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Abstract

Neural networks are widely used in automatic credit scoring systems with high accuracy and

outstanding efficiency. However, in the absence of prior knowledge, it is difficult to deter-

mine the set of hyper-parameters, which makes its application limited in practice. This paper

presents a novel framework of credit-scoring model based on neural networks trained by the

optimal swarm intelligence (SI) algorithm. This framework incorporates three procedures.

Step 1, pre-processing, including imputation, normalization, and re-ordering of the samples.

Step 2, training, where SI algorithms optimize hyper-parameters of back-propagation artifi-

cial neural networks (BP-ANN) with the area under curve (AUC) as the evaluation function.

Step 3, test, applying the optimized model in Step 2 to predict new samples. The results

show that the framework proposed in this paper searches the hyper-parameter space effi-

ciently and finds the optimal set of hyper parameters with appropriate time complexity,

which enhances the fitting and generalization ability of BP-ANN. Compared with existing

credit-scoring models, the model in this paper predicts with a higher accuracy. Additionally,

the model enjoys a greater robustness, for the difference of performance between training

and testing phases.

Introduction

Credit scoring refers to the process using statistics to classify applicants for credit into different

risk categories [1], in order to “determine the likelihood that a prospective borrower will

default on a loan” [2]. The history of credit scoring is relatively short as about sixty years [3],

despite the long history of credit which could be traced back to 2000 BC [4]. In practice, the

credit scoring transforms “relevant data into numerical measures that guide credit decisions”

[5]. Therefore, a variety of statistical models are applied in the process. The simple parametric

statistical model, linear discriminate analysis (LDA) is one of the first models for credit scor-

ing, although it is questioned because of the presumed normal distribution of data [6]. This

deficiency of LDA is largely overcome by some sophisticated models like logistic regression, k
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nearest neighbor [7, 8], decision trees [8, 9], and neural networks [8, 10–13]. Notably, large

financial intermediaries like American Express and Security Pacific Bank (SPB) build their

credit scoring system on the basis of neural network, for this model outperforms others by

10% more accuracy [14]. A body of prior literature focusing on the techniques of credit scoring

[15–20] are mostly based on classical statistic theories, which are less adaptive in the context of

large sample.

Fintech as the fusion of finance and technology [21] is applied to credit scoring recently.

However, the performance of these approaches relies on the parameters and the application is

limited because of the difficult in determining parameter with lack of prior knowledge. Zhao,

Xu [22] tests that fintech approaches like the neural network perform well as long as the

parameters are properly set. In other word, parameter setting determines the performance of

these approaches. Notably, some remarkable progress takes place in swarm intelligence algo-

rithm [23, 24]. Based on the logic of natural selection, the approaches of swarm intelligence

algorithm mimics individual and in-group behaviors of species to seek the optimal solution.

As Hurley and Adebayo [25] suggests, “all data is credit data”. This paper attempts at a novel

framework combined with conventional credit information in credit-scoring industry with the

emergence of big data technology.

Notably, some state-of-the-art techniques are proposed to determine neural network archi-

tecture in recent decades [26–28]. However, these techniques, consuming several GPU-days,

are more applicable with the scenario of image/audio recognition where high-dimension

large-size datasets prevail. To the contrary, the credit scoring is a completely different scenario.

First, the datasets of credit is smaller sized with less dimensions and consequently the above-

mentioned techniques are prone to overfit. Second, high-performance computing (HPC) is

inaccessible to most banking practitioners, especially small-/medium-size depository institu-

tions. Thus, the purpose of this research is to construct a realistic framework tailored for credit

scoring to optimize the hyper-parameters of neural network with swarm intelligence algo-

rithm. This paper further benchmarks the performance of the novel framework against classi-

cal as well as hybrid or ensemble models proposed in recent literature [29–34]. This paper is to

answer the following questions. First, does the neural network with hyper-parameters deter-

mined by swarm intelligence algorithm outperform the classical credit-scoring models (i.e.

logistic regression, naive Bayesian, discriminant analysis, k nearest neighbor, decision tree,

support-vector machine, K-means, and random forest) and state-of-the-art models proposed

in recent literature [29–34]? Second, are the fitting and generalization ability of a neural net-

work steady after its parameters determined by swarm intelligence algorithms? Third, does

our framework perform robustly with increasing hidden layers of neural network? Fourth,

what is the comparative advantage of our framework against the state-of-the-art techniques for

optimizing neural networks [26–28]?

This paper sheds a new light on the application of swarm intelligence algorithm to the credit

scoring area. To address this purpose, this paper proposes a novel credit-scoring framework to

determine the optimal SI algorithm for hyper-parameter optimization of neural network and

carries out an experiment to test the generalization and robustness of neural network trained

by swarm intelligence algorithm. Specifically, eight other prevalent credit-scoring models as

well as some hybrid or ensemble models constructed in recent literature [29–34] make up the

control group and seven swarm intelligence algorithms are extracted from prior literature. The

neural network with parameters trained by the seven swarm intelligence algorithms are

included in the treated group. This paper compares the performance of models in the treated

and control groups to classify the appropriate model for credit scoring. The findings shows

that models constructed within this framework outperforms models in the control group. The

application of fintech in this paper implies that, despite the challenges brought by fintech [21],
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tech-driven services are complements rather than replacement of the traditional banking sys-

tem [35, 36] and commercial banks would embrace with fintech to gain a new growth [35, 37].

The rest of this paper is organized as follows. Section 2 constructs a theoretical framework

of the prevalent classical credit scoring models and the typical swarm intelligence algorithm

approaches. In Section 3, a novel framework is proposed for optimizing hyper-parameter of

neural networks with swarm intelligence algorithms. Section 4 describes the data used in the

empirical research and findings are reported and analyzed in Section 5. In the last section, this

paper draws conclusion and provides suggestions on model selection of credit scoring

accordingly.

Theories of algorithm

Prevalent classical models for credit scoring

Credit scoring models support lenders during the decision-making process of loans. A body of

credit scoring models developed into maturity in the recent decades, including statistics-based

models like logistic regression, naive Bayes, determinant analysis [38, 39] and machine learn-

ing based models like K nearest neighbor, decision tree, support vector machine, artificial neu-

ral network [40–42]. As is mentioned in the section of introduction, artificial neural network

is widely accepted for its outstanding accuracy and is selected as the underlying model of this

paper. These models are applies to different scenarios because of distinct assumptions and

instance characteristics.

Artificial neural network (ANN). The artificial neural network is an important quantita-

tive technique in credit scoring [43], which is widely used in the context of microfinance [44],

imbalanced data [45], real-time assessment [39], etc. The technique of neural network model

has evolved into different forms to deal with the credit scoring problems; e.g. partial logistic

artificial neural network [46], artificial metaplasticity neural network [47], and hybrid neural

networks [48]. Prior experiments show that the neural networks outperforms a bunch of con-

ventional techniques (e.g. discriminant analysis, probit analysis, logistic regression, etc.) in

credit scoring [49–51]. Furthermore, the neural networks trained by more sophisticated algo-

rithms outperform those trained by ordinary gradient descent [22, 52]. Besides, the hybrid of

neural network and genetic algorithm proves as excellent classifier in credit scoring [53]. How-

ever, some issues remain in the application of neural network to credit scoring. For example,

the determination of training-to-validation sample ratio remains controversial in the prior lit-

erature [54, 55]. Notably, similar to the most of machine learning techniques, the neural net-

work is prone to overfitting and consequently poor generalization [56]. Thus, the aim of this

paper is to improve the generalization of neural network with swarm intelligence algorithms.

The approach of artificial neural network (ANN) stimulates the neural network of human

brain [57]. With artificial neuron as the unit of information operation, the weight value of con-

nection between artificial neurons indicates the intensity of connection. The connection and

the structure reflect how the information is represented, transmitted, and operated in the net-

work. Back propagation (BP) is the most prevalent neural network in the context of credit

scoring. We apply recurrent back-propagation in this paper, which is fed forward until a fixed

value is achieved while the error is computed and propagated backward. A typical neural net-

work consists of input layer, hidden layer, and output layer. We introduce the training proce-

dures as follows. First, the network is fed forward: hidden layer accepts data from input layer

and modifies them with non-linear transformation before output. Once the output value is

generated, we measure the difference between actual and desired output value and obtain the

error value. In this stage, the error value is transferred backward from output layer to hidden

layer and then to input layer. At the same time, the error value is shared across layers and the
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weight value of every unit is adjusted accordingly. Intended for the gradient decrease of the

error value, we adjust the connection between layers (i.e. input-hidden connection and hid-

den-output connection) and the threshold. This training process goes on until we classify the

network parameters (i.e. weight and threshold values) applicable to the minimized error value.

After the above-mentioned training process, when fed with an input value, the neural network

automatically outputs values with minimal error after non-linear transformation.

Logistic regression. Logistic regression proposed by Berkson [58] is most widely used in

both industry and academy of banking thanks to its simple architecture and time complexity

[59–61].

Conditional probability for logistic regression is given by

Pðyi ¼ 1jxiÞ ¼
eðb0þb1xi1þb2xi2þ���þbmximÞ

1þ eðb0þb1xi1þb2xi2þ���þbmximÞ
ð1Þ

Pðyi ¼ 0jxiÞ ¼
1

1þ eðb0þb1xi1þb2xi2þ���þbmximÞ
ð2Þ

where β0, β1, � � �, βm are estimated with maximum likelihood estimation (MLE). To be specific,

as the independent variable yi takes value either zero or one, then

PðyiÞ ¼ Pyii ð1 � PiÞ
1� yi ð3Þ

Since the instances are independent from each other, the likelihood function is given by

LðyÞ ¼
Yn

i¼1

Pyii ð1 � PiÞ
1� yi ð4Þ

and the logarithmic function is

ln LðyÞ ¼ lnð
Yn

i¼1

Pyii ð1 � PiÞ
1� yiÞ ¼

Xn

i¼1

½yi lnðPiÞ þ ð1 � yiÞ lnð1 � PiÞ�

¼
Xn

i¼1

½yi lnð
Pi

1 � Pi
Þ þ lnð1 � PiÞ�

ð5Þ

The value of β0, β1, � � �, βm is estimated when the partial derivatives with respect to the four

variables equal zero. However, instead of a closed-form solution, we estimate the non-linear

likelihood function with iteration. As is suggested in prior literature, the logistic regression

performs weakly when solving non-linear problems [62].

Naive Bayesian (NB) approach. The approach of Naive Bayes (NB) is born from the clas-

sical Bayesian approach of statistics and provides theoretical justification for classifiers that

even do not use Bayesian theorem explicitly [62]. Based on the solid theoretical framework of

statistics, the NB model remains robust in the case of missing value. However, the underlying

assumption that all the indicators are independent from each other is too strong for the real

world. The Bayesian conditional probability of event y and x is given by

pðyjxÞ ¼
pðy; xÞ
pðxÞ

¼
pðxjyÞ � pðyÞ

pðxÞ
ð6Þ

i.e. diving the probability that both event y and x take place by the probability that event x

takes place measures the probability of event x with the condition that event y takes place. In

the context of credit scoring, event x refers to the case that a certain character (measured by an

indicator) of the instance takes a particular value. Specifically, instance of credit history is
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divided into several categories (e.g. two categories: yi = 1 for default; yi = 0 for non-default)

and p(y) in Eq (6) refers to the frequency of each category. Then p(x | y) in Eq (6) equals the

frequency of indicators in the subsample of each category and p(x) equals the percentage of

indications in the full sample. Thereby, p(y | x) is measured according to Eq (6).

If there are more than one indicator for the independent variable, then

pðyjjxi1; xi2; � � � ; ximÞ ¼
pðyjÞpðxi1; xi2; � � � ; ximjyjÞ

pðxi1; xi2; � � � ; ximÞ
¼

a� pðyjÞ � pðxi1; xi2; � � � ; ximjyjÞ ¼ a� pðyjÞ �
am

k¼1

pðxikjyjÞ
ð7Þ

Discriminant analysis (DA). Discriminant analysis (DA) proposed by [63] is often cited

to compare with other techniques in credit scoring [64, 65]. This approach forms classification

criteria based on the instance with categories known and predict the unknown categories

according to such criteria. The DA is either parametric or non-parametric. The parametric

DA constructs the model with a certain assumption of instance distribution (e.g. normal distri-

bution). However, the model is constructed biased because of the unobservable distribution so

that parametric DA is not widely used and DA performs weakly when dealing with non-linear

problems [62]. For instead, the non-parametric DA prevails in the context of credit scoring.

