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Abstract: Herein, we report on the synthesis of a small set of linear precursors of an inosine analogue
of cyclic ADP-ribose (cADPR), a second messenger involved in Ca2+ mobilization from ryanodine
receptor stores firstly isolated from sea urchin eggs extracts. The synthesized compounds were
obtained starting from inosine and are characterized by an N1-alkyl chain replacing the “northern”
ribose and a phosphate group attached at the end of the N1-alkyl chain and/or 5′-sugar positions.
Preliminary Ca2+ mobilization assays, performed on differentiated C2C12 cells, are reported as well.

Keywords: cADPR; ryanodine receptors; neuroblastoma; caffeine; calcium mobilization;
phosphorylation; C2C12 cells; IP3

1. Introduction

Ca2+-mediated signaling is the major secondary messenger involved in several essential cell
functions. Ca2+ ions are generally located in the endoplasmic reticulum (ER) and mitochondria until an
extracellular stimulus causes their release into the cytosol [1,2]. This mobilization may lead to a great
number of physiological effects such as gene regulation [3], cell proliferation, fertilization [4], muscle
contraction [5], and neurotransmitter secretion [6]. Cyclic adenosine diphosphate ribose (cADPR, 1,
Figure 1) is an endogenous cyclic nucleotide that was firstly isolated from sea urchin egg extracts [7],
later found also in mammalian cells, such as pancreatic β-cells [8], T-lymphocytes [9], smooth and
cardiac muscle cells [10], and cerebellar neurons [11]. cADPR, together with inositol 1,4,5-triphosphate
(IP3) and nicotinic acid adenine dinucleotide phosphate (NAADP), is a second messenger involved in
cellular Ca2+ mobilization [12,13]. It interacts with ryanodine receptors through a mechanism which is
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still unclear, causing the Ca2+ release from intracellular stores [14]. The 18 membered cyclic structure
comes from the catalytic activity of the enzyme ADP-ribosyl cyclase, which in mammalian cells is
the multifunctional transmembrane glycoprotein CD38 [15,16]. The latter is able also to catalyze the
inverse hydrolytic reaction that produces adenosine diphosphate ribose (ADPR) [17]. The physiological
instability of cADPR at the N1-glycosidic bond [17], together with its low ability to cross membranes,
likely for the presence of the negative charge at the pyrophosphate moiety [18], have prompted some
researchers to develop semi-synthetic and/or synthetic methodologies to obtain novel non-hydrolysable
and cell permeant analogues [17,19–23].
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Figure 1. The structures of cyclic adenosine diphosphate ribose (cADRP; 1) and some of its
analogues (2–5).

Specific structure–activity relationships on different cell lines have been tuned [24,25], featuring
modifications mainly involving the “northern” and/or the “southern” ribose. In many cases,
the replacement of the northern ribose with ether/alkyl chains was revealed to be the most fruitful
modifications for the obtainment of cell permeant analogues, likely by virtue of their reduced molecular
polarity [22]. The finding that the isosteric replacement of the adenine base with hypoxanthine
generated a more stable analogue (cyclic inosine diphosphate ribose, cIDPR, 2, Figure 1) with intact
Ca2+-mobilizing properties [26], laid the foundations for a more detailed comprehension of the
molecular mechanism of action of cADPR, that also took advantage from studies of the biological
properties of novel cIDPR analogues [27,28]. However, the poor knowledge of the receptorial cADPR
binding pocket [29] makes difficult the rational design of analogues; moreover, the analogues can
behave differently depending on the cell line used.

