 -

Clearance (CL), inter–compartmental clearance (Q), volume of distribution of the central compartment (Vc), volume of distribution of
the peripheral compartment (Vp), absorption rate constant (Ka), bioavailability (F), between-subject variability (BSV), and within-subject
variability (WSV), both of which are expressed as standard deviations. “-” indicates a value that is not set in simulation.
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Figure 1. Comparison between results of the proposed method and a previous study: The power curves as per the EMA and
FDA guidelines are represented as the red solid lines and blue dashed lines, respectively. The red circle points (EMA) and blue
triangle points (FDA) indicate the total number of observations (N) of 80% and 90% power in the previous study [10], respectively.

2.2. Comparison of Designs

To compare the statistical power in all the study designs with various values of within-
subject CVs, including the CV ≥ 0.3 for HVDs, a study design with a CV of 0.2, which is
<0.3, was also simulated. When the CV was set to 0.3 for simulation, CV values > or <0.3
were generated (sampled) in simulation cases. These cases were reported as “borderline
HVDs” in a previous study [11]. In other words, a borderline HVD is a compound whose
CV can be estimated to be > or <0.3. Meanwhile, some drugs have been reported to have a
CV > 0.3 in all bioequivalence studies, and these drugs are termed “consistent HVDs” [11].
These consistent HVDs were determined using a simulation in which the CV was set to 0.6.
This simulation was confirmed by a CV > 0.3 for all datasets.

If the estimated CV of the reference drug in the simulated data was <0.3, the ABE
method was applied. If the estimated CV was ≥0.3, the RSABE method was applied. All
simulation results indicated that the powers rapidly increased at a GMR of 1.0, compared
with GMRs of 0.9 or 1.1 (Figures 2 and 3, Supplementary File S2).

In the simulation results obtained as per the EMA guidelines, a similar increasing trend
of power curves was observed in all the designs (2 × 2, 3 × 3, and 2 × 4) of the crossover
studies. All designs were analyzed using a GLM according to the EMA guidelines. In
detail, the statistical powers increased with a similar trend in the three crossover designs
when the within-subject CV was 0.2 or 0.3. However, when the CV was 0.5 or 0.6, the
powers were different among the three designs, with the power of the 2 × 2 design being
the lowest. As the CV increased, more total number of observations (N) were needed to
obtain the same power for the 3 × 3 and 2 × 4 designs. Specifically, large total number of
observations (N) were required to attain 80% or 90% power at CV values of 0.5 or 0.6.

Meanwhile, in the simulation results obtained as per the FDA guidelines, a similar
trend of power curves at within-subject CV of 0.2 were observed for the 2 × 2 and 3 × 3
crossover designs. However, the powers of the 2 × 4 design were relatively lower than
those of the 2 × 2 and 3 × 3 crossover designs. These findings can be explained by the
standard error of the mean difference in µT-µR. When the LMM was fitted using the SAS
code proposed by the FDA, the standard error estimated in the simulation data for the 2 × 4
design was greater than the estimated standard error from the simulation data obtained
using the 2 × 2 and 3 × 3 designs [7].

In the case of a CV of 0.3, the power of the 3 × 3 design was slightly higher than that
of the other designs; however, the difference in the power curves between the 2 × 4 design
and the other two designs diminished at a CV of 0.3, compared with that of the CV of
0.2 as mentioned above. This increase in power could be explained by the fact that the
mixed models were less used when the CV was 0.3, compared with when it was 0.2. With
regard to the CV ≥ 0.4, the powers of the 2 × 2 design were much lower than those of the
other designs. Additionally, the powers of the 3 × 3 design were similar to those of the
2 × 4 designs, in which the mixed model was rarely used. With the exception of a CV of
0.3, the increasing rates of power for the 3 × 3 and 2 × 4 designs were similar for the same
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GMR. This is because of the difference in statistical analysis, ABE or RSABE, according to
the CV size. Alternatively, when the CV was 0.3, the increase in power was reduced.
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2.3. Comparison of Power by Simulation Conditions

The differences in PK parameters or variabilities affected the statistical power of the
designs (Figure 4). The power was observed to increase faster when there was a strong
positive correlation of bioavailability between the reference and test products in the same
subject. Similarly, the power increased slightly faster as the correlation coefficient between
two random effects of Ka for the reference and test drugs was closer to 1.0. Alternatively,
the increase in power slightly decreased as the differences in typical values of Ka between
the test and reference drugs were relatively large. At a CV of 0.3, the trends of the power
curves were similar between those generated as per the EMA and FDA guidelines using
identical simulation conditions, that is, changes in the correlation of bioavailability and Ka,
as well as differences in Ka parameters (Supplementary File S3).