This approach investigate instance distribution with non-parametric method and construct

classification criteria accordingly. Thus, results of non-parametric DA are more robust.

K nearest neighbor (KNN). As one of the most classical method of data mining, k nearest

neighbor (KNN) is carried out as follows. Suppose xi remains to categorize. In the instance set

whose category is known, find k instances most similar to (nearest to) xi, known as k nearest

neighbors of xi. According to the rule of majority voting, xi is classified into the neighbor’s cat-

egory with the largest number of instances. If k = 1, then xi is classified into the same category

as its nearest neighbor. Since the KNN relies on the comparison with a set containing known

values rather than estimation, this approach is efficient in terms of modelling. However, the

predictive accuracy of KNN is determined by the measure of distance and the cardinality k of

the neighborhood [62].

Decision tree (DT). Decision tree (DT), a basic technique of ensemble learning [66], is

another prevalent machine-learning-based approach to credit scoring [67]. With some new

techniques introduced [68, 69], the DT approach is efficient in categorization and shows

results in an explicit manner for interpretation. However, this approach leads to biased results

when the instance is time series with complex categories. In the framework of greedy algo-

rithm, the DT construct a tree-shape structure. First, classify the optimal value of a certain

indicator and classify the instance accordingly. Then, divide each subsample with optimal

value until the predefined stopping criterion reached. To be specific,

Step 1: take the full sample set as the root node of the tree.

Step 2: test every possible classification of every indicator until the optimal value identified in

the recursion.

Step 3: set decision nodes using the optimal value in Step 2 and classify the root node into leaf nodes.

Step 4: repeat Step 2 and 3 until every leaf node is pure enough.

As core of the DT approach, purity measures the ratio of homogenous instances in a leaf

node over the full sample; i.e. one leaf node is “purer” as such ratio is higher. The optimal
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classification refers to the one that improve the purity most in the recursion. The concept of

entropy shown in Eq (8) measures the uncertainty of categorization in each subsample.

InfoðDÞ ¼ �
Xc

i¼1

pi log2
ðpiÞ ð8Þ

where c denotes the number of categories in the instance set D (e.g. in real-world credit scor-

ing, c equals two as the instance set is categorized into “default” and “non-default”). pi denotes

the ratio of subsample size in category i over the full sample set D; i.e. pi ¼
jDi j
jDj . On general, a

large value of entropy indicates that an increasing body of information is required for

categorization.

Support vector machine (SVM). The support vector machine (SVM) is employed as a

technique of credit scoring in the past decade [19, 70–72]. Prior literature using real-world

credit scoring data from the US and Taiwan (China) indicates that support vector machines

achieves accuracy comparable of that of neural networks [73].

The SVM is a non-probabilistic binary linear classifier, classifying the optimal hyperplane

to split instance in the space to the maximum [74]. The term “to the maximum” indicates that

the distance between subsample and the hyperplane is maximized and the error in categoriza-

tion is minimized thereby. Applying kernel function, the SVM simplifies classification applica-

ble to various scenarios. However, its performance relies on the selection of kernel function

and it consumes a large storage for computation.

Three types of kernel function are used to classify the optimal hyperplane: linear, polyno-

mial, and radial basis function. The linear kernel function divides instances by a plane and

attempts to classify the hyperplane in the original feature space. The polynomial kernel func-

tion transforms the original instances into high-dimensional instances with polynomial char-

acteristics and then divides these transformed instances with a curve. The radial basis function

(RBF) classifies the hyperplane after mapping instances into higher dimensional feature space

via the RBF. In most cases, the RBF outperforms the other two kernel functions. In this paper,

all these three kernel functions and their parameter set are employed to obtain the best perfor-

mance via grid search method.

K-means. The K-means clustering method is an unsupervised learning algorithm aimed

to solve clustering problem with iterative calculation. This algorithm starts with a group of

centroids, which are K instances randomly selected from the original dataset as the beginning

points of every cluster. For every instance, we calculate its distance from every centroid and

assign it to the nearest cluster (i.e. its distance from the centroid of this cluster is shorter than

that from others). Once an instance is assigned to a certain cluster, we re-select the centroid

from all the instanced in this cluster. This iteration goes on until either no (or minimal)

instance remains to be assigned or no (or minimal) centroid moves. After the training of itera-

tion, once fed with an instance, the algorithm assign it to the nearest cluster [75]. Despite the

simplicity and speed, the K-means technique is limited in terms of robustness, since the clus-

ters are determined by the initial random assignments [76].

Random forest (RF). The random forest (RF) method proposed by Breiman [77] is a

supervised learning algorithm based on decision trees, which is used in credit scoring, inter
alia, imbalanced dataset [45]. The term “forest” refers to the model built on multiple decision

trees. The term “random” indicates that the training set and the test features are selected ran-

domly. Thus, this algorithm will not overfit [78], provided enough trees in the forest. We intro-

duce the procedures as follows.

First, we randomly bootstrap m samples with replacement and acquire n training sets after

n times of such bootstrapping (bagging). Second, we train the decision tree with each training
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set. Third, we split every decision tree using information gain or Gini importance to calculate

the root node. Fourth, the forest chooses the classification with the most votes (each tree votes

for a certain class) and the mean value of trees’ prediction is the prediction of the forest (each

tree predicts class probabilities).

Combining multiple independent models, the random forest resists the problem of overfit-

ting and noise. Furthermore, this approach incorporating a multitude of features is excellent

when faced with high-dimensional data and is ready to detect underlying non-linear character-

istics. Besides, the random forest is renowned for its speed of implementation.

Swarm intelligence algorithm

As for the problem with no solution in traditional optimization based on individual agent and

criterion, the swarm intelligence algorithm handle them by mimicking the natural biological

evolution and/or the social behaviour of species. The systematic and organizational principles

underlying individual and/or in-group behaviour of species are the core mechanism of these

approaches. For example, herds and flocks cooperate in the search of food or mate. Every indi-

vidual in the herd or flock learns from experience of other members as well as itself and adjusts

its strategy of search accordingly.

Bat algorithm (BA). Bat algorithm [79], aimed at global optimization, mimics the echolo-

cation of bats. Assume that

1. All bats sense distance with echolocation and distinguish objectives from obstacles.

2. The bat flies randomly from point xi at a speed of vi. Meanwhile, it makes a sound of fixed

frequency fmin, variant wavelength λ and volume. According to the distance from objective,

the bat adjust the wavelength and transmission frequency γ 2 [0, 1].

3. The volume A0 changes from the maximum to the fixed minimum.

The optimization in BA approach mimic the motion and food-seeking process of bats.

Thus, The BA approach maps individual bats as feasible solutions in the space of high-dimen-

sion problems. The location of bat is assessed with the fitness function of objective and the

solution is identified with recursions.

Cuckoo search optimization (CSO). The cuckoo search optimization (CSO) algorithm

[80] mimic the brood parasitism of cuckoo. Moreover, instead of random walk, the search pro-

cess of CS algorithm mimics the discrete exploration of Lévy fly, composed by a series of

straight motions and abrupt turning of 90 degree. Assume that

1. Every cuckoo lays one egg and randomly incubate it in a host nest.

2. The best nest with high-quality egg is passed onto the next generation.

3. The number of available host nest is fixed and the host detects cuckoo’s egg with a probabil-

ity of p 2 (0, 1). Once detecting the invading egg, the host either destroys it or discards the

nest.

The CS approach is widely used in social science thanks to the efficient optimization with

few parameters.

Firefly algorithm (FA). The firefly algorithm [81] mimics the behavior of fireflies who

flash for food and mate. With an explicit logic, the FA converge quickly to the global

optimality.

The algorithm take the brightness of firefly as the objective value and assumes that
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1. The attractiveness of a firefly is positively related with its brightness; i.e. the less bright one

moves towards the brighter one.

2. The brightness is negatively related with the distance between two fireflies.

3. A firefly moves randomly if it detects no one brighter.

Gravitational search (GS) algorithm. The gravitational search algorithm [82] assumes

search agents as masses obeying the Newtonian laws of gravitation and motion as follows.

Law of gravitation: agents attract each other, while the gravity between two agents is directly

proportional to the product of their masses and inversely proportional to the distance between

them.

Law of motion: the velocity of each agent keeps constant unless an external force acts upon

it and the change of velocity equals to the force divided by the mass of the agent.

Thus, agents moves in accordance with the two laws above until the optimal position is reached.

Gray wolf optimization (GWO) algorithm. The gray wolf optimization algorithm mim-

ics the hunting mechanism of gray wolves in nature [83]. Wolves keep strict social hierarchy

represented by the division of a pack into four levels, each with different authority and

responsibility.

Gray wolves hunt in three steps:

1. Tracking, chasing, and approaching the prey;

2. Pursuing, encircling, and harassing the prey until it stops moving;

3. Attack towards the prey.

Particle swarm optimization (PSO) algorithm. Particle swarm optimization (PSO) algo-

rithm [84] is inspired by the predation of birds. Using massless particles moving in solution

space, this algorithm mimics birds seeking food. Every particle finds the optimal solution on

its own, known as local extremum, and shares the solution with all other particles. The global

optimality is the best local extremum. Comparing local extremum and the global optimality,

every particle adjust its motion in terms of direction and velocity. As a comparatively simple

algorithm, the PSO approach is efficient in seeking optimality and is applicable to problems

with real values.

Social spider algorithm (SSA). Social spider algorithm [85] mimics the social spiders col-

ony behavior. The SS algorithm assumes that

1. The search space is communal web of spiders where individuals could interact with each

other.

2. Each solution within the search space represents a spider position in the communal web

and each social spider is weighted according to the fitness value of the solution.

3. The spider colony is highly female-biased population with predefined proportion. Every

social spider is assigned a set of cooperative behaviors according to its gender, known as

evolutionary operators.

Whale swarm algorithm (WSA). The whale swarm algorithm [86] mimics predation of

humpback whales who seek food in a cooperative manner. This algorithm is recursive as

follows.
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1. All the whales communicate with each other by ultrasound in the search space.

2. Each whale has a certain degree of computing ability to calculate the distance to others.

3. The quality and quantity of food found are associated to the fitness of whale’s objective

value.

4. A whale follows the nearest one with a better fitness.

A novel framework: SI algorithm based BP-ANN credit-scoring

model

In this section, we propose our novel framework based on swarm intelligence algorithm and

BP-ANN model. The flowchart in Fig 1 plots the three procedures of constructing such frame-

work: pre-processing, training, and test. In the first step, imputation, normalization and re-

ordering are conducted to make the datasets suitable for further modelling. In the second step,

we optimize the hyper-parameters of BP-ANN with swarm intelligence algorithm to find out

the optimal model and the corresponding SI algorithm that suits specific scenarios and

Fig 1. Flowchart of the framework. Plots the framework of this paper in three procedures: Pre-processing,

optimization, and training.

https://doi.org/10.1371/journal.pone.0234254.g001
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datasets. In the third step, we apply the BP-ANN model with the optimal parameters to evalu-

ate the credit of new samples.

Step 1: Pre-processing

Imputation. Missing values are prevalent in real-world credit-scoring datasets, partly

owing to the insufficient information collection in business process or the careless of business

staff and data manager. First, we identify the label (good or bad, default or not default) of each

sample including missing values (samples with missing labels are dropped). Second, we select

all the other samples with the same label whose values for the same attributes are not missing

and assign them to the control group. Third, the missing values are replaced by the corre-

sponding attribute of a sample randomly selected from the control group.

The above-mentioned imputation is comparatively efficient, for the time it consumes are

proportional to the sample size of the dataset. Besides, for any specific attribute, the values

with higher frequency (indicating strong connection with samples of the same label) are more

likely to be selected in imputation, which helps to predict the label in the modelling stage.

Normalization. Although some models remain robust despite data scaling, distance-

based models (e.g. KNN) are heavily dependent on attitude standardization. Considering the

errors of each model are the same after normalization, the scaled dataset makes the compari-

son between different models possible. We employ the most commonly used scaling method

shown in Eq (9).

x0 ¼
x � minðXÞ

maxðXÞ � minðXÞ
ð9Þ

where X represents the vector of a specific attitude; x is the value of the attribute of one sample;

and x0 is the scaled value of the same attribute in the sample.