Over the last years, our research group synthesized several cIDPR analogues [30–37]. In particular,
the pyrophosphate (cpIDP, 3, Figure 1) [30] and the monophosphate (cpIMP, 4, Figure 1) [36]
derivatives with a pentyl chain replacing the “northern” ribose showed interesting Ca2+-releasing
activities in PC12 cells differentiated in neurons with the use of nerve growth factor (NGF) [18].
Meanwhile, the pyrophosphate derivative with a butyl chain in the place of the “northern” ribose
was inactive on the same cell line [37]. In addition, we synthesized the derivative 5 (Figure 1),
bearing a phosphono-phosphate anhydride in the place of the pyrophosphate, with the aim of better
exploring the role of the pyrophosphate in Ca2+-mobilizing properties of cADPR/cIDPR analogues [37].
Unfortunately, the compound 5 also failed to modify the [Ca2+]i in PC12 cells. These biological results
allowed us to hypothesize two preliminary structure–activity relationships: (1) one phosphate group
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appears to be sufficient for the Ca2+-releasing activity in PC12 neuronal cells; (2) the N1-pentyl chain is
likely essential for a better conformational accommodation within the putative binding pocket of the
intracellular receptor.

The transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel embedded
in plasma membrane and/or lysosomal compartments, that is involved in the response to oxidative stress
and inflammation [38–40]. It has been found that ADPR, binding the zebrafish melastatin homology
domain 1/2 (MHR1/2) or the human nudix hydrolase 9 homology domain (NUDT9H) of TRPM2,
can open the channel favoring the Ca2+ ions entry [41]. These findings, together with the discovery that
N1-ribose 5′’-monophosphate inosines could act as inhibitors of cADPR hydrolysis [42], are challenging
and open the way to the design and synthesis of novel modulators/inhibitors structurally related to
cADPR/cIDPR. The latter can be obtained more easily in respect to the cyclic counterparts, thanks
to the lack of the last limiting macrocyclization step. In this frame, here, we report on the synthesis
and the preliminary evaluation of Ca2+-mobilizing properties of a small set of N1-ω-alkyl phosphate
5′-phosphate and N1-ω-hydroxyalkyl 5′-phosphate inosines (11 and 14, Scheme 1, respectively)
obtained by varying the length of the N1 purine alkyl chain from four to six carbon atoms. We also
synthesized and tested the two monophosphate derivatives 16 and 18 (Scheme 2). Compound 16 is a
useful intermediate for the obtainment of the biologically active cpIDP 4, whereas compound 18 can
be used for the synthesis of cpIPP 5. These compounds enrich the box of linear precursors of cIDPR
analogues, that, until now, have been mainly employed as synthetic intermediates.

Mar. Drugs 2019, 17, x 3 of 14 

 

chain is likely essential for a better conformational accommodation within the putative binding 

pocket of the intracellular receptor. 

The transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel 

embedded in plasma membrane and/or lysosomal compartments, that is involved in the response to 

oxidative stress and inflammation [38–40]. It has been found that ADPR, binding the zebrafish 

melastatin homology domain 1/2 (MHR1/2) or the human nudix hydrolase 9 homology domain 

(NUDT9H) of TRPM2, can open the channel favoring the Ca2+ ions entry [41]. These findings, together 

with the discovery that N1-ribose 5′’-monophosphate inosines could act as inhibitors of cADPR 

hydrolysis [42], are challenging and open the way to the design and synthesis of novel 

modulators/inhibitors structurally related to cADPR/cIDPR. The latter can be obtained more easily 

in respect to the cyclic counterparts, thanks to the lack of the last limiting macrocyclization step. In 

this frame, here, we report on the synthesis and the preliminary evaluation of Ca2+-mobilizing 

properties of a small set of N1-ω-alkyl phosphate 5′-phosphate and N1-ω-hydroxyalkyl 5′-phosphate 

inosines (11 and 14, Scheme 1, respectively) obtained by varying the length of the N1 purine alkyl 

chain from four to six carbon atoms. We also synthesized and tested the two monophosphate 

derivatives 16 and 18 (Scheme 2). Compound 16 is a useful intermediate for the obtainment of the 

biologically active cpIDP 4, whereas compound 18 can be used for the synthesis of cpIPP 5. These 

compounds enrich the box of linear precursors of cIDPR analogues, that, until now, have been mainly 

employed as synthetic intermediates. 

