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c-Jun is a major constituent of AP-1 transcription factor that transduces multiple mitogen growth signals, and it is frequently
overexpressed in non-small cell lung cancers (NSCLCs). Earlier, we showed that blocking AP-1 by the overexpression of a c-Jun
dominant-negative mutant, TAM67, inhibited NSCLC cell growth. The phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction
pathway is important in transformation, proliferation, survival and metastasis of NSCLC cells. In this study, we used NCI-H1299
Tet-on clone cells that express TAM67 under the control of inducible promoter to determine the effects of inhibition of AP-1 and
PI3K on cell growth. The PI3K inhibitor, LY294002, produced a dose-dependent inhibition of growth in H1299 cells and that
inhibition was enhanced by TAM67. TAM67 increased dephosphorylation of Akt induced by LY294002 and reduced the TPA
response element DNA-binding of phosphorylated c-Jun. TAM67 increased G1 cell cycle blockade induced by LY294002, which was
partially associated with cyclin A decrease and p27Kip1 accumulation. Furthermore, TAM67 and LY294002 act, at least additively, to
inhibit anchorage-independent growth of the H1299 cells. These results suggest that AP-1 and PI3K/Akt pathways play an essential
role in the growth of some NSCLC cells.
British Journal of Cancer (2008) 99, 2013–2019. doi:10.1038/sj.bjc.6604782 www.bjcancer.com
Published online 18 November 2008
& 2008 Cancer Research UK

Keywords: AP-1; phosphatidylinositol 3-kinase pathway; non-small cell lung cancer; LY294002; TAM67

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

c-jun is the cellular homologue of the oncogene v-jun that was
originally identified as the transforming sequence of avian
sarcoma virus 17. c-Jun is also a central component of AP-1 that
consists of homodimers and heterodimers of the Jun, Fos and ATF
gene family members, and it regulates transcription through AP-1
and cAMP responsive elements (Angel et al, 1987, 1988; Curran
and Franza, 1988; Sassone-Corsi et al, 1990). Although the role of
c-Jun in human cancers remains to be defined, substantial
evidence suggests that it is involved in cellular proliferation and
transformation. Deregulated expression of c-Jun induces immor-
talised rat fibroblasts to grow in an anchorage-independent
fashion (Schütte et al, 1989) depending on the induction of
multiple c-Jun target genes (Kinoshita et al, 2003; Leaner et al,
2003, 2005; Hommura et al, 2004; Katabami et al, 2005). Recent
studies reported that specific AP-1 blockade by a dominant-
negative mutant of c-Jun, TAM67, inhibited the growth of some
types of human cancer cells by causing G1 arrest (Ludes-Meyers
et al, 2001; Liu et al, 2004; Suto et al, 2004).

Earlier studies (Wodrich and Volm, 1993; Szabo et al, 1996)
suggested that c-Jun had a role in early events in the pathogenesis
of lung cancers because it was highly expressed in 31–50% of
patients with non-small cell lung cancers (NSCLCs), and it was also
upregulated in atypical bronchial epithelium. In a previous study,
we showed that TAM67 inhibited lung cancer growth both in vivo
and in vitro using NCI-H1299 (H1299) NSCLC cells that expressed

TAM67 under the control of an inducible promoter that blocked
AP-1 activity (Shimizu et al, 2008). Taken together with its
transforming properties, c-Jun may have pivotal roles in lung
carcinogenesis and lung cancer growth.

The PI3K/Akt signal transduction pathway regulates various
cellular processes including transformation, proliferation, survival
and metastasis in a variety of cancer cells, including lung cancer
cells (Kennedy et al, 1999; Brodt et al, 2000; Vivanco and Sawyers,
2002). Clear evidence shows that the PI3K/Akt signalling pathway
is involved in lung carcinogenesis (Brognard et al, 2001; Chun
et al, 2003; Lee et al, 2003; Tsao et al, 2003; Massion et al, 2004).
Akt is frequently activated in both premalignant human bronchial
epithelial cells and NSCLC cells. Akt activation may be an early
event in lung tumorigenesis (West et al, 2003). Recent studies
reported that the inhibition of PI3K activity by LY294002 reduced
human cancer cell growth in vivo and in vitro by apoptosis or G1
cell cycle arrest (Casagrande et al, 1998; Hu et al, 2000; Semba et al,
2002; Gao et al, 2004; Takeda et al, 2004; Sourbier et al, 2006).