Re-ordering. The order of samples matters. In some cases, the order of samples with dif-

ferent labels could affect the performance of sequential learning models. Furthermore, the

imbalance sample problem might occur during the k-fold modelling process: if the good (or

bad) samples make up a larger proportion in one dataset, the performance is biased across dif-

ferent datasets. It is easier for models to identify the pattern of samples labelled with dominant

value, which causes unstable performance of models.

Before modelling, we re-order samples in accordance with the following procedures. First,

samples are divided into two cohorts based on the binary label, denoted as “majority” and

“minority” (dependent on the sample proportion). Second, we count the number of samples

in each group with different labels and calculate the ratio of majority to minority. For example,

the ratio for a dataset with 100 bad samples (minority) and 300 good samples (majority) is

three. The ratios are round to integer. Third, we conduct sampling without replacement from

two groups according to the proportion of each group in the population. Consider the context

with three as the ratio. Three good samples are selected first, with one bad sample selected fol-

lowing; then another three good samples followed by one bad sample; etc. Finally, the samples

left in the two groups after the above-mentioned sampling are assigned to the end sequence.

Hence, all the samples are re-assigned to a predetermined sequence and the samples from two

groups are distributed with more balance.

Step 2: Training

We need to determine the optimal SI algorithm before using it to find out the optimal parame-

ter set for BP-ANN model. However, the “grail algorithm” does not exist and we search for the

optimal SI algorithm for heterogeneous dataset. First, we construct an alternative algorithm
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pool with several typical and widely used SI algorithms. For each SI algorithm in the pool, we

construct a comparability scenario and set the same key hyper-parameters, including the num-

ber of individuals and time of iterations. Next, we set the feasible parameter space of BP-ANN

model according to prior literature, including the size of hidden layers, the learning rate, the

max iteration limit, and the tolerance of errors. Specifically, we set only the upper and lower

boundary limit of each parameter and have SI algorithms to search the optimal parameters in

the space. Finally, we apply SI algorithms in the pool one by one to optimize the parameter set

of BP-ANN model (whose performance is sensitive to parameters) and find out the optimal SI

algorithm with the highest value of area under curve (AUC) indicator (see the next section for

further details). The BP-ANN model that optimized by the optimal SI algorithm is the core of

our model.

Step 3: Test

In this step, we apply the BP-ANN model whose parameters optimized by the optimal SI algo-

rithm to another real-world dataset. We employ the data pre-processed in Step 1 and test the

BP-ANN model with hyper-parameters determined in Step 2.

Methodology

This paper carries out an experiment to test whether the BP-ANN model trained by swarm

intelligence algorithm (treated group) outperforms prevalent classical models (control group)

and several typical hybrid or ensemble models constructed in recent literature [29–34] within

the context of credit scoring. First, the experiment investigates the performance of seven

swarm intelligence algorithms (see Section “Swarm intelligence algorithm”) as an optimizer of

BP-ANN model in the context of different datasets. Second, we compare the performance of

trained BP-ANN models and those in control group, in order to classify the best in terms of

generalization and robustness. Third, we analyze how the number of hidden layers affects the

performance of trained BP-ANN models. Last, the time complexity of trained BP-ANN mod-

els is analyzed.

Data

The instances of this paper are extracted from four public datasets of UCI (University of Cali-

fornia, Irvine) and one dataset HELOC about credit scoring: first, the German Credit Dataset

(the German dataset, https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit

+Data%29); second, the Australian Credit Approval Dataset (the Australian dataset, https://

archive.ics.uci.edu/ml/datasets/Statlog+%28Australian+Credit+Approval%29); third, the Japa-

nese Credit Dataset (the Japanese dataset, https://archive.ics.uci.edu/ml/datasets/Credit

+Approval); forth, the Default of Credit Card Clients Dataset from Taiwan (the Taiwan data-

set, https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients); and fifth, the

Home Equity Line of Credit Dataset from the U.S. (the HELOC dataset, https://community.

fico.com/s/explainable-machine-learning-challenge).

The reasons for these datasets selection are as follows. First, because of the unavailable data-

set of commercial banks [87], public dataset is widely used in prior literature and results from

the same dataset are comparable. Second, the German Credit Dataset (over 500 thousand page

views), the Australian Credit Approval Dataset (over 155 thousand page views), the Japanese

Dataset (over 393 thousand page views) and the Taiwan Dataset (over 350 thousand page

views) are the most widely used datasets of UCI public credit scoring, with which a large body

of prior literature study the performance of various models [22, 88]. Third, we focus on the

diversity of datasets. On one hand, there are significant differences in the number of samples
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and attribute dimensions. On the other hand, these five datasets are extracted from five differ-

ent financial markets (Germany, Australia, Japan, Taiwan and the US). Thus, we test not only

the performance of each algorithm with different sample sizes and dimensions but also the fea-

sibility of each algorithm in real world with different financial risks. The summary of datasets

is presented in Table 1.

Model evaluation

In line with the evaluation techniques proposed by recent literature [79], We select eight indi-

cators (i.e. AUC, accuracy, precision (pos), precision (neg), sensitivity, specificity, Brier score,

and G-mean) and the confusion matrix is presented in Table 2.

Based on the confusion matrix in Table 2, we construct five evaluation indicators as shown

in Eqs (10) to (14).

accuracy ¼
TPþ TN

TP þ FN þ FPþ TN
ð10Þ

precisionðposÞ ¼
TP

TPþ FN
ð11Þ

precisionðnegÞ ¼
TN

FP þ TN
ð12Þ

sensitivity ¼
TP

TP þ FP
ð13Þ

specificity ¼
FN

FN þ TN
ð14Þ

The indicator accuracy in Eq (10) measures the ratio of correctly identified sample over the

entire sample. The indicator precision (pos) in Eq (11) measures the ratio of correctly identified

positive sample over the entire positive sample, which evaluates how the model performs when

classifying positive samples. Similarly, the indicator precision (neg) in Eq (12) measures the

ratio of correctly identified negative sample over the entire negative sample, which evaluates

how the model performs when classifying negative samples. The indicator sensitivity in Eq

(13) measure the ratio of positive samples that are correctly predicted over the entire sample

predicted as positive, which evaluates how precisely the model predicts in terms of positive

samples. Similarly, the indicator specificity in Eq (14) measures the ratio of negative samples

that are correctly predicted over the entire sample predicted as negative, which evaluates how

precisely the model predicts in terms of negative samples.

Table 1. Summary of datasets.

Dataset Samples Features Good/Bad

German 1000 24 700/300

Australian 690 14 307/383

Japan 690 15 307/383

Taiwan 6000 23 3000/3000

HELOC 10459 23 5000/5459

Summarizes the variables in the datasets.

https://doi.org/10.1371/journal.pone.0234254.t001
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To evaluate the comprehensive performance of each model, we employ the method of AUC

(see details below). Using only one indicator, this method measures the classification ability of

entire sample and the balance of classified samples simultaneously. The AUC builds on the

knowledge of confusion matrix (see Table 2). We introduce the procedures of the AUC as fol-

lows. All predictive positive (default) probabilities of the model make the sequence P. The

actual positive (default) probability works as threshold of classifier; i.e. the instance is classified

as default if the predictive positive probability is larger than the threshold. Then we have the

false positive rate and true positive rate as shown in Eqs (15) and (16).

false positive rate ¼
FP

FPþ TN
ð15Þ

true positive rate ¼
TP

TP þ FN
ð16Þ

Thus, we have two sequences: sequence of false positive rates and sequence of true positive

rates. After that, with false positive rate sequence as the x-axis while true positive rate sequence

as the y-axis, we draw the curve of receiver operating characteristic (ROC) (see Fig 2) and the

area under the ROC curve (area under curve, AUC) is positively related with the performance

of classification model.

In real word, the datasets are usually imbalanced (e.g., good samples make up a greater pro-

portion than bad samples) and three principled evaluation metrics (i.e. the Brier score, G-

mean, and H-measure) are introduced thereby. The H-measure requires predetermined distri-

bution of misclassification cost [89] and is less prevalent in recent evaluation. Thus, we use the

other two metrics (i.e. the Brier score, and G-mean) simultaneously to evaluate the perfor-

mance of each model with the imbalanced datasets.

As shown in Eq (17), the Brier score measures the mean square error of predicted and true

value.

Brier score ¼
1

N
�
XN

i¼1

ðpi � tiÞ
2

ð17Þ

where pi and ti are the predicted value and true value, respectively; and N is the sample size.

With the result of Eqs (13) and (14), the G-mean is measured as show in Eq (18).

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity � specificity

p
ð18Þ

Table 2. Confusion matrix.

Positive predictions Negative predictions Total

Actual positive instance TP FN TP+FN

Actual negative instance FP TN FP+TN

Total TP+FP FN+TN TP+FN+FP+TN

Reports the confusion matrix where FP denotes the number of false positive predictions; TN denotes the number of

actual negative instances; TP denotes the number of actual positive instances; and FN denotes the number of false

negative predictions.

https://doi.org/10.1371/journal.pone.0234254.t002
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Settings

First, this paper trains parameters of the BP-ANN model with the seven approaches of swarm

algorithm described in Section “Swarm intelligence algorithm”. Considering the time com-

plexity and accuracy, each swarm algorithm contains 10 individuals and iterates 20 times. The

neural network contains one input layer, one hidden layer, and one output layer from the

beginning. In the later stage, we increase the number of hidden layers in BP-ANN. Parameters

of the neural network are trained in the parameter space as presented in Table 3.

The procedures that we optimize the BP-ANN model with swarm intelligence algorithm

are introduced as follows.

Fig 2. Area under the ROC curve (AUC). Plots the receiver operating characteristic (ROC) curve (see the blue curve),

where the horizontal axis denotes the sequence of false positive rate and the vertical axis denote the sequence of true

positive rate The area under the ROC curve (AUC) indicates the performance of model as a classifier (see the green

part).

https://doi.org/10.1371/journal.pone.0234254.g002

Table 3. Parameters of neural network.

Optimization parameter Min Max Type

Number of neurons in the hidden layer 10 200 int

Learning rate 0.0001 0.1 float

Maximum number of iterations in the network 20 500 int

Maximum fault tolerance 0.001 0.1 float

Reports the parameters of neural network trained by swarm algorithm approaches.

https://doi.org/10.1371/journal.pone.0234254.t003
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Step 1: 10 four-dimension feasible solutions are randomly selected from the solution space

(The four dimensions are the number of neurons in the hidden layer, the learning rate, the

maximum number of iterations in the network, and the maximum fault tolerance. The

value range of each dimension is shown in Table 5). Training the BP-ANN model with the

parameter set of each feasible solution, we have 10 models with different parameters. After

evaluation, we take the best performance as the “present global optimal value” of the certain

swarm intelligence algorithm and the certain feasible solution as the “present global optimal

solution”.

Step 2: based on the optimization mechanism and principles of the certain swarm intelligence

algorithm, we set out from the present feasible solution and start an exploration of “novel

feasible solution”. If the “novel feasible solution” is better than the present feasible solution,

we replace the present feasible solution with the “novel feasible solution” and compare the

novel one with the “present global optimal solution”. If the novel one is better, we replace

the “present global optimal solution” with the “novel feasible solution” and take the perfor-

mance of the novel one as the “present global optimal value”.

Step 3: if the stopping condition of the certain swarm intelligence algorithm is not achieved,

then we repeat Step 2. Otherwise, we stop the optimization and take the “present global

optimal solution” as the final solution. Then we set parameters of BP-ANN accordingly.

In line with the prior literature, this paper applies 5-fold cross validation. To be specific, all

the instances from datasets are divided into five pairs of training-test sets. For each pair, train-

ing set predicts parameters and constructs model accordingly. Then we examine the generali-

zation of model using the test set in order to decide whether it fits new instances that isolated

from the train set. The process runs five times to ensure the model is robust. All models intro-

duced in Section “Prevalent classical models for credit scoring” (i.e. logistic regression, NB

approach, DA, KNN, DT, SVM, K means, and RF) are enrolled in control group. Within the

context of the same public datasets, we enroll several typical hybrid or ensemble models pro-

posed in recent literature [29–34] in the control group. When evaluating the performance of

difference models, we report the value of eight indicators in Section “Model evaluation” while

focusing on the value of AUC (see Section “Model evaluation” for detailed calculation). As is

mentioned above, the AUC not only reflects the entire precision of the model but also indi-

cates how the model performs when classifying a certain category of instances.