2. Results and Discussion 

2.1. Chemistry 

Compounds 11 and 14 were synthesized starting from the versatile building block 6 (Scheme 1), 

readily obtained from inosine [36]. 

 

Scheme 1. Reagents and conditions. (i) 7a–c, N,N-dimethylformamide (DMF), 50 °C, 16 h; (ii) 

tetrabutylammonium fluoride (TBAF), tetrahydrofuran (THF), r.t., 1 h; (iii) (a) di-tert-butyl N,N-

diisopropylphosphoramidite ((tBuO)2PN(iPr)2), 1-H-tetrazole, THF, r.t., 6 h, (b) tert-butyl 

hydroperoxide (tBuOOH), THF, r.t., 1 h; (iv) 50% trifluoroacetic acid (TFA) in H2O, r.t., 4 h. 

The strong 2,4-dinitrophenyl electron-withdrawing group makes the C2 purine atom very 

reactive towards amino-alcohols 7a–c, affording high yields (70–84%) of N1 ω-hydroxyalkyl inosines 

(8a-c) [43–46], through a mechanism that we have studied in detail [47,48]. In particular, the 

nucleophilic addition of the amino group to the C2 purine atom leads to the pyrimidine ring opening; 

Scheme 1. Reagents and conditions. (i) 7a–c, N,N-dimethylformamide (DMF), 50 ◦C, 16 h;
(ii) tetrabutylammonium fluoride (TBAF), tetrahydrofuran (THF), r.t., 1 h; (iii) (a) di-tert-butyl
N,N-diisopropylphosphoramidite ((tBuO)2PN(iPr)2), 1-H-tetrazole, THF, r.t., 6 h, (b) tert-butyl
hydroperoxide (tBuOOH), THF, r.t., 1 h; (iv) 50% trifluoroacetic acid (TFA) in H2O, r.t., 4 h.

2. Results and Discussion

2.1. Chemistry

Compounds 11 and 14 were synthesized starting from the versatile building block 6 (Scheme 1),
readily obtained from inosine [36].
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The strong 2,4-dinitrophenyl electron-withdrawing group makes the C2 purine atom very
reactive towards amino-alcohols 7a–c, affording high yields (70–84%) of N1 ω-hydroxyalkyl inosines
(8a-c) [43–46], through a mechanism that we have studied in detail [47,48]. In particular, the nucleophilic
addition of the amino group to the C2 purine atom leads to the pyrimidine ring opening; then, the same
amino group attacks the imidazo 4-carboxamide functionality, reclosing the pyrimidine ring with the
2,4-dinitroaniline displacement. As a next step of the synthesis, the ribose tert-butyldimethylsilyl
(TBDMS) group was quantitatively removed from derivatives 8a–c with tetrabutylammonium
fluoride (TBAF), yielding the compounds 9a–c. Then, the phosphorylation of the pendant hydroxy
functionalities in 9a–c was studied. Our research group [37] and others [49,50] demonstrated
that the mono-phosphorylation of a nucleoside could be performed in mild and good yielding
conditions, exploiting the phosphoramidite chemistry. When compounds 9a–c were reacted with
di-tert-butyl N,N-diisopropylphosphoramidite ((tBuO)2PN(iPr)2) and 1-H-tetrazole, followed by
tert-butyl hydroperoxide (tBuOOH) oxidation of the phosphite to phosphate, compounds 10a–c
(58–62%) were obtained. Recent studies report on the use of the soluble 5-phenyl-1-H-tetrazole as
activator for the phosphitylation step [49,50]; but, in our hands, it did not furnish satisfying yields of
the phosphate-protected nucleotides. The deprotection of both phosphate and 2′,3′-O-ribose protecting
groups at the final stage of the synthesis was carried out using an aqueous solution of trifluoroacetic acid
(TFA). This process proceeded smoothly and could be easily monitored by TLC, allowing the recovery
of quantitative yields of the nucleotides 11a–c. Conversely, to obtain compounds 14a–c, intermediates
8a–c were phosphorylated to give the derivatives 12a–c (57–60% over two steps). Desilylation with
TBAF of 12a–c to afford 13a–c, followed by the usual acidic treatment, yielded compounds 14a–c
almost quantitatively. For the synthesis of nucleotide 16 (Scheme 2), we started from the intermediate
15, useful for the synthesis of cpIMP 4 [36]. The acidic treatment on 15 afforded directly the target 16
(99% yield). As verified by reverse-phase HPLC [51], the derivatives 11a–c, 14a–c, and 16 were pure.
Differently, the aqueous TFA treatment of the protected phosphonate 17 (Scheme 2), the precursor of
cpIPP 5 [37], led to a complex mixture from which compound 18 was isolated in 50% yield. This low
yield could be, therefore, attributable to the lower acidic resistance of the phosphonate compared with
the phosphate moiety.