The presence of dropouts and the absence of errors in concentrations were considered
to be factors that could affect power (Supplementary File S4). First, a simulation study was
conducted to assess the changes in the power curve with regards to dropout. The dropout
rate increased proportionally to the increment in the study duration because more subjects
withdrew as the period of the clinical study increased. Therefore, the dropout rates were
3%, 4%, and 6% in the second period of the 2 × 2, 3 × 3, and 2 × 4 designs, the third period
of the 3 × 3 and 2 × 4 designs, and the fourth period of the 2 × 4 design, respectively.

The increasing rate of power slightly decreased with dropout compared with non-
dropout designs. Additionally, the trends of power curves among designs were very
similar between the simulation results with and without dropouts. Second, when the
EMA guideline was applied, the exclusion of errors (proportional and additive errors) in
concentrations slightly increased the power for all designs. The power for the 2 × 2 design
improved following the use of the FDA approach which allows for the exclusion of errors in
concentrations. However, there were little power changes in the 3 × 3 and 2 × 4 crossover
designs after using the FDA approach. These small changes could be explained by the
analytical method of the FDA for 3 × 3 and 2 × 4 designs, in which the errors of Cmax
or AUC could be eliminated in the calculation of response variables ([AUCtest–AUCref],
[AUCref1–AUCref2]).

2.4. Comparison of Power Using Clopidogrel Data

In the post-hoc power analysis of clopidogrel data, the within-reference CVs for Cmax
and AUC were estimated to be over 37% and 47%, respectively (Table 2). Although the
CVs of both PK measurements were considerably >30%, the post-hoc powers in the 2 × 2
and 3 × 3 crossover designs were over 90%. This implies that the use of 2 × 2 design
in bioequivalence assessment for clopidogrel is likely to be justified if the sample size is
sufficient to satisfy the desired power within an acceptable number of subjects. However,
as the sample size (or total number of observations) decreased, the post-hoc power of the
2 × 2 design decreased faster than that of the 3 × 3 design. In particular, in the 2 × 2
design, when the sample size was decreased from 64 to 42 (from 128 to 84 in terms of N),
the power decreased from 93.4% to 56.5%. As the sample size changed from 43 to 28 in the
3 × 3 design, the power decreased from 99.8% to 78.2% and from 100% to 95.5% for EMA-
and FDA-generated simulations, respectively. Therefore, when it is difficult to recruit a
sufficient sample size, it may be advantageous to employ the RSABE approach using a
3 × 3 or 2 × 4 design to evaluate the bioequivalence of HVDs.
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Table 2. Results of post-hoc power analysis of clopidogrel data.

Parameter

Cross-Over Design

2 × 2 Design
3 × 3 Design

EMA FDA

Number of subjects (n) 64 42 43 28 43 28
Total number of observations (N) 128 84 129 84 129 84
Power (%) 93.4 56.5 99.8 78.2 100 95.5
Cmax

Within-CV (%) 1 44.74766 44.64610 47.98 47.746 48.42 48.21
GMR (%) 103.96 103.97 103.92 104.10 103.95 104.14

AUC
Within-CV (%) 1 36.16212 36.09053 39.13 38.86 38.31 38.06
GMR (%) 100.54 100.55 100.69 100.65 100.77 100.74

1 Within-CV indicates within-total CV in case of a 2 × 2 design and within-reference CV in case of a 3 × 3 design.

3. Discussion

The current study showed that a simulation study is important to determine the
appropriate sample size and to select an efficient design for bioequivalence studies. This
study also showed that the simulation results were reliable by comparing the results of
two methods, viz., the PK model-based approach and the LMM-based approach [10]. Our
study was designed to simulate PK parameters with various random effects and compare
the bioequivalence results from 2 × 2, 3 × 3, and 2 × 4 crossover designs. This approach
provides a computational tool for the selection of an efficient design beyond the simple
calculation of the sample size. Using the real-world PK data of clopidogrel, we showed that
a 2 × 2 study design could acquire enough power in a bioequivalence test for HVDs with
an acceptable and sufficient sample size. The proposed approach is generally applicable to
HVDs other than clopidogrel, as long as the researcher’s PK model fits actual PK data well.