Models in Section “Prevalent classical models for credit scoring” are constructed with the

build-in package of Matlab 2017a to build up while the “Optimize Hyperparameters” is set as

“all”. As the command indicates, a body of parameter sets including the kernel functions of

SVM model are applied to each baseline model. Notably, we carry out all the experiments in

this study using a PC of 3.4 GHz, Intel CORE i5-7500 and 8GB RAM with the operating sys-

tem of Microsoft Windows 10.

Findings

First, we employ seven swarm intelligence algorithms to train BP-ANN and report the perfor-

mance of trained models in the first subsection “Optimization”. Further, the performance of

control group is reported and compared in the second subsection “Control group”. We also

present the performance of our model while hidden layers of the BP-ANN increasing, followed

by analysis of computational complexity (i.e. runtime). Last, by comparison with control

group, we show how our framework balances between accuracy and efficiency.
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Optimization

Table 4 reports the performance of BP-ANN models with the five datasets described in Section

“Data”, where parameters are trained by different swarm algorithms. The value of eight indica-

tors in Section “Model evaluation” are reported while the optimal performance are presented

in bold.

First, we compare the model performance with the German Credit Dataset, as shown in the

first 12 rows of Table 6. In the training phase, the fitness of CHSO-BP-ANN model scores

highest in terms of all six indicators, which implies that the fitting ability of this model is best

and robust. The fitness of PSO-BP-ANN, WSA-BP-ANN, and BA-BP-ANN performs less

competent but still acceptable, with the AUC value over 0.9. Focused on the classification of

positive samples, we notice that all the models except CHSO-BP-ANN and PSO-BP-ANN

score no more than 0.8 in terms of precision (pos). However, all the models performs better

when classifying negative, with the value of precision (neg) over 0.9. The classification is biased

towards the negative samples owing to the fact that, in the training set, the size of negative sam-

ple set is far larger than that of positive sample set. In the phase of test, the model CSO-B-

P-ANN performs best in terms of AUC, accuracy and precision (neg). The model

CHSO-BP-ANN, performing well in the training phase though, scores highest in terms of pre-
cision (pos) and specificity in the testing phase, which indicates excellent classification of posi-

tive sample and precise prediction. Besides, the model SSA-BP-ANN and FA-BP-ANN classify

comparatively precisely.

As shown in Table 4, we first compare the model performance with the German dataset. In

the training phase, the CSO-BP-ANN model in training phase scores the highest in terms of all

indicators except the precision (pos). It indicates that the CSO-BP-ANN performs best when

distinguishing samples with opposite attributes from each other. In addition, the WSA-B-

P-ANN scores the highest in terms of the precision (pos) (0.5674), indicating that this model

performs best when identifying the positive samples. The performance across models differs

within a comparatively limited range in terms of the AUC (approx. 0.08) and accuracy
(approx. 0.06). Besides, the overall performance of PSO-BP-ANN and GS-BP-ANN is strong

in terms of all indicators while the performance of BA-BP-ANN and GS-BP-ANN is compara-

tively weak. In the testing phase, the PSO-BP-ANN performs best generalization in terms of

overall classification and prediction with imbalanced datasets. To be specific, the PSO-B-

P-ANN scores 0.8004 for AUC, 0.7660 for the accuracy, and 0.2340 for the Brier score. Fur-

thermore, the WSA-BP-ANN scores the highest in terms of precision (pos), specificity, and G-

mean, while BA-BP-ANN who performs moderately during training phase scores the highest

in terms of precision (neg) and sensitivity.

Within the context of the Australian dataset, in the training phase, the CSO-BP-ANN scores

the highest in terms of all indicators except precision (pos) and specificity. Similarly to the con-

text of German dataset, the WSA-BP-ANN scores the highest in terms of precision (pos) and

specificity. The performance of other models varies within a limited range in terms of the AUC

(approx.0.02) and accuracy (approx. 0.02), indicating that BP-ANN trained by these SI algo-

rithms presents a strong performance when identifying the classifiable attributes in the train-

ing set. In the testing phase, the GWO-BP-ANN and the BS-BP-ANN perform best in terms of

the AUC (0.9373) and accuracy (0.8638), respectively. Meanwhile, the GS-BP-ANN performs

best in terms of the Brier score and G-mean, indicating strongest balance of generalization

among the models. Besides, the BA-BP-ANN and the CSO-BP-ANN present strong perfor-

mance in terms of identifying the positive and negative samples.

Within the context of the Japanese dataset, in the training phase, the CSO-BP-ANN who

performs best in the previous context scores the highest in terms of no indicator. The
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Table 4. Performance of BP-ANN trained by different swarm intelligence algorithms.

Dataset Phase Indicator BA CSO FA GS GWO PSO WSA
German Training AUC 0.8037 0.8859 0.8135 0.8052 0.8150 0.8641 0.8656

accuracy 0.7605 0.8253 0.7795 0.7770 0.7720 0.8143 0.8108

precision (pos) 0.3659 0.5671 0.4409 0.5123 0.4290 0.5413 0.5674

precision (neg) 0.9282 0.9361 0.9242 0.8910 0.9197 0.9311 0.9149

sensitivity 0.6937 0.7934 0.7190 0.6670 0.6984 0.7713 0.7443

specificity 0.7770 0.8348 0.7947 0.8110 0.7905 0.8259 0.8319

Brier score 0.2395 0.1748 0.2205 0.2230 0.2280 0.1858 0.1893

G-mean 0.5639 0.7279 0.6367 0.6713 0.6238 0.7095 0.7196

Testing AUC 0.7864 0.7860 0.7712 0.7681 0.7843 0.8004 0.7916

accuracy 0.7460 0.7620 0.7460 0.7450 0.7550 0.7660 0.7630

precision (pos) 0.3458 0.4321 0.3942 0.4636 0.3834 0.4533 0.4804

precision (neg) 0.9233 0.9025 0.8978 0.8629 0.9124 0.9006 0.8845

sensitivity 0.6918 0.6602 0.6263 0.6007 0.6596 0.6686 0.6355

specificity 0.7678 0.7880 0.7757 0.7895 0.7762 0.7947 0.8006

Brier score 0.2540 0.2380 0.2540 0.2550 0.2450 0.2340 0.2370

G-mean 0.5514 0.6227 0.5939 0.6305 0.5886 0.6357 0.6443

Australian Training AUC 0.9395 0.9514 0.9324 0.9421 0.9432 0.9460 0.9432

accuracy 0.8659 0.8783 0.8612 0.8685 0.8728 0.8761 0.8728

precision (pos) 0.9169 0.9047 0.9138 0.9110 0.9084 0.9097 0.9186

precision (neg) 0.8250 0.8570 0.8193 0.8342 0.8436 0.8493 0.8362

sensitivity 0.8080 0.8355 0.8024 0.8150 0.8249 0.8290 0.8181

specificity 0.9256 0.9183 0.9224 0.9217 0.9210 0.9216 0.9277

Brier score 0.1341 0.1217 0.1388 0.1315 0.1272 0.1239 0.1272

G-mean 0.8697 0.8805 0.8651 0.8717 0.8750 0.8788 0.8763

Testing AUC 0.9289 0.9301 0.9229 0.9351 0.9373 0.9326 0.9305

accuracy 0.8623 0.8565 0.8565 0.8638 0.8609 0.8609 0.8580

precision (pos) 0.9164 0.8744 0.8982 0.9020 0.9026 0.8918 0.8998

precision (neg) 0.8203 0.8438 0.8182 0.8388 0.8288 0.8346 0.8256

sensitivity 0.8050 0.8175 0.7997 0.8125 0.8052 0.8173 0.8030

specificity 0.9237 0.8948 0.9164 0.9144 0.9121 0.9090 0.9100

Brier score 0.1377 0.1435 0.1435 0.1362 0.1391 0.1391 0.1420

G-mean 0.8664 0.8579 0.8563 0.8691 0.8648 0.8610 0.8617

Japanese Training AUC 0.9417 0.9354 0.9427 0.9402 0.9408 0.9455 0.9425

accuracy 0.8736 0.8699 0.8728 0.8692 0.8699 0.8725 0.8728

precision (pos) 0.8322 0.8210 0.8294 0.8322 0.8204 0.8292 0.8289

precision (neg) 0.9251 0.9307 0.9264 0.9154 0.9316 0.9266 0.9275

sensitivity 0.9328 0.9368 0.9346 0.9258 0.9374 0.9341 0.9347

specificity 0.8156 0.8070 0.8136 0.8149 0.8064 0.8125 0.8135

Brier score 0.1264 0.1301 0.1272 0.1308 0.1301 0.1275 0.1272

G-mean 0.8773 0.8740 0.8764 0.8724 0.8741 0.8765 0.8766

Testing AUC 0.9202 0.9254 0.9238 0.9253 0.9354 0.9214 0.9238

accuracy 0.8507 0.8623 0.8522 0.8580 0.8623 0.8536 0.8536

precision (pos) 0.8051 0.8070 0.8035 0.8149 0.8116 0.8102 0.8107

precision (neg) 0.9051 0.9280 0.9111 0.9118 0.9267 0.9116 0.9059

sensitivity 0.9138 0.9334 0.9191 0.9202 0.9302 0.9191 0.9134

specificity 0.7898 0.7978 0.7891 0.7970 0.7978 0.7885 0.7961

Brier score 0.1493 0.1377 0.1478 0.1420 0.1377 0.1464 0.1464

G-mean 0.8533 0.8648 0.8553 0.8618 0.8672 0.8589 0.8567

(Continued)
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PSO-BP-ANN scores the highest in terms of the AUC (0.9455) while the BA-BP-ANN per-

forms best in terms of accuracy (0.8736) as well as specificity, Brier score and G-mean. In addi-

tion, the GS-BP-ANN and the GWO-BP-ANN present strong performance when identifying

the positive and negative samples. In the testing phase, the GWO-BP-ANN presents strong

performance of overall and balance of prediction by scoring the best in terms of the AUC,

accuracy, Brier score, and G-mean. Besides, the GWO-BP-ANN, despite the moderate perfor-

mance in the training phase, scores the best in terms of accuracy, precision (neg), sensitivity,

specificity, and Brier score.

Within the context of the Taiwan dataset, in the training phase, the BA-BP-ANN performs

best in terms of all indicators except precision (pos), indicating excellent fitness of the training

Table 4. (Continued)

Dataset Phase Indicator BA CSO FA GS GWO PSO WSA
Taiwan Training AUC 0.7596 0.7466 0.7139 0.7356 0.7594 0.7389 0.7410

accuracy 0.6962 0.6849 0.6461 0.6697 0.6934 0.6794 0.6756

precision (pos) 0.5772 0.5702 0.6459 0.6224 0.5804 0.5767 0.5826

precision (neg) 0.8152 0.7997 0.6466 0.7171 0.8060 0.7823 0.7689

sensitivity 0.7585 0.7448 0.6555 0.6929 0.7535 0.7313 0.7324

specificity 0.6587 0.6509 0.6477 0.6560 0.6583 0.6499 0.6530

Brier score 0.3038 0.3151 0.3539 0.3303 0.3066 0.3206 0.3244

G-mean 0.6856 0.6735 0.6398 0.6651 0.6824 0.6692 0.6600

Testing AUC 0.7403 0.7271 0.7070 0.7233 0.7396 0.7230 0.7242

accuracy 0.6852 0.6737 0.6397 0.6617 0.6810 0.6730 0.6647

precision (pos) 0.5625 0.5578 0.6404 0.6145 0.5673 0.5647 0.5716

precision (neg) 0.8075 0.7893 0.6376 0.7085 0.7968 0.7808 0.7570

sensitivity 0.7457 0.7318 0.6488 0.6827 0.7392 0.7253 0.7156

specificity 0.6492 0.6429 0.6419 0.6483 0.6494 0.6425 0.6404

Brier score 0.3148 0.3263 0.3603 0.3383 0.3190 0.3270 0.3353

G-mean 0.6732 0.6599 0.6310 0.6572 0.6699 0.6621 0.6514

HELOC Training AUC 0.7902 0.7926 0.7826 0.7928 0.7915 0.7936 0.7890

accuracy 0.7167 0.7157 0.7081 0.7172 0.7191 0.7212 0.7167

precision (pos) 0.7278 0.7512 0.7410 0.7466 0.7650 0.7624 0.7826

precision (neg) 0.7047 0.6768 0.6727 0.6849 0.6693 0.6757 0.6449

sensitivity 0.7297 0.7210 0.7164 0.7235 0.7174 0.7209 0.7086

specificity 0.7045 0.7193 0.7125 0.7161 0.7254 0.7247 0.7350

Brier score 0.2833 0.2843 0.2919 0.2828 0.2809 0.2788 0.2833

G-mean 0.7154 0.7093 0.7007 0.7128 0.7142 0.7166 0.7080

Testing AUC 0.7858 0.7880 0.7809 0.7866 0.7867 0.7898 0.7867

accuracy 0.7132 0.7128 0.7095 0.7115 0.7186 0.7205 0.7126

precision (pos) 0.7206 0.7465 0.7422 0.7421 0.7672 0.7593 0.7796

precision (neg) 0.7047 0.6761 0.6719 0.6789 0.6643 0.6793 0.6388

sensitivity 0.7274 0.7182 0.7158 0.7192 0.7155 0.7214 0.7048

specificity 0.6992 0.7172 0.7121 0.7109 0.7254 0.7217 0.7307

Brier score 0.2868 0.2872 0.2905 0.2885 0.2814 0.2795 0.2874

G-mean 0.7120 0.7067 0.7017 0.7066 0.7125 0.7176 0.7028

Reports the performance of BP-ANN models with the five datasets (i.e. German Credit Dataset, Australian Credit Approval Dataset, Japanese Credit Dataset, Taiwan