To evaluate the stability of the synthesized compounds, 11a–c, 14a–c, 16, and 18 were dissolved in
a phosphate buffered solution (pH = 7.4) and stored at room temperature. The comparison of the HPLC
profiles obtained by injecting samples after 24, 48, and 72 h showed no appreciable decomposition of
all tested compounds (data not shown).
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2.2. Biology

The compounds 11a–c, 14a–c, 16, and 18 were tested to evaluate their ability to mobilize Ca2+

ions from ryanodine receptor expressing stores of C2C12 cells (Figure 2) [52]. At first, to verify that
the system worked, differentiated C2C12 cells were loaded with Fura-2 and treated with caffeine. An
increase of cytosolic [Ca2+] was observed, as verified by the increase of the 340/380 fluorescence ratio
of cytosolic Fura-2. The molecules were tested, probing concentrations from 0.1 up to 20 µM, though
no effect was observed on the cytosolic [Ca2+].
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Figure 2. Effect of compounds 11a–c (left), 14a–c, 16, and 18 (right) on cytosolic [Ca2+]. Representative
traces of normalized Fura-2 fluorescence ratio for differentiated C2C12 cells. 1 µM of each compound
was added, then 10 mM caffeine was added 5 min after the addition of each compound as a control for
Ca2+ release from ryanodine receptors. The inset in the left panel shows 10 mM caffeine addition to
untreated cells.

Compounds 11b and 16, at the concentration of 1 µM, appear to enhance the effect of caffeine
on the Ca2+ release from the stores (see Supplementary Materials, Figure S3). This effect could be
ascribed to a stimulus of Ca2+ release from the ER, increasing the Ca2+ sensitivity of ryanodine
receptors [53,54]. The Ca2+-induced Ca2+ release (CICR) mediated by ryanodine receptors is a very
important mechanism for the amplification of the Ca2+ signal in several mammalian cells, such as
neurons, astrocytes, and pancreatic β-cells [55]. It could be not excluded that the amplification of the
Ca2+ signal depends on CICR through other channels located either in the plasma or in intracellular
store membranes, as a consequence of reticulum emptying.

3. Materials and Methods

3.1. General Experimental Procedures

All the reagents and solvents for the chemical syntheses were obtained from commercial sources
and used without further purification. The 1H- and 13C-NMR experiments were performed using the
Varian Mercury Plus 400 MHz and UNITYINOVA 500 MHz spectrometers and CDCl3, CD3OD, C6D6,
and D2O as solvents. The NMR chemical shifts are reported in parts per million (δ) relative to residual
solvents signals: CHCl3 7.27, CD2HOD 3.31, C6D5H 7.15, HOD 4.80 for 1H-NMR and CDCl3 77.0,
CD3OD 49.0, C6D6 128.1 for 13C NMR. The 1H-decoupled 31P-NMR experiments were carried out on a
Varian UNITYINOVA 500 MHz instrument in CDCl3, D2O, and C6D6 solvents using 85% H3PO4 as an
external standard (0 ppm). The 1H-NMR chemical shifts were assigned through 2D NMR experiments.
Electrospray ionization (ESI) mass spectra were recorded on an AB SCIEX QTRAP 4000 spectrometer.
All NMR spectra were processed using the iNMR software package (http://www.inmr.net; release 6.2.1).