In this study, we investigated the antiproliferative effects of the
inhibition of AP-1 and PI3K, alone and together, in the H1299
Tet-on clone cells using c-Jun dominant-negative mutants, TAM67
and LY294002.

MATERIAL AND METHODS

Cell lines, culture conditions

The human NSCLC cell lines, H1299, that expressed either TAM67
(H1299-TAM67) or green fluorescent protein (H1299-GFP) in a
doxycycline-controlled manner were described previously

Revised 29 September 2008; accepted 23 October 2008; published
online 18 November 2008

*Correspondence: Dr I Kinoshita, Department of Medical Oncology,
Hokkaido University Graduate School of Medicine, North 15, West 7,
Kita-ku, Sapporo 060-8638, Japan; E-mail: kinoshii@med.hokudai.ac.jp

British Journal of Cancer (2008) 99, 2013 – 2019

& 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $32.00

www.bjcancer.com

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s

http://dx.doi.org/10.1038/sj.bjc.6604782
http://www.bjcancer.com
mailto:kinoshii@med.hokudai.ac.jp
http://www.bjcancer.com


(Shimizu et al, 2008). Briefly, pLRT-TAM67 and -GFP were
transfected into packaging Phoenix A cells by calcium phosphate
transfection, and retroviruses were harvested after 48 h of
transfection and infected into H1299 cells (Watsuji et al, 1997).
Stable transfectants were selected using 5 mg ml�1 blasticidin
(Invitrogen, Life Technologies Inc., Carlsbad, CA, USA) and
screened by western blot analysis for inducibility of TAM67
expression in response to 2 mg ml�1 doxycycline. We chose clones
TAM67 nos.8, 34 and 38 because of their highly inducible TAM67
expression in the presence of doxycycline. As controls, we used
clones GFPs, 5 and 8 that had no inducible TAM67 expression.

Cells were cultured in RPMI 1640 (Invitrogen Life
Technologies Inc.) medium supplemented with 10% foetal bovine
serum (FBS) and 0.03% glutamine at 371C in an atmosphere of 5%
CO2. LY294002 (Sigma-Aldrich Co., St Louis, MO, USA) was
dissolved in DMSO at 10 mM and used at final concentration of
0.5–20 mM.

Cell growth assays

Cells were seeded at 2500–5000 cells per well in 96-well plates in
normal growth medium with or without 2 mg ml�1 doxycyclin for
24 h, followed by the addition of 0, 2.5, 5 or 20mM of LY294002 for
3 days. Anchorage-dependent growth was measured in 96-well
plates using an MTT (dimethyl thiozolyl-20,50-diphenyl-2-
H-tetrazolium bromide)-based assay (non-radioactive prolifera-
tion assay, Promega Corp., Madison, WI, USA) as described
previously (Sabichi et al, 1998).

Anchorage-independent growth assays were performed using
0.4% soft agarose (Seaplaque, FMC Corp., Rockland, ME, USA) in
6-well plates with or without 0.1 mg ml�1 doxycyclin and LY294002
(0.5, 1 or 2.5 mM) as described previously (Sabichi et al, 1998). After
2 weeks of incubation, colonies were stained with p-iodonitrote-

trazolium violet (Sigma-Aldrich Co.) and counted using NIH
Image ver 1.62 software (NIH, Bethesda, MD, USA).