Credit Dataset and HELOC Dataset). Parameters are trained by seven different swarm algorithms (i.e. BA, CSO, FA, GS, GWO, PSO, and WSA). Eight indicators (i.e.

the AUC, accuracy, precision (pos), precision (neg), sensitivity, specificity, Brier score, and G-mean) are reported as evaluation metrics. The bold text indicates the best

performance of the row.

https://doi.org/10.1371/journal.pone.0234254.t004
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set. In terms of overall identification (i.e. the AUC and accuracy), the difference of perfor-

mance between the BA-BP-ANN and the other models remains around 0.04 (for the AUC)

and 0.05 (for accuracy). In terms of balance of identification (i.e. Brier score and G-mean), the

difference remains around 0.05. In other word, the performance remains comparatively stable

across different models. In the testing phase, the BA-BP-ANN performs still best in terms of all

indicators except precision (pos) and specificity. The difference of performance between the

BA-BP-ANN and the other models remains around 0.04 (for the AUC) and 0.05 (for accuracy)

in terms of overall identification, and 0.05 (for Brier score) and 0.04 (for G-mean) in terms of

balanced identification. Thus, all the models perform robustly through the two phases.

Finally, we compare the performance within the context of the HELOC dataset. In the

training phase, the PSO-BP-ANN performs best in terms of overall and balanced fitting, with

the best score in the AUC, accuracy, Brier score, and G-mean. Meanwhile, the BA-BP-ANN

and the WSA-BP-ANN perform better when identifying samples with certain attributes. The

performance of models varies within an average range of 0.0274. In the testing phase, the

PSO-BP-ANN, the VA-BP-ANN, and the WSA-BP-ANN remain their highest scores in the

training phase, which indicates robust performance of these models. The difference of perfor-

mance across models remains in an average range of 0.0282, moderately greater than the range

during training phase but still limited.

A further comparison of performance within the context of five datasets is conducted as

follows.

First, volatility across models. With the five datasets, the average range of scores mea-

sures 0.1008 (German), 0.0203 (Australian), 0.0091 (Japanese), 0.0687 (Taiwan), and 0.0274

(FICO) during the training phase while 0.0608 (German), 0.0195 (Australian), 0.0145 (Japa-

nese), 0.0656 (Taiwan), and 0.0282 (FICO) during the testing phase. Generally, the range of

scores is limited, which indicates robustness across BP-ANN models trained by different SI

algorithms.

Second, stability within model. The performance of models during the testing phase is

slightly weaker than that during the training phase. To be specific, comparing the scores dur-

ing the two stages, the difference measures no more than 0.01 for most of the indicators. In

other word, the BP-ANN models trained by SI algorithms are robust across the training and

testing phases and thereby are useful in the real world where practitioners select model based

on the performance of training.

Third, the optimal SI algorithm. Unfortunately, we see no evidence that a model per-

forms best with all the five datasets. For instead, the characteristics of each dataset affect how

the SI algorithm optimizes the model. The BP-ANN model trained by the CSO, GS, GWO,

BA, PSO, and WSA presents best performance in terms of different indicators within different

context. That is why we propose the selection of SI algorithm and the framework of modelling

in the section of “Methodology”. In the real world, due to the lack of knowledge when facing a

new context, we have to search for the optimal SI algorithm rather than determine with prior

knowledge. Furthermore, the search is feasible because of the stability within model.

Control group

In this section, we compare the performance of the BP-ANN trained by SI algorithms with

models in the control group. The control group includes classical credit scoring models men-

tioned in section “Prevalent classical models for credit scoring” (i.e. logistic regression, NB

approach, DA, KNN, DT, linear and polynomial SVM, SVM-RBF, K means, and RF) and sev-

eral hybrid or ensemble models constructed in recent literature [29–34].
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Table 5 reports how the classical models (i.e. logistic regression, NB approach, DA, KNN,

DT, linear and polynomial SVM, SVM-RBF, K means, and RF) perform within the context of

five datasets (see the section “Data” for details). The value of evaluation metrics (see the section

“Model evaluation” for details) are reported with the optimal performance (i.e. the lowest

value for Brier score and the highest value for other indicators) presented in bold. Notably, as a

lazy learning model, the KNN excludes the training phase.

As is shown in Table 5, we first focus on the performance of classical models within the con-

text of the German dataset. During the training phase, the RF model outperforms all the other

competing models in terms of all indicators. As for most indicators, the evaluation is “nearly

perfect” (i.e. with a value very close to 1 or to 0), suggesting a possibility of overfitting in the

training phase. Besides, some competing models (e.g. the logistic regression, NB approach,

DA, and SVM) also performs well in terms of the AUC, accuracy, Brier score, and G-mean.

Due to the greater proportion of majority samples, the value of precision (neg) is always greater

than that of precision (pos) and the specificity greater than the sensitivity. On the other hand,

the k-means model performs the worst in terms of all indicators, indicating that a lazy learning

model might not suit for the context of credit scoring.

In the testing phase, the DA model performs best in terms of the AUC, precision (neg), sen-
sitivity and Brier score. The logistic regression model also performs well and scores the highest

value in terms of accuracy and G-mean, while the KNN model performs the best in terms of

precision (pos) and specificity. Apart from the K-means model, the RF model performs the

worst during the testing phase, which indicates that the “nearly perfect” performance of RF

model during the training phase is a sign of overfitting. For the Australian dataset, in the train-

ing phase, RF model still performs the best among all the competing models in terms of all the

indicators except precision (pos) and specificity. Other models also score high in terms of the

AUC and accuracy. Furthermore, the logistic regression, DT, and DA present balanced ability

of distinguishing the majority and minority classes. Specifically, their scores for sensitivity and

specificity are quite close and the gap between precision (pos) and precision (neg) remains less

than 0.07. As to the other models, the identification is imbalanced; i.e. they are better to iden-

tify a certain group of samples. In the testing phase, the DA model performs the best in terms

of accuracy, precision (neg), sensitivity and G-mean, while the logistic model scores the highest

in the AUC and lowest in Brier score. At the same time, the KNN model scores the highest pre-
cision (pos) (0.8373) and the NB model scores the highest specificity (0.901). Besides, the SVM

and RF model also perform well with accuracy greater than 0.85. On the other hand, k-means

model performs the worst with most indicators are less than 0.7.

For the Japanese dataset, in the training phase, the RF model and k-means model performs

best in terms of all indicators and RF model still achieves the best performance in terms of

accuracy (0.8594) and precision (pos) (0.8287). For the other models, the logistic, DA, and

SVM scores a high value of AUC (greater than 0.92) and accuracy (greater than 0.86) in the

training phase and score the optimal value in terms of the AUC, precision (pos), specificity,

Brier score and G-mean respectively in the testing phase. Still, K-means model performs the

worst with AUC of 0.6409.

For the Taiwan dataset, the RF model performs best in terms of all indicators during the

training phase but only in terms of accuracy during the testing phase. For the other competing

models, the value of AUC remains less than 0.74 in the training phase, declining from the

value with small-size datasets. It implies that the identification of the sample structural charac-

teristics becomes more difficult while the sample size grows. As for overall prediction during

testing phase, the KNN model scores the highest AUC (0.7213) while the RF model scores the

highest accuracy (0.6783). For the other competing models, the value of AUC and accuracy
fluctuates around 0.7 and 0.67 respectively with the k-means model scoring the lowest. As for
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Table 5. Performance of classical models in control group.

Dataset Phase Indicator DT DA Logistic SVM KNN NB k-means RF
German Training AUC 0.7438 0.8192 0.8208 0.8632 - 0.8111 0.5603 0.9985

accuracy 0.7668 0.7835 0.7870 0.8303 - 0.7768 0.5920 0.9993

precision (pos) 0.6765 0.6785 0.6927 0.7757 - 0.6579 0.3433 1.0000

precision (neg) 0.7901 0.8154 0.8144 0.8448 - 0.8143 0.7221 0.9989

sensitivity 0.4301 0.5283 0.5209 0.5964 - 0.5296 0.3860 0.9975

specificity 0.9097 0.8922 0.9004 0.9297 - 0.8826 0.6812 1.0000

Brier score 0.1661 0.1524 0.1517 0.1698 - 0.1569 0.2385 0.0008

G-mean 0.7305 0.7438 0.7510 0.8089 - 0.7317 0.4959 0.9995

Testing AUC 0.7177 0.8002 0.7972 0.7762 0.7624 0.7817 0.5476 0.6605

accuracy 0.7190 0.7640 0.7660 0.7550 0.7420 0.7500 0.6110 0.7630

precision (pos) 0.5465 0.6385 0.6487 0.6262 0.6622 0.6145 0.3467 0.6524

precision (neg) 0.7568 0.8017 0.8012 0.7894 0.7591 0.7940 0.7184 0.7888

sensitivity 0.3359 0.5084 0.5053 0.4693 0.3258 0.4932 0.3258 0.4431

specificity 0.8871 0.8804 0.8864 0.8855 0.9269 0.8678 0.7417 0.9028

Brier score 0.1869 0.1637 0.1639 0.2450 0.1763 0.1724 0.2386 0.2370

G-mean 0.6394 0.7123 0.7177 0.7012 0.7026 0.6939 0.4929 0.7145

Australian Training AUC 0.8879 0.9289 0.9421 0.9551 - 0.9043 0.5690 0.9997

accuracy 0.8808 0.8746 0.8786 0.8906 - 0.8072 0.5627 0.9996

precision (pos) 0.8600 0.8412 0.8474 0.8555 - 0.8624 1.0000 0.9992

precision (neg) 0.9063 0.9038 0.9054 0.9262 - 0.7775 0.5593 1.0000

sensitivity 0.8839 0.8846 0.8867 0.9127 - 0.6724 0.0171 1.0000

specificity 0.8805 0.8656 0.8716 0.8716 - 0.9143 1.0000 0.9994

Brier score 0.0941 0.1032 0.0904 0.1094 - 0.1615 0.4348 0.0004

G-mean 0.8815 0.8719 0.8758 0.8897 - 0.8187 0.7476 0.9996

Testing AUC 0.8617 0.9267 0.9279 0.9222 0.9092 0.8944 0.6687 0.8452

accuracy 0.8478 0.8768 0.8623 0.8522 0.8435 0.7986 0.6116 0.8754

precision (pos) 0.7901 0.8345 0.8155 0.8005 0.8373 0.8310 0.6819 0.8282

precision (neg) 0.8832 0.8977 0.8866 0.8865 0.8391 0.7663 0.6099 0.8970

sensitivity 0.8427 0.8850 0.8698 0.8799 0.7967 0.6546 0.3286 0.8679

specificity 0.8318 0.8724 0.8560 0.8349 0.8879 0.9010 0.8171 0.8714

Brier score 0.1236 0.1052 0.1028 0.1478 0.1215 0.1668 0.3012 0.1246

G-mean 0.8328 0.8630 0.8477 0.8391 0.8335 0.7950 0.6276 0.8600

Japanese Training AUC 0.8994 0.9228 0.9348 0.9276 - 0.8601 0.5378 0.9987

accuracy 0.8717 0.8659 0.8775 0.8652 - 0.7870 0.5623 0.9982

precision (pos) 0.8906 0.9347 0.9269 0.9396 - 0.7636 0.5591 0.9987

precision (neg) 0.8567 0.8016 0.8272 0.7971 - 0.8366 1.0000 0.9976

sensitivity 0.8799 0.8159 0.8464 0.8095 - 0.9001 1.0000 0.9980

specificity 0.8594 0.9280 0.9157 0.9346 - 0.6455 0.0163 0.9984

Brier score 0.0999 0.1066 0.0921 0.1348 - 0.1680 0.4328 0.0018

G-mean 0.8729 0.8656 0.8756 0.8654 - 0.7990 0.7477 0.9981

Testing AUC 0.8916 0.9189 0.9177 0.9078 0.8991 0.8370 0.6409 0.8605

accuracy 0.8391 0.8580 0.8551 0.8507 0.8174 0.7783 0.5826 0.8594

precision (pos) 0.8597 0.9235 0.9028 0.9294 0.8439 0.7633 0.4766 0.8840

precision (neg) 0.8224 0.7954 0.8048 0.7780 0.7891 0.8045 0.4446 0.8287

sensitivity 0.8617 0.8139 0.8292 0.7932 0.8302 0.8785 0.7797 0.8622

specificity 0.8192 0.9137 0.8893 0.9237 0.8052 0.6527 0.2718 0.8608

Brier score 0.1182 0.1180 0.1043 0.1493 0.1295 0.1720 0.3775 0.1406

G-mean 0.8379 0.8560 0.8513 0.8495 0.8142 0.7831 0.3505 0.8547

(Continued)
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the identification of minority class, the SVM scores the highest accuracy for prediction, with

the highest precision (pos) (0.7553) followed by the DT model with precision (pos) of 0.7415.