Bioavailability should be the decisive factor in the calculation of sample size and
selection of the study design for bioequivalence studies. The simulation study based on
the PK model was designed to include different values of GMRs, which can be explained
by the bioavailability ratio between the test and reference drugs. We also used the random
effect of bioavailability related to the within-subject variability of Cmax and AUC for the
implementation of characteristics of HVDs. Additionally, PK parameters with various
within-subject variabilities and GMRs, borderline HVDs (e.g., within-subject CV = 0.3), and
consistent HVDs (e.g., within-subject CV ≥ 0.4) showed differing trends in the increment
of statistical power according to the total number of observations (N) for 2-period, 3-period,
or 4-period designs. In the case of a borderline HVD at the same N, the powers of the
2-period design were similar to the powers of the 3-period and 4-period designs. We argue
that the 2-period design could be preferentially considered over the other designs in the
evaluation of bioequivalence of borderline HVDs. The actual study duration of a 2-period
design is relatively shorter than that of a 3- or 4-period design, and the dropout rate of a
2-period design is also lower than that of 3- or 4-period designs. However, in the case of
consistent HVDs with sufficiently large within-variability (e.g., within-subject CV ≥ 0.5),
statistical powers of 3-period and 4-period designs were higher than that observed for 2-
period designs, and the trend was even more prominent in the results generated following
FDA guidance. Therefore, 3-period and 4-period designs should be considered as priority
designs when following either the FDA or EMA guidelines.

Some factors should be considered in simulation procedures for bioequivalence as-
sessments. Ka could influence the determination of time points of maximal concentration,
which should therefore be assessed using various Ka values in such studies. We speculated
that the increase in statistical power would be retarded with an increase in the differences
in Ka parameters between the test and reference drugs. Additionally, the error in concen-
trations should be considered in simulation procedures. If the error is relatively large with
regard to Cmax, the variability in Cmax can also be large. This variability in error could
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be important especially in relation to the bioequivalence power of HVDs. Therefore, in
the current study, we evaluated the differences in bioequivalence power according to the
inclusion or exclusion of errors. We also assessed the changes in bioequivalence power
under conditions of typical values of Ka being largely different between a test and a refer-
ence drug, and the results showed that the correlation coefficient of bioavailability or Ka
between a test and a reference drug was small. We thought that a simulation study could be
achieved using already reported PK information. For example, if Ka values of both drugs
are determined to be very different based on the results of the in vitro study, this difference
should be included in the simulation study. Additionally, the error of concentration could
be predicted by previous PK reports for the reference drug, and the impact of this error
could be assessed depending on the magnitude of the predicted Cmax in the bioequivalence
study. Therefore, a simulation study should be executed following the consideration of
significant PK parameters or various PK variabilities in the selection of an efficient design
of bioequivalence studies for HVDs.

Under the condition of within-subject CV of 0.2, the power for the 2 × 4 design was
lower than that of the 2 × 2 and 3 × 3 designs. This decrease in power can be explained by
the statistical model used in the simulation study. The mixed model was used for the 2 × 4
design, and the GLM was used for the other designs according to the FDA guideline [7].
According to the FDA draft guidance and the recommendations of the EMA, the mixed
model for a 2 × 4 design assumes that the random effect of each subject can be different
between the test and reference drugs [7,8]. The mixed model for log-transformed Cmax or
AUC values consisted of the following five variance terms: (1) within-subject variance for
a test drug, (2) within-subject variance for a reference drug, (3) between-subject variance
for a test drug, (4) between-subject variance for a reference drug, and (5) between-subject
covariance for the test and reference drugs. The standard error of the estimator for µT-µR
in the mixed model tended to be largely estimated when compared with that of the GLM,
because of the last three terms of variances related to “between-subject” in the current
simulation parameter conditions. The large standard error increased the 90% CI of µT-µR,
which resulted in a decrease in power for the 2 × 4 design.