Western blotting

Cell lysates from H1299 Tet-on clone cells grown in the absence or
presence of doxycycline (2 mg ml�1) in combination with LY294002
were prepared by lysing the cells in radioimmune precipitation
assay buffer (150 mM NaCl, 1% Triton X-100, 1% deoxycholate,
0.1% SDS, 10 mM Tris (pH 7.4)) supplemented with 100 mg ml�1

leupeptin, 100mg ml�1 aprotinin and 10 mM phenylmethylsulfonyl
fluoride. The cell lysates were sonicated and centrifuged to remove
debris, and protein concentrations were determined using the
Bio-Rad Protein Assay kit (BioRad Laboratories, Hercules, CA,
USA). Equal amounts of protein were separated on 12 or 15% SDS
gels, transferred with nitrocellulose membranes (Amersham
Biosciences Inc. St Albans, UK), and incubated with the following
antibodies: anti-p27kip1 (610242; BD Transduction Laboratories,
KY, USA), anti-cyclin D1 (sc-246, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), anti-cyclin E (sc-247, Santa Cruz Biotechnology),
anti-cyclin A (sc-751, Santa Cruz Biotechnology), anti-phosphory-
lated-Akt (Ser473; no. 9271, Cell Signaling Technology, Beverly,
MA, USA), anti-Akt, (no. 9272, Cell Signaling Technology). Total
cell extracts from Jurkat cells prepared with or without LY294002
were used as a positive or negative control of the assay for
phosphorylated-Akt. The primary antibodies were detected using
antirabbit or antimouse antibody conjugated with horseradish
peroxidase (NA934V, NA931V, Amersham Biosciences Inc., St
Albans, UK), and visualised using the Amersham ECL system after
washing with TBST six times (5 min each) after the incubation of
the first and second antibodies. The intensity of the bands after
western blotting was determined by laser scanning of the films
followed by quantitative densitometric analysis using NIH Image
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Figure 1 Effects on the cell growth of LY294002, TAM67 and their combination. (A–C) H1299-Tet-on-TAM67 clone cells (TAM67 nos. 8, 34, and 38).
(D–F) H1299-Tet-on-GFP clone cells (GFPs 1, 5 and 8). The H1299 clones were treated with solvent alone (0), or the indicated doses of LY294002 with
or without TAM67 induction for 72 h at which time they were subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Data points
are the mean±s.d. of quadruplet samples in representative one of the three independent experiments. *Po0.01 compared with cells treated with each
concentration of LY294002 alone.
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Ver 1.62 software. Standardisation was with actin measured in the
same blots with antiactin antibody (A-2066, Sigma-Aldrich Co.).

Cell cycle analysis

H1299 Tet-on clone cells were cultured in 100-mm plates with or
without 2 mg ml�1 doxycyclin for 24 h, followed by the addition of
0, 5 or 20 mM LY294002 for 3 days. Then, cells were trypsinized,
washed twice with PBS and fixed in 70% ethanol at �201C. Fixed
cells were centrifuged and resuspended in 250 mg ml�1 RNase and
50 mg ml�1 propidium iodide (Sigma) for DNA staining. DNA
content was measured by a FACScan flow cytometer (Becton
Dickinson, San Jose, CA, USA) and two software packages:
CellQuest 3.1 (BD Pharmingen, San Diego, CA, USA) and ModFit
LT 2.0 (Verity Software House, Topsham, ME, USA).

c-Jun activation assay

Nuclear protein extracts were obtained from cell cultures using the
nuclear extract kit (Active Motif, CA, USA) according to the
manufacturer’s instruction. The activation of c-Jun was measured
using the TransAMt AP-1 family transcription assay kit (Active
Motif) according to the manufacturer’s instruction (Debinski and
Gibo, 2005; Polytarchou et al, 2005; Shimizu et al, 2008). This
method measures the DNA-binding activity of AP-1 by ELISA.
Briefly, 2.5 mg of nuclear protein samples were incubated for 1 h in
a 96-well plate coated with an oligonucleotide containing a TPA
response element (TRE; 50-TGAGTCA-30) that specifically binds
with phosphorylated c-Jun (p-c-Jun) contained in nuclear extracts.
For specificity control, an excess amount (20 pmol) of mutant
probe was added to the reaction in a competition assay. After
washing, p-c-Jun antibody (1 : 500 dilutions) was added to these
wells and incubated for 1 h. Following incubation for 1 h with a
secondary HRP-conjugated antibody (1 : 1000 dilution), specific
binding was detected by colorimetric estimation at 450 nM with a
reference wavelength of 655 nM. Note that the antibody against
c-Jun recognises phosphorylated serine 73 of the transactivating
domain of c-Jun and does not detect TAM67, in which most of the
transactivating domain is deleted. Nuclear extracts from K562 cells
stimulated by TPA were used as a positive control of the assay for
c-Jun.