Meanwhile, the NB model performs the strongest when identifying the bad samples, with the

highest sensitivity (0.8453). Besides, the NB and SVM model performs best in predicting and

identifying the majority class, respectively.

For the HELOC dataset, the RF model performs best in all aspects during the training

phase but in no aspects during the testing phase. Specifically, in the training phase, the AUC

and accuracy remain above 0.7 for all models except the k-means. As for the balance between

two groups of samples, the gap between precision (pos) and precision (neg) remains less than

0.01 for the DT, DA and logistic model. For these three models, the value of Brier score

Table 5. (Continued)

Dataset Phase Indicator DT DA Logistic SVM KNN NB k-means RF
Taiwan Training AUC 0.6985 0.7032 0.7063 0.7395 - 0.7082 0.5115 0.9956

accuracy 0.6812 0.6575 0.6548 0.6892 - 0.5805 0.5093 0.9961

precision (pos) 0.7532 0.6771 0.6682 0.7683 - 0.5526 0.5053 0.9926

precision (neg) 0.6419 0.6421 0.6435 0.6466 - 0.6724 0.5382 0.9996

sensitivity 0.5405 0.6032 0.6153 0.5412 - 0.8461 0.8887 0.9996

specificity 0.8219 0.7119 0.6943 0.8372 - 0.3148 0.1298 0.9926

Brier score 0.2115 0.2166 0.2157 0.3108 - 0.2936 0.4061 0.0039

G-mean 0.6952 0.6593 0.6557 0.7048 - 0.6095 0.5215 0.9961

Testing AUC 0.6910 0.6982 0.7010 0.7168 0.7213 0.7063 0.5475 0.6770

accuracy 0.6727 0.6523 0.6498 0.6778 0.6717 0.5798 0.5233 0.6783

precision (pos) 0.7415 0.6722 0.6637 0.7553 0.7105 0.5523 0.5178 0.6982

precision (neg) 0.6354 0.6367 0.6382 0.6372 0.6469 0.6696 0.5391 0.6621

sensitivity 0.5323 0.5950 0.6077 0.5273 0.5853 0.8453 0.7887 0.6283

specificity 0.8130 0.7097 0.6920 0.8283 0.7580 0.3143 0.2580 0.7283

Brier score 0.2144 0.2181 0.2175 0.3222 0.2166 0.2954 0.3167 0.3217

G-mean 0.6863 0.6542 0.6508 0.6936 0.6778 0.6081 0.5284 0.6799

HELOC Training AUC 0.7388 0.7828 0.7841 0.7950 - 0.7973 0.6194 0.9727

accuracy 0.7148 0.7175 0.7180 0.7287 - 0.7274 0.5881 0.9745

precision (pos) 0.7136 0.7187 0.7177 0.7211 - 0.7387 0.5913 0.9535

precision (neg) 0.7191 0.7159 0.7184 0.7388 - 0.7152 0.5836 0.9997

sensitivity 0.7594 0.7536 0.7577 0.7831 - 0.7393 0.6836 0.9998

specificity 0.6661 0.6780 0.6747 0.6692 - 0.7144 0.4840 0.9468

Brier score 0.1988 0.1895 0.1891 0.2713 - 0.2181 0.2794 0.0255

G-mean 0.7161 0.7173 0.7181 0.7299 - 0.7268 0.5874 0.9764

Testing AUC 0.7307 0.7808 0.7815 0.7851 0.7804 0.7786 0.6161 0.7092

accuracy 0.7025 0.7165 0.7167 0.7214 0.7114 0.7145 0.5833 0.7132

precision (pos) 0.7031 0.7188 0.7168 0.7157 0.7204 0.7262 0.6113 0.7081

precision (neg) 0.7054 0.7140 0.7169 0.7293 0.7019 0.7018 0.5675 0.7198

sensitivity 0.7487 0.7510 0.7565 0.7743 0.7319 0.7276 0.5689 0.7669

specificity 0.6524 0.6790 0.6734 0.6637 0.6893 0.7003 0.6005 0.6545

Brier score 0.2034 0.1905 0.1902 0.2786 0.1921 0.2289 0.2413 0.2868

G-mean 0.7040 0.7164 0.7168 0.7224 0.7110 0.7139 0.5884 0.7139

Reports the performance of classical models (i.e. logistic regression, NB approach, DA, KNN, DT, linear and polynomial SVM, SVM-RBF, K means, and RF) with the

five datasets (i.e. German Credit Dataset, Australian Credit Approval Dataset, Japanese Credit Dataset, Taiwan Credit Dataset and HELOC Dataset). Eight indicators

(i.e. the AUC, accuracy, precision (pos), precision (neg), sensitivity, specificity, Brier score, and G-mean) are reported as evaluation metrics. The bold text indicates the

best performance of the row. The KNN is a lazy learning model and the training phase is excluded thereby.

https://doi.org/10.1371/journal.pone.0234254.t005
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remains less than 0.2 and G-mean greater than 0.71, indicating a better balance ability. In the

testing phase, the SVM model performs best in terms of the AUC, accuracy, precision (neg),
sensitivity and G-mean, suggesting excellent generalization. Besides, the NB model performs

best in terms of precision (pos) and specificity while the logistic regression outperforms others

in terms of Brier score. In addition, across most of these models, the value of indicators varies

within a relatively limited range, which suggests a strong performance of these models with a

balanced dataset.

To sum up, the comparison across classical models with different datasets suggests proposi-

tions as follows.

First, in the aspect of comprehensive performance, the logistic regression and the DA

model achieve a better performance with small-size datasets (e.g. the German dataset, the Aus-

tralian dataset and the Japanese dataset) during the testing phase while the SVM and NB per-

form better with large-size datasets (e.g. the Taiwan dataset and the HELOC dataset).

Second, in the aspect of minority class identification (testing phase), the KNN and SVM

model achieve (twice, respectively) the best performance in terms of precision (pos), while the

NB model performs best with only the HELOC dataset. Besides, the DA model and NB model

achieve (twice, respectively) the best performance in terms of sensitivity, while the SVM model

performs best with only the HELOC dataset. In other word, the SVM and NB perform better

when predicting minority class.

Third, in the aspect of balance ability (testing phase), the logistic regression achieves the

best performance for three times in terms of Brier score, while the DA and DT model achieve

once for each. Besides, the DA and SVM model achieve (twice, respectively) the best perfor-

mance in terms of G-mean, while the logistic regression model achieves once. By comparison,

the DA and the logistic model present better balance in identifying the two groups of samples.

Fourth, in the aspect of robustness (i.e. the performance difference between training and

testing phase), the performance during training phase is generally weaker than that during the

testing phase. Models on the ground of classical statistics (e.g. the DT and the logistic regres-

sion) are more robust than models based on the novel machine learning theories (e.g. the

SVM and RF). Besides, after hyper-parameter optimization, the performance difference

between the two phases is comparatively small for most baseline models.

Table 6 reports the performance of several state-of-the-art hybrid or ensemble credit-scor-

ing models. These models are constructed in recent literature [29–34] and applied in the con-

text of three prevalent datasets (i.e. the German dataset, the Australian dataset, and the

Japanese dataset). We list the value of evaluation metrics as reported in the sourcing literature

and present the optimal performance in bold.

As is shown in Table 6, within the context of the three datasets, the performance varies

across different models. Within the German dataset, the AGHE presents best overall identifi-

cation with the optimal values for accuracy, AUC, and AUC-H. Meanwhile, the SGBoost-TPE

and the NS+LWV score best in terms of Brier score and G-mean, respectively.

Within the Australian dataset, the multi-sage hybrid model scores best in terms of AUC

and AUC-H while the DGCEC scores the highest value for AUC. Still, the SGBoost-TPE and

the NS+LWV score best in terms of Brier score and G-mean, respectively, as they do within

the German dataset.

Three models are included in the comparison within the Japanese dataset. The AGHE and

the ConsA score the best values for AUC and brier score while the multi-stage hybrid model

and the AGHE score the best in terms of AUC-H and accuracy, respectively.

To sum up, across the three datasets (i.e. the German, Australian, and Japanese datasets),

the AGHE scores best in terms of the six metrics for overall performance (i.e. the AUC, accu-
racy, precision (pos), precision (neg), sensitivity, and specificity) and presents strong ability of
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overall prediction. On the other hand, the XGBoost-TPE and the NRS+LWV presents good

balance between the identification of two groups of samples. Compared with the classical mod-

els in Table 5, hybrid models in Table 6 performs better in terms of overall prediction and the

balanced identification.

BP-ANN model with increasing hidden layers

The number of hidden layers partly determines the performance of BP-ANN models. How-

ever, if we set the number of hidden layers as one of the parameters to optimize, the swarm

intelligence algorithms will not work due to the ambiguous dimension of solution space. In

this subsection, for instead, we compare the performance of BP-ANN models with different

numbers of hidden layers and analyze the robustness of model performance thereby.

We rerun the experiment described in the section of methodology with two and three hid-

den layers (the number of neurons in the added hidden layers in line with the setting in

Table 3) and present the performance in Table 7.

Comparing the results in Table 7 with those in Table 6, we notice that, despite the fluctuat-

ing scores in terms of the 8 indicators, the fitness of training as well as the generalization of test

are improved with the increased number of hidden layers. To be specific, while the number of

hidden layers goes from one to two and to three, for the German dataset the optimal AUC

moves from 0.8859 to 0.8989 and to 0.8927 in the training phase and from 0.8004 to 0.8001

and to 0.8047 in the testing phase; for the Australian dataset, it moves from 0.9514 to 0.9526

and to 0.9524 in the training phase and from 0.9373 to 0.9382 and to 0.9380 in the testing

phase; for the Japanese dataset, it moves from 0.9455 to 0.9439 and to 0.9432 in the training

phase and from 0.9354 to 0.9340 and to 0.9333 in the testing phase; for the Taiwan dataset, it

moves from 0.7596 to 0.767 and to 0.7695 in the training phase and from 0.7403 to 0.7969 and

to 0.7985; for the HELOC dataset, it moves from 0.7936 to 0.767 and to 0.7695 in the training

phase and from 0.7898 to 0.7909 and to 0.7909 in the testing phase. The trend of AUC indi-

cates that BP-ANN with more hidden layers outperform those with less hidden layers and

such outperformance is evident when comparing the scores of other indicators.

We conduct further comparison with models in the control group (see Tables 5 and 6) and

find that BP-ANN performs better with increased number of hidden layers. In the context of

the German dataset, the model of Zhang, He [32] and that of Xu, Zhang [33] in the control

group outperform our BP-ANN model with two hidden layers. However, in the context of

other datasets, our optimized BP-ANN model with increased hidden layers outperforms any

model in the control group.