http://www.inmr.net
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Column chromatography was carried out on silica gel-60 with particle size of 0.063–0.200 mm (Merck,
Darmstatd, Germany). Analytical TLC analyses were performed using F254 silica gel plates of
0.2 mm thick (Merck, Darmstatd, Germany). The TLC spots were detected under UV light (254 nm).
High-performance liquid chromatography (HPLC) was performed on a Jasco UP-2075 Plus pump
equipped with a Jasco UV-2075 Plus UV detector using a 4.8 × 150 mm C-18 reverse-phase column
(particle size 5 µm) eluted with a linear gradient of CH3CN in 0.1 M triethylammonium bicarbonate
(TEAB) buffer (from 0 to 100% in 60 min, flow 2.0 mL/min). The C2C12 cell line was cultured in
DMEM medium (Merck, Darmstatd, Germany) supplemented with 10% fetal bovine serum, 2 mM
L-glutamine, and incubated at 37 ◦C in a controlled atmosphere with 5% CO2. For Ca2+ measurements,
the cells were plated on 24 mm glass coverslip treated with 2% gelatin and differentiated by culturing
in DMEM supplemented with 5% horse serum and 2 mM L-glutamine for 5–7 days. Statistical
analyses (Mann–Whitney non-parametric test) were performed on Origin 2019b software package
(www.originlab.com).

3.2. Chemistry

3.2.1. General Procedure for the Preparation of Compounds 8a–c

In a typical experiment, compound 6 [36] (0.20 g, 0.34 mmol) was dissolved in DMF (1.0 mL) and
treated with the amino alcohol 7a (0.16 mL, 1.7 mmol). The reaction was stirred at 50 ◦C for 16 h and
then evaporated under reduced pressure (TLC monitoring: CHCl3/MeOH; 95:5). The crude containing
compound 8a was purified through a column of silica gel eluted with increasing amounts of MeOH in
CHCl3 (up to 2%). The fractions containing the product were collected and evaporated to afford the
pure 8a.

8a: Oil (70% yield). 1H NMR (400 MHz, CDCl3) δ 8.03 (s, 2H, 2-H and 8-H), 6.10 (d, J = 2.3 Hz, 1H,
1’-H), 5.07 (dd, J = 5.9, 2.4 Hz, 1H, 2’-H), 4.89 (dd, J = 5.9, 1.9 Hz, 1H, 3’-H), 4.44–4.40 (m, 1H, 4’-H),
4.18–4.04 (m, 2H, CH2N), 3.86 (dd, J = 11.3, 3.2 Hz, 1H, 5’-Ha), 3.77 (dd, J = 11.4, 3.5 Hz, 1H, 5’-Hb),
3.69 (t, J = 6.1 Hz, 2H, CH2O), 2.63 (bs, 1H, OH, exchange with D2O), 1.91–1.84 (m, 2H, CH2), 1.65–1.56
(complex signal, 5H, CH3 and CH2), 1.38 (s, 3H, CH3), 0.83 (s, 9H, tBu), 0.027 (s, 3H, SiCH3), 0.01 (s,
3H, SiCH3). 13C NMR (100 MHz, CDCl3) δ 156.6, 147.3, 147.0, 138.4, 124.8, 114.2, 91.4, 87.1, 85.4, 81.3,
63.5, 61.8, 46.7, 29.1, 27.2, 26.5, 25.8, 25.3, 18.3, −5.40, −5.60. ESI-MS m/z 495 ([M + H]+, C23H39N4O6Si,
requires 495).