Statistical analysis

All values are presented as mean±s.d. Statistical significance was
determined using Student’s unpaired, two-tailed t-test.

RESULTS

Induction of TAM67 enhanced antiproliferative effect of
PI3K inhibitor LY294002

Earlier, we showed that the induction of TAM67 inhibited
anchorage-dependent growth in H1299 clones that express
TAM67 (Shimizu et al, 2008). In this study, we investigated the
growth inhibition of H1299 cells treated with LY294002 in
combination with the induction of TAM67 (Figure 1A–F).
LY294002 produced a dose-dependent inhibition of the growth
of H1299 cells in the MTT assay. The induction of TAM67, but not
GFP, enhanced the growth inhibition of LY294002 in the H1299
Tet-on clone cells. These results suggest that LY294002 and TAM67
have at least an additive effect on cell growth inhibition.
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Figure 2 Effects on PI3K/Akt pathway activation of LY294002, TAM67
and their combination in H1299 cells. (A) H1299-Tet-on-TAM67 clone
cells (TAM67 no. 8) and (B) H1299-Tet-on-GFP clone cells (GFP 1).
Western blots of cell lysates incubated with antibodies against phospho-Akt
(S473) and Akt in cells treated with LY294002, the induction of TAM67
and their combination. Representative radiographs of three independent
experiments. Standardisation was with actin measured in the same blots.
Comparison of protein expression levels among the various conditions is
based on the ratio of expression of a protein in each condition to that in
non-treated one (set equal to 1). NIH image 1.62 software was used to
densitise and quantify the amount of the bands. The data show the average
value of three independent experiments with error bars representing s.d.
PC, positive control; NC, negative control.
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Figure 3 DNA-binding activity of p-c-Jun in TAM 8 analysed by the
TransAM AP-1 family transcription assay kit. TAM67 reduced the binding of
phosphorylated c-Jun to TRE. Each value represents the mean±s.d. of
triplicated samples in representative one of three independent experi-
ments. PC, positive control.
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The induction of TAM67 enhances dephosphorylation of
Akt by LY294002

LY294002 inhibited the phosphorylation of Akt (Ser473) in a dose-
dependent manner (Figure 2). Interestingly, TAM67 further
decreased the phosphorylation of Akt at 5–20 mM of LY294002,
whereas TAM67 alone did not show such effects. This observation

suggests that TAM67 and LY294002 may have a synergistic effect
on inhibiting Akt activity.

TAM67 inhibited AP-1 activity

We determined the effects of single or combined treatment with
LY294002 and TAM67 on AP-1 activity using ELISA-based
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Figure 4 Effect on the proliferative arrest of LY294002, TAM67 and their combination. Cells were incubated with the indicated doses of LY294002 with
or without induction of TAM67 for 72 h. The percentage of cells in each phase was measured by an FACS flow cytometer and analysed using ModFitLT
software. (A) Cell cycle analysis of TAM67 no. 8. The data show the average percentage of five independent experiments with error bars representing the
s.d. (B) Cell cycle analysis of GFP 1. The data show the average percentage of three independent experiments with error bars representing the s.d.
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TransAMt AP-1 family transcription assay kit (Figure 3). TAM67
reduced the binding of p-c-Jun to TRE at each concentration of
LY294002, whereas LY294002 did not affect the binding. These
results confirmed that TAM67 inhibited AP-1 activity over a wide
range of concentrations of LY294002.