Therefore, we propose that the fitness and generalization of BP-ANN models improve with

the number of hidden layers increasing. Notably, the model performs comparatively stably

(with fluctuation within an acceptable extent) while the number of hidden layers increasing,

which indicates greater robustness of BP-ANN trained by SI algorithms. In addition, increas-

ing hidden layers would not lead to overfitting. Thus, we recommend that users train BP-ANN

models with different number of hidden layer in order to find out the optimal setting for the

certain context.

Time complexity

When selecting the applicable model to score credit, we take the complexity as well as accuracy

into consideration. Table 8 reports the time complexity of BP-ANN models trained by differ-

ent swarm intelligence algorithms. Each algorithm contains 10 individuals and iterates 20

times on the same computer.

PLOS ONE Neural networks with swarm intelligence algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0234254 June 5, 2020 25 / 35

https://doi.org/10.1371/journal.pone.0234254


Table 7. Performance of BP-ANN models with increasing hidden layers.

Panel A: BP-ANN models with two hidden layers

Dataset Phase Indicator BA CSO FA GS GWO PSO WSA
German Training AUC 0.8859 0.8989 0.7257 0.8113 0.6189 0.8535 0.8109

accuracy 0.8313 0.8398 0.7190 0.7713 0.7285 0.8050 0.7738

precision (pos) 0.6115 0.5844 0.3909 0.4370 0.1785 0.5510 0.4626

precision (neg) 0.9253 0.9488 0.8612 0.9146 0.9652 0.9140 0.9053

sensitivity 0.7784 0.8347 0.3629 0.6940 0.2732 0.7348 0.6822

specificity 0.8480 0.8427 0.7871 0.7918 0.7374 0.8263 0.7998

Brier score 0.1688 0.1603 0.2810 0.2288 0.2715 0.1950 0.2263

G-mean 0.7513 0.7432 0.4127 0.6290 0.2546 0.7089 0.6404

Testing AUC 0.7898 0.8001 0.6939 0.7705 0.6052 0.7888 0.7688

accuracy 0.7640 0.7530 0.7070 0.7490 0.7130 0.7610 0.7550

precision (pos) 0.5071 0.4342 0.3670 0.3977 0.1177 0.4747 0.4364

precision (neg) 0.8741 0.8938 0.8471 0.8978 0.9651 0.8832 0.8994

sensitivity 0.6328 0.6367 0.3425 0.6266 0.2435 0.6377 0.6442

specificity 0.8054 0.7853 0.7805 0.7775 0.7211 0.7983 0.7863

Brier score 0.2360 0.2470 0.2930 0.2510 0.2870 0.2390 0.2450

G-mean 0.6647 0.6200 0.3901 0.5915 0.2073 0.6438 0.6175

Australian Training AUC 0.9382 0.9454 0.9395 0.9471 0.9526 0.9523 0.9349

accuracy 0.8641 0.8725 0.8743 0.8797 0.8815 0.8844 0.8678

precision (pos) 0.9185 0.9049 0.9046 0.8982 0.9087 0.8941 0.8996

precision (neg) 0.8205 0.8468 0.8497 0.8649 0.8595 0.8767 0.8416

sensitivity 0.8039 0.8261 0.8291 0.8433 0.8398 0.8532 0.8214

specificity 0.9263 0.9176 0.9177 0.9140 0.9219 0.9119 0.9138

Brier score 0.1359 0.1275 0.1257 0.1203 0.1185 0.1156 0.1322

G-mean 0.8681 0.8752 0.8766 0.8811 0.8834 0.8853 0.8697

Testing AUC 0.9337 0.9326 0.9189 0.9321 0.9382 0.9311 0.9231

accuracy 0.8638 0.8623 0.8522 0.8580 0.8580 0.8594 0.8580

precision (pos) 0.9108 0.8950 0.8794 0.8711 0.8786 0.8624 0.9076

precision (neg) 0.8317 0.8344 0.8250 0.8484 0.8420 0.8552 0.8166

sensitivity 0.8084 0.8137 0.8048 0.8238 0.8169 0.8291 0.8027

specificity 0.9195 0.9085 0.8990 0.8945 0.8990 0.8873 0.9139

Brier score 0.1362 0.1377 0.1478 0.1420 0.1420 0.1406 0.1420

G-mean 0.8696 0.8640 0.8507 0.8581 0.8590 0.8582 0.8605

Japanese Training AUC 0.9385 0.9147 0.9376 0.9439 0.9418 0.9425 0.8981

accuracy 0.8714 0.8612 0.8692 0.8746 0.8739 0.8739 0.8620

precision (pos) 0.8328 0.8211 0.8305 0.8393 0.8385 0.8346 0.8009

precision (neg) 0.9191 0.9114 0.9179 0.9184 0.9174 0.9225 0.9381

sensitivity 0.9282 0.9247 0.9265 0.9282 0.9274 0.9313 0.9419

specificity 0.8152 0.8064 0.8126 0.8211 0.8205 0.8180 0.7908

Brier score 0.1286 0.1388 0.1308 0.1254 0.1261 0.1261 0.1380

G-mean 0.8748 0.8635 0.8730 0.8779 0.8769 0.8772 0.8667

Testing AUC 0.9220 0.8990 0.9268 0.9289 0.9340 0.9239 0.8952

accuracy 0.8507 0.8565 0.8522 0.8507 0.8493 0.8565 0.8522

precision (pos) 0.8193 0.8128 0.8160 0.8182 0.8231 0.8199 0.7928

precision (neg) 0.8965 0.9088 0.9017 0.8931 0.8975 0.9055 0.9238

sensitivity 0.9060 0.9201 0.9103 0.9054 0.9041 0.9125 0.9329

specificity 0.7989 0.7972 0.7930 0.7975 0.8003 0.8027 0.7837

Brier score 0.1493 0.1435 0.1478 0.1493 0.1507 0.1435 0.1478

G-mean 0.8558 0.8584 0.8568 0.8543 0.8572 0.8607 0.8548

(Continued)
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Table 7. (Continued)

Taiwan Training AUC 0.7555 0.7670 0.6773 0.7496 0.7534 0.7523 0.7545

accuracy 0.6880 0.7004 0.6433 0.6881 0.6759 0.6888 0.6870

precision (pos) 0.6502 0.6105 0.4239 0.5848 0.6698 0.5662 0.5929

precision (neg) 0.7256 0.7901 0.8629 0.7913 0.6818 0.8114 0.7809

sensitivity 0.7070 0.7453 0.6055 0.7390 0.6923 0.7521 0.7379

specificity 0.6761 0.6704 0.6104 0.6564 0.6799 0.6523 0.6592

Brier score 0.3120 0.2996 0.3568 0.3119 0.3241 0.3113 0.3130

G-mean 0.6846 0.6938 0.5299 0.6793 0.6659 0.6766 0.6769

Testing AUC 0.7308 0.7335 0.6734 0.7310 0.7339 0.7296 0.7327

accuracy 0.6702 0.6818 0.6445 0.6783 0.6615 0.6820 0.6723

precision (pos) 0.6361 0.5974 0.4224 0.5736 0.6533 0.5552 0.5830

precision (neg) 0.7058 0.7666 0.8652 0.7833 0.6717 0.8083 0.7628

sensitivity 0.6876 0.7196 0.6087 0.7268 0.6815 0.7468 0.7194

specificity 0.6604 0.6558 0.6106 0.6474 0.6637 0.6447 0.6484

Brier score 0.3298 0.3182 0.3555 0.3217 0.3385 0.3180 0.3277

G-mean 0.6678 0.6764 0.5294 0.6701 0.6515 0.6691 0.6624

HELOC Training AUC 0.7893 0.7963 0.7969 0.7933 0.7937 0.7911 0.7955

accuracy 0.7141 0.7229 0.7231 0.7190 0.7168 0.7189 0.7227

precision (pos) 0.7741 0.7736 0.7903 0.7752 0.7473 0.7675 0.8084

precision (neg) 0.6484 0.6678 0.6497 0.6574 0.6830 0.6660 0.6291

sensitivity 0.7102 0.7183 0.7123 0.7139 0.7253 0.7169 0.7044

specificity 0.7318 0.7312 0.7412 0.7324 0.7193 0.7273 0.7509

Brier score 0.2859 0.2771 0.2769 0.2810 0.2832 0.2811 0.2773

G-mean 0.7041 0.7179 0.7155 0.7116 0.7097 0.7130 0.7128

Testing AUC 0.7847 0.7904 0.7909 0.7887 0.7886 0.7875 0.7899

accuracy 0.7086 0.7211 0.7181 0.7139 0.7151 0.7173 0.7170

precision (pos) 0.7680 0.7700 0.7858 0.7702 0.7492 0.7624 0.8016

precision (neg) 0.6442 0.6670 0.6444 0.6535 0.6797 0.6673 0.6246

sensitivity 0.7057 0.7169 0.7079 0.7103 0.7218 0.7157 0.7002

specificity 0.7232 0.7280 0.7356 0.7260 0.7192 0.7247 0.7431

Brier score 0.2914 0.2789 0.2819 0.2861 0.2849 0.2827 0.2830

G-mean 0.6995 0.7159 0.7105 0.7071 0.7095 0.7112 0.7072

Panel B: BP-ANN models with three hidden layers

German Training AUC 0.8230 0.8537 0.8721 0.7752 0.8927 0.6352 0.5916

accuracy 0.7853 0.8095 0.8183 0.7545 0.8345 0.7288 0.7150

precision (pos) 0.5018 0.5662 0.5650 0.3238 0.6005 0.1499 0.1557

precision (neg) 0.9060 0.9136 0.9264 0.9398 0.9352 0.9776 0.9537

sensitivity 0.6961 0.7440 0.7718 0.5567 0.8047 0.2977 0.2303

specificity 0.8107 0.8318 0.8336 0.7682 0.8465 0.7313 0.7319

Brier score 0.2148 0.1905 0.1818 0.2455 0.1655 0.2713 0.2850

G-mean 0.6714 0.7172 0.7213 0.4826 0.7464 0.2377 0.2205

Testing AUC 0.7764 0.7842 0.7743 0.7400 0.8047 0.6155 0.6032

accuracy 0.7460 0.7590 0.7570 0.7430 0.7690 0.7290 0.7040

precision (pos) 0.4276 0.4761 0.4470 0.2810 0.4862 0.1664 0.1427

precision (neg) 0.8868 0.8819 0.8931 0.9385 0.8899 0.9665 0.9482

sensitivity 0.6195 0.6335 0.6397 0.5285 0.6665 0.2788 0.1924

specificity 0.7826 0.7971 0.7898 0.7567 0.8050 0.7351 0.7270

Brier score 0.2540 0.2410 0.2430 0.2570 0.2310 0.2710 0.2960

G-mean 0.6115 0.6451 0.6264 0.4479 0.6491 0.2468 0.1993

(Continued)
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Table 7. (Continued)