The study power can also be affected by the withdrawal of subjects, which results in
missing Cmax or AUC values. The number of withdrawal subjects was calculated as the
dropout rate, which is associated with the duration of the clinical study. For example, the
dropout rate proportionally increased according to the duration of the clinical study, from
a 2 × 2 to a 2 × 4 design. Additionally, if the half-life of a drug is long, the duration of
the clinical study could be prolonged owing to the extended washout period of the drug.
Meanwhile, withdrawal of subjects results in missing Cmax or AUC values, which should
be analyzed differently according to the guidelines of the regulatory agencies (EMA or
FDA). The EMA guidelines suggest that subjects should be included at least once when
Cmax or AUC is calculated for both the test and reference formulations. The FDA guidelines
describe the application of the RSABE approach with two different values for Cmax or AUC:
“difference of observations (Cmax or AUC) for each subject between two repetitive reference
drugs” and “difference of observations for each subject between a test and a reference
drug”. These difference values are missing values when at least one additional observation
is missed. Missing values will affect the bioequivalence evaluation of HVDs. In the current
study, this “missing problem” was analyzed using both the EMA and FDA guidelines, and
the differences in power between missing and non-missing conditions were described for
bioequivalence result changes in the case of subject withdrawals. These results might be
helpful in the selection of an efficient design of a bioequivalence study involving HVDs
that require a long washout period because of their long half-lives.

This simulation study was set up to calculate power according to the total number of
observations (N), which was useful for comparing the power between trial designs while
considering the cost. However, the increase in hospitalization days for each subject due to
the change from a 2 × 2 design to a 2 × 4 design should also be considered as a time cost.
If this cost function related to conducting a clinical trial is considered using the current
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simulation study, the result might be expected to be an excellent reference for selecting
efficient designs in the resource-constrained real world.

4. Materials and Methods
4.1. Methods

Simulations were conducted to assess the bioequivalence of HVDs in various clinical
trial designs. The clinical trial designs consisted of the 2 × 2, 3 × 3, and 2 × 4 crossover de-
signs, which have various extents of within-subject variability. The various within-subject
variabilities were adjusted by modifying the size of the random effect of bioavailability in
the PK model. Bioequivalence assessment approaches for HVDs differ between regulatory
authorities. Therefore, bioequivalence was assessed based on the EMA and FDA guide-
lines and both results were compared. The PK model used for the current study and the
bioequivalence test methods proposed by the FDA and EMA are outlined below.

4.2. PK Model

Most HVDs belong to the Biopharmaceutics Classification System class II or IV and
have low aqueous solubility, which can affect the rate and extent of drug absorption. Addi-
tionally, HVDs are known to have low bioavailability, resulting from extensive pre-systemic
metabolism in the intestinal mucosa and extensive hepatic first-pass metabolism. These
characteristics could be explained using PK parameters, namely, absolute bioavailability,
apparent clearance, and apparent volume of distribution. Therefore, these PK characteris-
tics in relation to HVDs should be implemented in a PK model to reflect these mechanistic
factors, such as low bioavailability and high apparent volume of distribution. We selected
clopidogrel, a widely known HVD, as a study drug for modeling and simulation [18,19].
Additionally, the clopidogrel concentration dataset for the original formulation could be
used for the development of the PK model because a bioavailability study had already
been conducted in the clinical trial center of Kyung Hee University Hospital. The PK pa-
rameters of clopidogrel were estimated using NONMEM® (ICON Development Solutions,
Ellicott, MD, USA). The final PK model was a two-compartment model showing first-and
zero-order absorption kinetics; however, the model was simplified into a two-compartment
model with first-order absorption kinetics for the efficient modification of PK parameters.
The bioavailability parameters of the reference and test drugs were applied to the final
PK model, a two-compartment model with first-order absorption kinetics, to obtain the
simulated concentrations of the reference and test formulations.

4.3. Bioequivalence Assessment

The EMA and FDA guidelines suggest using the RSABE approach for bioequivalence
testing of HVDs. The RSABE approach widens the bioequivalence acceptance range to
80–125%, based on the within-subject variability of the reference drug. To use the RSABE
approach, a reference drug is administered at least twice in 3-period and 4-period replicated
designs. However, the implementation of the RSABE approach as outlined in the EMA and
FDA guidelines is different.