The induction of TAM67 enhances G1 cell cycle block by
LY294002

We used flow cytometry to determine whether enhanced growth
inhibition was because of cell cycle arrest or apoptosis of H1299
clones (Figure 4A and B). Earlier, we showed that the induction of
TAM67, but not GFP, induced G1 cell cycle blockade in H1299 Tet-
on clone cells (Shimizu et al, 2008). LY294002 increased the
percentage of cells in G0/G1 phase with an associated decrease in
S phase. The induction of TAM67, but not GFP, enhanced G1 cell
cycle block by LY294002. Sub-G1 apoptotic fraction was not
observed by LY294002, TAM67 or by both (data not shown). Low-
dose (5 mM) LY294002 with induction of TAM67 induced G1 cell
cycle block similar to that induced by high-dose (20 mM) LY294002.
The additive effect between LY294002 and TAM67 was more
apparent at a low dose (5 mM) than a high dose (20 mM) of
LY294002. These results suggest that LY294002 and TAM67
produced an additive inhibition in cell growth by G1 cell cycle
blockade in H1299.

High-dose LY294002 upregulates p27 expression and
TAM67 decreases cyclin A expression

We measured the expression of p27, cyclins A, D1 and E that
control the G1–S-phase transition to investigate how TAM67
enhanced G0/G1 arrest induced by LY294002 (Figure 5). Western
blot analysis showed that high-dose LY294002 treatment increased
p27 in both TAM67 no.8 and GFP 1 clones (Figure 5A–D).
Expression of cyclin A decreased after the induction of TAM67 in

TAM67 no. 8 clone (Figure 5A and B). The increase of p27 by
high-dose LY294002 and the decrease of cyclin A by TAM67 were
also observed in other clones (Figure 5G– J). Although the
induction of TAM67 slightly increased p27 in TAM67 no. 8
clones, this phenomenon was not observed in other TAM67 clones
(Figure 5A–D and G–J). No significant changes were observed in
cyclin E expression (Figure 5A and B), and cyclin D1 expression
was not detected (data not shown). These results suggest that
reduced expression of cyclin A by TAM67, and increased
expression of p27 by high-dose LY294002 are involved in increased
G1 arrest in H1299 cells.

LY294002 and induction of TAM67 inhibit anchorage-
independent growth

We determined the effects of LY294002 and TAM67 on anchorage-
independent growth (Figure 6A–F). LY294002 reduced
anchorage-independent growth in a dose-dependent fashion. Induc-
tion of TAM67, but not GFP, enhanced the inhibition of anchorage-
independent growth by LY294002. These results indicate that
LY294002 and induction of TAM67 act, at least additively, to inhibit
anchorage-independent growth of the H1299 cells.

DISCUSSION

This study showed the enhanced suppressive effects of a c-Jun
dominant-negative mutant, TAM67 and LY294002 on both
anchorage-dependent and -independent growth of a NSCLC
cell line. These effects were associated with G1 cell cycle
arrest, suggesting that some NSCLC cells depend on both AP-1
and PI3K/Akt pathways for cell growth.

The observed G1 cell cycle arrest was partially associated with
decreased expression of cyclin A by TAM67 and increased
expression of p27 by high-dose LY294002. The accumulation of