Australian Training AUC 0.9472 0.9486 0.9269 0.9505 0.9524 0.9305 0.9502

accuracy 0.8750 0.8786 0.8562 0.8772 0.8851 0.8649 0.8812

precision (pos) 0.8998 0.8869 0.8899 0.8738 0.8833 0.8747 0.8910

precision (neg) 0.8549 0.8721 0.8289 0.8799 0.8864 0.8572 0.8737

sensitivity 0.8337 0.8497 0.8097 0.8550 0.8621 0.8312 0.8498

specificity 0.9142 0.9066 0.9086 0.8973 0.9050 0.8961 0.9092

Brier score 0.1250 0.1214 0.1438 0.1228 0.1149 0.1351 0.1188

G-mean 0.8769 0.8789 0.8570 0.8765 0.8847 0.8655 0.8821

Testing AUC 0.9249 0.9380 0.9175 0.9266 0.9300 0.9270 0.9299

accuracy 0.8609 0.8594 0.8493 0.8536 0.8594 0.8464 0.8681

precision (pos) 0.8882 0.8732 0.8863 0.8401 0.8561 0.8585 0.8711

precision (neg) 0.8371 0.8487 0.8227 0.8640 0.8635 0.8345 0.8608

sensitivity 0.8157 0.8235 0.8098 0.8337 0.8306 0.8077 0.8346

specificity 0.9070 0.8958 0.9015 0.8728 0.8829 0.8830 0.9005

Brier score 0.1391 0.1406 0.1507 0.1464 0.1406 0.1536 0.1319

G-mean 0.8609 0.8592 0.8501 0.8511 0.8596 0.8455 0.8648

Japanese Training AUC 0.9417 0.9417 0.9412 0.9380 0.9432 0.9357 0.9415

accuracy 0.8728 0.8728 0.8714 0.8728 0.8743 0.8678 0.8739

precision (pos) 0.8415 0.8294 0.8271 0.8296 0.8365 0.8347 0.8366

precision (neg) 0.9117 0.9263 0.9268 0.9267 0.9220 0.9084 0.9201

sensitivity 0.9229 0.9346 0.9337 0.9341 0.9311 0.9200 0.9292

specificity 0.8217 0.8138 0.8110 0.8136 0.8194 0.8153 0.8192

Brier score 0.1272 0.1272 0.1286 0.1272 0.1257 0.1322 0.1261

G-mean 0.8758 0.8763 0.8755 0.8767 0.8779 0.8706 0.8773

Testing AUC 0.9201 0.9156 0.9231 0.9333 0.9156 0.9269 0.9259

accuracy 0.8507 0.8522 0.8536 0.8580 0.8464 0.8522 0.8493

precision (pos) 0.8266 0.8248 0.8120 0.8224 0.8188 0.8238 0.8190

precision (neg) 0.8836 0.8905 0.9057 0.9023 0.8802 0.8892 0.8868

sensitivity 0.8998 0.9074 0.9141 0.9119 0.8977 0.9025 0.9009

specificity 0.7972 0.8025 0.7946 0.8011 0.7925 0.7995 0.7983

Brier score 0.1493 0.1478 0.1464 0.1420 0.1536 0.1478 0.1507

G-mean 0.8543 0.8552 0.8571 0.8615 0.8488 0.8557 0.8513

Taiwan Training AUC 0.7608 0.7594 0.7245 0.6683 0.7532 0.7695 0.7565

accuracy 0.6937 0.6868 0.6675 0.6298 0.6923 0.6993 0.6838

precision (pos) 0.6256 0.6523 0.5619 0.6349 0.5742 0.5640 0.5966

precision (neg) 0.7620 0.7214 0.7734 0.6273 0.8105 0.8343 0.7718

sensitivity 0.7253 0.7052 0.7267 0.6785 0.7544 0.7783 0.7423

specificity 0.6709 0.6763 0.6398 0.5057 0.6559 0.6585 0.6611

Brier score 0.3063 0.3132 0.3325 0.3702 0.3077 0.3007 0.3163

G-mean 0.6898 0.6832 0.6533 0.5195 0.6812 0.6834 0.6681

Testing AUC 0.7340 0.7360 0.7169 0.6609 0.7356 0.7339 0.7321

accuracy 0.6758 0.6723 0.6640 0.6373 0.6785 0.6798 0.6735

precision (pos) 0.6097 0.6341 0.5570 0.6376 0.5580 0.5428 0.5863

precision (neg) 0.7418 0.7101 0.7698 0.6270 0.7996 0.8178 0.7576

sensitivity 0.7030 0.6900 0.7220 0.6808 0.7367 0.7511 0.7288

specificity 0.6554 0.6610 0.6375 0.5104 0.6440 0.6423 0.6501

Brier score 0.3242 0.3277 0.3360 0.3627 0.3215 0.3202 0.3265

G-mean 0.6721 0.6687 0.6476 0.5222 0.6675 0.6645 0.6541

(Continued)
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As shown in Table 8, the time complexity varies across different datasets with uniform

parameter set. Within the context of small-size dataset (e.g. the German, Australian and Japa-

nese dataset), the PSO and the WSA optimize the most efficiently (i.e. runs within 50 sec)

while the CSO and the FA optimize with least efficiency (more than 1 min). For the other SI

algorithms, the optimization consumes around one minute. When the dataset is small sized,

the time complexity varies within one minute.

However, within the large-size datasets, the time complexity increases while the size of data-

set grow. Within the Taiwan dataset, the WSA consumes least time (133.581 sec) followed by

Table 7. (Continued)

HELOC Training AUC 0.7969 0.7985 0.7960 0.7894 0.7976 0.7348 0.7982

accuracy 0.7202 0.7251 0.7203 0.7165 0.7240 0.6806 0.7224

precision (pos) 0.8127 0.7963 0.8124 0.7394 0.7545 0.8441 0.7436

precision (neg) 0.6193 0.6473 0.6197 0.6919 0.6906 0.5023 0.6991

sensitivity 0.7013 0.7124 0.7013 0.7256 0.7274 0.6672 0.7310

specificity 0.7545 0.7465 0.7541 0.7122 0.7210 0.5988 0.7164

Brier score 0.2798 0.2749 0.2797 0.2835 0.2760 0.3194 0.2776

G-mean 0.7077 0.7169 0.7080 0.7131 0.7214 0.5679 0.7197

Testing AUC 0.7905 0.7906 0.7898 0.7854 0.7909 0.7346 0.7897

accuracy 0.7149 0.7171 0.7157 0.7153 0.7169 0.6821 0.7165

precision (pos) 0.8053 0.7879 0.8079 0.7373 0.7475 0.8444 0.7381

precision (neg) 0.6167 0.6400 0.6151 0.6898 0.6837 0.5044 0.6928

sensitivity 0.6982 0.7052 0.6976 0.7246 0.7210 0.6682 0.7266

specificity 0.7461 0.7355 0.7475 0.7091 0.7137 0.6003 0.7097

Brier score 0.2851 0.2829 0.2843 0.2847 0.2831 0.3179 0.2835

G-mean 0.7026 0.7095 0.7034 0.7108 0.7143 0.5693 0.7133

Reports the performance of BP-ANN models with the three datasets (i.e. the German, Australian, Japanese, Taiwan,

and HELOC dataset). Parameters are trained by seven different swarm algorithms (i.e. BA, CSO, FA, GS, GWO,

PSO, and WSA). Eight indicators (i.e. AUC, accuracy, precision (pos), precision (neg), sensitivity, specificity, Brier

score, and G-mean) are reported as metrics for performance evaluation. The bold text indicates the best performance

of the row. Panel A reports the performance of BP-ANN model with two hidden layers while Panel B reports the

performance of BP-ANN model with three hidden layers.

https://doi.org/10.1371/journal.pone.0234254.t007

Table 8. Time complexity of BP-ANN models trained by swarm intelligence algorithms.

Swarm intelligence

algorithm

German

dataset

Australian

dataset

Japanese

dataset

Taiwan

dataset

HELOC

dataset

BA 67.671 61.114 56.414 307.952 383.518

CSO 73.088 64.143 54.089 413.748 502.731

FA 70.010 57.387 87.640 340.765 665.824

GS 50.981 32.897 30.548 139.787 267.296

GWO 79.411 42.679 37.937 186.706 340.226

PSO 36.032 43.832 22.776 338.315 667.629

WSA 40.729 26.095 25.772 133.581 200.251

Reports the time complexity of BP-ANN models with the five datasets (i.e. the German, Australian, Japanese, Taiwan,

and HELOC dataset). Parameters are trained by seven different swarm algorithms (i.e. BA, CSO, FA, GS, GWO,

PSO, and WSA). The numbers in indicates how many seconds the model runs.

https://doi.org/10.1371/journal.pone.0234254.t008
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the GS (2 min) and the GWO (3 min) while the CSO consumes the most (nearly 7 min).

Within the HELOC dataset, despite longer running time because of the increased sample size,

the WSA consumes still the least time (approx. 3.5 min) followed by the GS (267.296 sec) and

the GWO (340.226 sec) while the FA and the PSO consumes the most (approx. 11 min). In

other word, the WSA, GS, and GWO consume less time and perform more robustly with

large-size datasets.

Analytic comparison

This section is intended to answer whether our BP-ANN model trained by SI algorithms out-

performs the classical and state-of-the-art models for credit scoring.

First, the overall prediction. Within the German dataset, the PSO-BP-ANN (with the

AUC of 0.8004) outperforms most models in the control group, albeit slightly weaker than that

of [30, 32, 33]. Within the other four datasets, our model outperforms all the models in the

control group. Specifically, the optimal AUC measures 0.9370 for the control group but 0.9373

for our model within the Australian dataset; 0.9330 for the control group but 0.9354 for our

model within the Japanese dataset; 0.7213 for the control group but 0.7403 for our model

within the Taiwan dataset; and 0.7851 for the control group but 0.7898 for our model within

the HELOC dataset. In addition, our model presents best performance in terms of the mean

value.

Second, balanced prediction during testing phase. Unlike the BP-ANN whose output is

the predicted probability of credit default, models with output in the form of labels (e.g. the

DT, RF, and SVM) present outstanding performance in binary classification. With a uniform

threshold of classification (0.5), these models outperform ours in terms of balance metrics (i.e.

accuracy, Brier score, and G-mean). Nevertheless, our model performs better than the numeri-

cal regression models in the control group.

Third, robustness of prediction. We focus on the value range of evaluation metrics for

each model. Some state-of-the-art models are excluded from this comparison, for the evalua-

tion metrics are missing during training phase. Within the German dataset, the average range

for control group is 0.4313 (training) and 0.185 (test), while the average range for our models

is 0.1008 (training) and 0.0608 (test). Within the Australian dataset, the average range for con-

trol group is 0.4089 (training) and 0.2552 (test), while the average range for our models is

0.0203 (training) and 0.0195 (test). Within the Japanese dataset, the average range for control

group is 0.4242 (training) and 0.5148 (test), while the average range for our models is 0.0091

(training) and 0.0145 (test). Within the Taiwan dataset, the average range for control group is

0.5148 (training) and 0.2323 (test), while the average range for our models is 0.0687 (training)

and 0.0656 (test). Within the HELOC dataset, the average range for control group is 0.3675

(training) and 0.1400 (test), while the average range for our models is 0.0274 (training) and

0.0282 (test). Thus, with less variant prediction, our model performs with increasing robust-

ness across datasets.

Fourth, time complexity. Baseline models in the control group conduct grid search to

determine the hyper-parameter set. Consequently, their time complexity is several times of

ours. As is proposed in prior literature [26–28], some state-of-the-art techniques to determine

neural network architecture requires several GPU-days. However, with small-size datasets, the

hyper-parameters of BP-ANN are determined by SI algorithms within one minute (i.e. 59.703

sec, 46.878 sec, and 45.025 sec for the German, Australian, and Japanese dataset, respectively).

With large-size dataset, the process completes within 12 min (i.e. 265.836 sec and 432.497 sec

for the Taiwan and HELOC dataset, respectively). Instead of grid search for the optimal

parameter set, our models conducts guided search based on available information. Therefore,
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our models consume acceptable runtime to determine parameter set for the BP-ANN with

comparatively good performance, which is more practical in real world.

To sum up, the prominent advantage of our framework lies in that it searches the hyper-

parameter space of BP-ANN within acceptable runtime and determines a preferable hyper-

parameter set efficiently. The fitness and generalization of BP-ANN are improved thereby. In

addition, our models predict more precisely when the new samples are “bad”. Furthermore,

our models enjoy greater robustness while the performance varies limitedly between training

and testing phase.

Conclusions

This paper proposes a novel framework for credit scoring which is conducted in three steps.

First, pre-processing of data, including imputation to make up the missing values, normaliza-

tion to eliminate the effect of measurement, and re-ordering to balance the occurrence of sam-

ple with binary labels. Second, training the model. We employ several SI algorithms to

optimize the hyper-parameters of BP-ANN and determine the optimal algorithm based on the

value of AUC. The search space of hyper-parameters is set in line with prior literature. Third,

applying the model. We apply the optimal model determined in the second step to predict new

samples pre-processed in the first step.

Our framework determines a preferable hyper-parameter set for the BP-ANN with accept-

able runtime and thereby improves the fitness and generalization of neural networks. By com-

parison with classical and hybrid or ensemble models in the control group, our framework

performs more robustly across training and testing phases. Additionally, models proposed in

this paper predict with greater precision when applied to credit default samples.

An interesting follow-up idea is to develop an ensemble or hybrid version of SI-training

BP-ANN. In order to improve the identification of minority class, we recommend that the

penalty factor for identification error of minority class be included as hyper-parameter to train

the neural network. Furthermore, a body of evaluation metrics (e.g. precision (pos), Brier

score, G-mean, etc.) are employed and thereby hyper-parameters of BP-ANN are optimized

with multiple objectives.
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