In the EMA guideline, a generalized linear model (GLM) uses log-transformed Cmax
values of the reference drug as response variables and sequence, period, and subject within
sequence as explanatory variables, which are modeled as fixed effects [20]. If the SWR
from the GLM is ≥0.294, the RSABE approach is applied to the bioequivalence test using
the Cmax; however, this approach is not used for AUC regardless of SWR. The treatment
variable (reference or test) was included as an explanatory variable in the aforementioned
GLM to calculate the GMR and its 90% CI. To justify bioequivalence, the following should
be satisfied for Cmax: the estimated GMR should lie within the range of 80–125%, and the
90% CI should fall within the expanded acceptance range [lower limit (L), upper limit
(U)]. The expanded acceptance range is calculated as [−exp(k × SWR), exp(k × SWR)] using
the SWR and the regulatory constant, k = 0.760 [2]. The limit of [L, U] can be expanded
to a maximum range of [69.84–143.19%], which is the acceptable range corresponding to
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a within-subject CV ≥ 50%. In addition to the bioequivalence results obtained using the
Cmax, the 90% CI of the GMR for AUC should be located within the range of 80–125% to
declare bioequivalence between the two HVDs.

The FDA guidelines suggest the application of the RSABE approach for the bioe-
quivalence test of HVDs. In particular, when each SWR calculated from the Cmax or AUC
for a reference drug is ≥0.294, the RSABE approach can be applied [7]. However, if the
SWR < 0.294, the unscaled average bioequivalence approach, that is, the TOST method,
should be applied for bioequivalence assessments using the Cmax or AUC. The RSABE
approach requires two response variables, viz., the difference in Cmax or AUC between
the test and reference drugs for each subject (i.e., [Cmax,test–Cmax,ref], [AUCtest–AUCref])
and the difference in Cmax or AUC between two reference drugs for each subject (i.e.,
[Cmax,ref1–Cmax,ref2], [AUCref1–AUCref2], ref1: reference administered for the first time, ref2:
reference administered for the second time) [5,7].

The two response variables should be analyzed using a GLM or LMM that has a
sequence as an explanatory variable. From the results, an upper limit with a 95% CI for
(µT-µR)2 − [(log(1.25)/σW0)2] × σWR

2 should be calculated to implement RSABE, where
µT and µR are the population means of the log-transformed Cmax or AUC for the test (T)
and the reference (R) products and σW0 is 0.25 [5,21,22]. Bioequivalence should be declared
if the following conditions are satisfied: (1) the calculated upper limit should be less than
0 with the GMR being within the range of 80–125% when the SWR of the Cmax or AUC is
≥0.294; (2) the 90% CI of the GMR for the Cmax or AUC should be within 80–125% when
the SWR of the Cmax or AUC < 0.294. This bioequivalence test procedure for HVDs is called
the “mixed scaling approach”.

4.4. Simulation Design for Bioequivalence Assessment

The simulations were designed to perform a bioequivalence test and compare the
power between three crossover designs, viz., the 2 × 2, 3 × 3, and 2 × 4 designs. Figure 5
shows the overall simulation process. For each subject, the drug concentrations for the
reference and test products were generated from the two-compartment model incorporating
individual effects. PK parameters with random effects were as follows: clearance (CL),
inter-compartmental clearance (Q), volume of distribution of the central compartment
(Vc), volume of distribution of the peripheral compartment (Vp), absorption rate constant
(Ka), and bioavailability (F). The lognormal distribution was assumed for random effects
of the parameters, and the mean of the individual effects for each parameter was set to
0. Random effects were generated for all parameters. The between-subject variabilities
and correlations for the random effects are summarized in Table 1. The typical values
and standard deviations used in the simulation were estimated from clopidogrel data
(Table 1). Because typical values of bioavailability are different between a reference and
test drug, simulations were planned to reflect these differences. These differences between
the two drugs are closely related to the GMR of the Cmax and AUC of both products. The
within-subject variability of bioavailability can be explained by the within-subject CV for
the bioavailability parameter. The within-subject CV for bioavailability of the reference
drug should be set as ≥0.3 in order to generate a concentration result for HVDs.