8b: Oil (85% yield).1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H, 2-H), 7.98 (s, 1H, 8-H), 6.09 (d, J = 2.0 Hz,
1H, 1’-H), 5.06 (dd, J = 5.6, 2.4 Hz, 1H, 2’-H), 4.91–4.85 (m, 1H, 3’-H), 4.43–4.38 (m, 1H, 4’-H), 4.12–3.99
(m, 2H, CH2N), 3.84 (dd, J = 11.2, 2.7 Hz, 1H, 5’-Ha), 3.76 (dd, J = 11.3, 3.1 Hz, 1H, 5’-Hb), 3.61 (t, J =

5.9 Hz, 2H, CH2O), 2.52 (bs, 1H, OH, exchange with D2O), 1.84–1.73 (m, 2H, CH2), 1.64–1.52 (complex
signal, 5H, CH3 and CH2), 1.46–1.34 (complex signal, 5H, CH3 and CH2), 0.82 (s, 9H, tBu), 0.02 (s, 3H,
SiCH3), 0.00 (s, 3H, SiCH3). 13C NMR (100 MHz, CDCl3) δ 156.5, 147.2, 146.9, 138.3, 124.8, 114.1, 91.4,
87.0, 85.4, 81.3, 63.5, 62.1, 46.9, 32.0, 29.6, 27.2, 25.8, 25.3, 22.7, 18.3, −5.40, −5.60. ESI-MS m/z 509 ([M +

H]+, C24H41N4O6Si, requires 509).

8c: Oil (84% yield).1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H, 2-H), 7.96 (s, 1H, 8-H), 6.10 (d, J = 2.4 Hz,
1H, 1’-H), 5.06 (dd, J = 6.0, 2.5 Hz, 1H, 2’-H), 4.88 (dd, J = 5.9, 2.1 Hz, 1H, 3’-H), 4.45–4.39 (m, 1H, 4’-H),
4.12–3.96 (m, 2H, CH2N), 3.85 (dd, J = 11.3, 3.2 Hz, 1H, 5’-Ha), 3.76 (dd, J = 11.3, 3.5 Hz, 1H, 5’-Hb),
3.61 (t, J = 6.5 Hz, 2H, CH2O), 2.01 (bs, 1H, OH, exchange with D2O), 1.82–1.71 (m, 2H, CH2), 1.61 (s,
3H, CH3), 1.58–1.49 (m, 2H, CH2), 1.41–1.34 (complex signal, 7H, CH3 and 2 × CH2), 0.82 (s, 9H, tBu),
0.02 (s, 3H, SiCH3), 0.01 (s, 3H, SiCH3). 13C NMR (100 MHz, CDCl3) δ 156.5, 147.2, 146.9, 138.3, 124.9,
114.2, 91.4, 87.0, 85.4, 81.3, 63.5, 62.5, 46.8, 32.4, 29.8, 27.2, 26.2, 25.3, 25.2, 18.3, −5.40, −5.50. ESI-MS m/z
523 ([M + H]+, C25H43N4O6Si, requires 523).
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3.2.2. General Procedure for the Preparation of Compounds 9a–c

In a typical experiment, to a solution of compound 8a (0.12 g, 0.24 mmol) in dry THF (1.0 mL),
TBAF (0.29 mL of a 1.0 M solution in dry THF, 0.29 mmol) was added dropwise. The reaction mixture
was stirred at room temperature for 1 h (TLC monitoring: AcOEt/MeOH; 9:1) and then evaporated
under reduced pressure. The residue was purified over a silica gel column eluted with increasing
amounts of MeOH in AcOEt (up to 5%) to afford the pure 9a.