0

200

400

600

A TAM67 8

LY(�M) 0 0 0.5 0.5 1 1 2 2
Dox – + – + – + – +2

C
ol

on
y 

nu
m

be
r

100

200

0
0 0 0.5 .0.5 1 1
2 – + +– – +2 –

B TAM67 34

200

400

0

C TAM67 38

0

40

80

120

LY(�M) 0 0 0.5 0.5 1 1 2 2
Dox – – –++ + – 2+ 2 – + – + – –+2

C
ol

on
y 

nu
m

be
r

70

140

0

40

80

120

0

D GFP 1 E GFP 5 F GFP 8

0 0 0.5 0.5 1 1 2
– ++ – + – + – +

0 0 0.5 0.5 1 1 0 0 0.5 0.5 1 1 2
+ – + – + – + – +
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p27 because of the inhibition of PI3K activity by LY294002, and its
association with cell cycle arrest in the G1 phase have been shown
in ovarian cancer, pancreatic ductal carcinoma and choroidal
melanoma cell lines (Casagrande et al, 1998; Hu et al, 2000; Gao
et al, 2004; Takeda et al, 2004). Cylin A functions during both G1-S
and G2-M phases of the cell cycle (Girard et al, 1991; Pagano et al,
1992; Resnitzky et al, 1995). To our knowledge, the decreased
expression of cyclin A by TAM67 was not reported previously,
whereas TAM67 has been shown to inhibit breast cancer cell
growth by reducing the expression of G1 cyclins D1 and E (Ludes-
Meyers et al, 2001). These differences may be because of the
different cell types. In immortalised rat fibroblasts, cyclin A is a
direct c-Jun target gene and is necessary for c-Jun-induced
anchorage-independent growth (Katabami et al, 2005). The
increase of p27 by LY294002 and reduction of cyclin A expression
by TAM67 may be involved in the enhanced antiproliferative effect
of TAM67 and LY294002 when used in combination.

Using the H1299 NSCLC cells, Lee et al (2003, 2005) reported
that PI3K/Akt and MKK4/JNK pathways cooperated to promote
cell proliferation by maintaining cell survival in vivo and in vitro,
and simultaneous blockade of both pathways induced apoptosis .
In this study, using the same cells, blocking these pathways with
LY294002 and TAM67 enhanced cell proliferative arrest more than
either agent alone, but neither agent alone nor their combination
induced apoptosis. Lee et al (2003, 2005) used JNK inhibitor,
SP600215 or a dominant-negative mutant of MKK4 to inhibit
MKK4/JNK pathways, whereas we used the dominant-negative
mutant of c-jun, TAM67. They speculated that the MKK4/JNK
inhibitor induced apoptosis because JNK directly phosphorylates
Bcl-2 in vitro and collaborates with Bcl-2 to mediate prolonged cell
survival following various stress applications (Deng et al, 2001).
TAM67 does not have direct effect on the phosphorylation of Bcl-2,
although TAM67 inhibits AP-1 activity by quenching Jun, Fos and
ATF family members to inhibit not only MKK4/JNK pathway but
also MEK/ERK pathway. We speculate that these differences

between JNK inhibitor and TAM67 may contribute to potent
inhibition of the cell cycle, but no induction of apoptosis by the
simultaneous blockade of the pathways with TAM67 and LY294002
in H1299 NSCLC cells.

We showed some synergistic effects of LY294002 and TAM67 on
the phosphorylation of Akt (Ser473) that may be associated with
growth inhibition. Leaner et al (2005) reported that c-Jun
upregulates the expression of p75-Ras-GRF1, a guanine-nucleotide
exchange factor (GEF) that results in an increase in GTP-Ras and
PI3K activity . Therefore, we determined whether the induction of
TAM67 affected the expression of p75-Ras-GRF1 protein. We did
not observe significant change in the p75-Ras-GRF1 expression
(data not shown). We speculate that other c-Jun/AP-1 target
proteins are involved in decreased phosphorylation of Akt by
TAM67 under the treatment of LY294002.

One of the hallmark properties of transformed cells and cancer
cells is that they are capable of anchorage-independent growth in
culture systems, and this property correlates very well with their
in vivo oncogenic potential (Reed, 1999; Frisch and Screaton, 2001;
Grossmann, 2002; Wang, 2004). Maeno et al (2006) reported that
deregulated c-Jun expression was involved in the acquisition of
anchorage independence in human lung carcinogenesis . Activated
PI3K signalling plays a critical role in protecting cells from anoikis
by inactivating certain key apoptotic molecules and simulta-
neously enhancing anchorage-independent cell cycle progression
by inhibiting the cyclin inhibitors and enhancing certain CDK
activity (Wang, 2004). The inhibition of anchorage-independent
growth in H1299 cells by TAM67 and LY294002 that we observed is
in line with these reports.

In conclusion, the results of this study suggest that AP-1 and
PI3K/Akt pathways play an essential role for the growth of some
NSCLC cells. Further investigations of the involved pathways in
NSCLC cells and tissues are warranted to elucidate the molecular
mechanisms of NSCLC growth and may ultimately help developing
an effective therapeutic strategy for treating this cancer.
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