Based on the PK model with typical values and assumptions, individual values for
Vc, Vp, CL, Q, Ka, and F were generated for each subject. The individual PK parameters
were used to generate a time-concentration curve based on Equation (1). In Equation (1), D
denotes the dose, k10 denotes the elimination rate constant from the central compartment,
and k12 and k21 represent the transfer rate constant from the central compartment to the
peripheral compartment and the transfer rate constant from the peripheral to the central
compartment, respectively. Each simulation concentration was obtained according to
the corresponding design of three clinical trial designs (2 × 2, 3 × 3, and 2 × 4). After
determining the Cmax or AUC from simulated concentrations, bioequivalence between
the two drugs was investigated by applying the bioequivalence test methods outlined by
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the EMA and FDA. Power was calculated as the rate of bioequivalence success and was
compared between the trial designs.

C(t) =
{

Ka FD
Vc

}{
(k21−λ1)e−λ1t

(λ2−λ1)(ka−λ1)
+ (k21−λ2)e−λ2t

(ka−λ2)(λ1−λ2)
+ (k21−ka)e−kat

(λ1−ka)(λ2−ka)

}
λ1 =

{
(k12+k21+k10)−

√
((k21+k12+k10)

2−4k10k21)
}

2

λ2 =

{
(k12+k21+k10)+

√
((k21+k12+k10)

2−4k10k21)
}

2
k21 = Q

V2
k10 = CL

Vc
k12 = Q

Vc

(1)

k12, k21: transfer rate between the central and peripheral compartments; k10: elimina-
tion rate constant.
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4.5. Simulated Data and Visual Display

To assess bioequivalence using data, simulations were repeatedly conducted 1000 times
for each condition. The statistical power was calculated to assess the 90% CI of the GMR
for Cmax or AUC within a predefined acceptance range. The power curve was displayed
using the Y-axis of power and X-axis scale of “total number of observations (N)”, which
was obtained from the “number of subjects (n)” × “number of period (2, 3, or 4)”. The total
number of observations (N) indicates the total number of hospitalizations for all subjects.
The total number of observations (N), instead of the number of subjects (n), for each trial
design (2 × 2, 3 × 3, 2 × 4 crossover designs) was compared to select the most efficient
design among them because the total number of observations could be a major factor in
determining study cost.

4.6. Validation of Proposed Method

To confirm the validity of the proposed methodology, simulations were performed
using a PK model with parameters that were set to obtain similar results to previously



Pharmaceuticals 2021, 14, 1101 14 of 15

reported study results [10]. The PK parameters of the simulation were set to satisfy the
following: (1) PK parameters between test and reference drugs for each subject were the
same and (2) within-reference CV can be explained by within-reference subject variability
of bioavailability. Briefly, within-subject variability of PK parameters, except bioavailability,
was fixed at 0. The detailed PK parameters with random effects, “typical values with
variability for comparisons with the previous study” are shown in Table 1.

4.7. Post-Hoc Power Analysis Using Real-World Data

Post-hoc power analysis was conducted to compare powers between designs with
the same total number of observations (N) using real-world data from a bioequivalence
study of clopidogrel [23]. The clopidogrel data were obtained from 64 subjects who were
enrolled in a 3 × 3 design study. The sub-samples of the real data were extracted to
construct virtual data, such as those generated in the 2 × 2 and 3 × 3 crossover designs.
While making the number of observations for the designs similar, each sub-sample was
constructed using cases that were randomly extracted from the available data. To organize
sub-samples corresponding to a 2 × 2 cross-over design, one period was randomly sampled
between two periods in which the reference was administered to each individual. For
sub-sampling of the 3 × 3 design, subjects were randomly selected so that the total number
of observations (N) were similar to those of the 2 × 2 design. The sub-samples were
extracted for 1000 iterations to calculate the post-hoc power, defined as the rate of passing
the bioequivalence test.

5. Conclusions

The proposed approach has many advantages; however, it may be difficult to calculate
the sample size quickly and simply. The simulation procedures can be time-consuming
and costly for the collection of information, the calculation of concentrations from PK
models for specific drugs, and the assessment of bioequivalence. However, the previously
reported simulation study contained inaccuracies because the sample size was calculated
using the fixed within-subject CV and GMR without a PK model. This may limit the
accurate assessment for the selection of the study design, including sample size, as it rarely
reflects various complex real-world conditions. Therefore, the proposed approaches in
the current study can be a good toolkit for careful study planning in situations where
major decision-making is required, such as when the budget for bioequivalence research
is limited.
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