9a: Oil (99% yield). 1H NMR (400 MHz, CD3OD) δ 8.32 (s, 1H, 2-H), 8.30 (s, 1H, 8-H), 6.15 (d, J = 3.0
Hz, 1H, 1’-H), 5.25 (dd, J = 6.1, 3.0 Hz, 1H, 2’-H), 5.00 (dd, J = 6.1, 2.5 Hz, 1H, 3’-H), 4.36–4.30 (m, 1H,
4’-H), 4.12 (t, J = 7.3 Hz, 2H, CH2N), 3.75 (dd, J = 11.9, 2.8 Hz, 1H, 5’-Ha), 3.70 (dd, J = 11.9, 4.4 Hz, 1H,
5’-Hb), 3.59 (t, J = 6.4 Hz, 2H, CH2O), 1.89–1.78 (m, 2H, CH2), 1.63–1.53 (complex signal, 5H, CH3 and
CH2), 1.36 (s, 3H, CH3). 13C NMR (100 MHz, CD3OD) δ 158.1, 149.7, 148.5, 141.3, 125.2, 115.2, 92.3, 88.4,
85.8, 82.8, 63.3, 62.3, 47.8, 30.4, 27.5, 27.3, 25.5. ESI-MS m/z 381 ([M + H]+, C17H25N4O6, requires 381).

9b: Oil (99% yield). 1H NMR (400 MHz, CD3OD) δ 8.32 (s, 1H, 2-H), 8.31 (s, 1H, 8-H), 6.15 (d, J = 3.0
Hz, 1H, 1’-H), 5.24 (dd, J = 6.0, 3.0 Hz, 1H, 2’-H), 4.99 (dd, J = 6.0, 2.5 Hz, 1H, 3’-H), 4.37–4.31 (m, 1H,
4’-H), 4.09 (t, J = 7.3 Hz, 2H, CH2N), 3.72 (dd, J = 12.0, 3.8 Hz, 1H, 5’-Ha), 3.70 (dd, J = 12.0, 4.4 Hz, 1H,
5’-Hb), 3.55 (t, J = 6.4 Hz, 2H, CH2O), 1.84–1.74 (m, 2H, CH2), 1.62–1.53 (complex signal, 5H, CH3 and
CH2), 1.48–1.38 (m, 2H, CH2), 1.36 (s, 3H, CH3). 13C NMR (100 MHz, CD3OD) δ 158.1, 149.6, 148.5,
141.2, 125.3, 115.2, 92.3, 88.4, 85.8, 82.8, 63.3, 62.5, 47.9, 33.1, 30.4, 27.5, 25.5, 23.9. ESI-MS m/z 395 ([M +

H]+, C18H27N4O6, requires 395).

9c: Oil (99% yield). 1H NMR (400 MHz, CD3OD) δ 8.31 (s, 1H, 2-H), 8.30 (s, 1H, 8-H), 6.15 (d, J = 2.9
Hz, 1H, 1’-H), 5.25 (dd, J = 6.0, 3.0 Hz, 1H, 2’-H), 5.00 (dd, J = 6.0, 2.5 Hz, 1H, 3’-H), 4.37–4.30 (m, 1H,
4’-H), 4.09 (t, J = 7.3 Hz, 2H, CH2N), 3.75 (dd, J = 11.9, 3.8 Hz, 1H, 5’-Ha), 3.70 (dd, J = 11.9, 4.4 Hz, 1H,
5’-Hb), 3.53 (t, J = 6.5 Hz, 2H, CH2O), 1.83–1.72 (m, 2H, CH2), 1.58 (s, 3H, CH3), 1.56–1.49 (m, 2H, CH2),
1.45–1.38 (m, 4H, 2 × CH2), 1.36 (s, 3H, CH3). 13C NMR (100 MHz, CD3OD) δ 158.1, 149.6, 148.5, 141.2,
125.2, 115.2, 92.3, 88.4, 85.8, 82.8, 63.3, 62.7, 47.9, 33.4, 30.7, 27.5, 27.3, 26.5, 25.5. ESI-MS m/z 409 ([M +

H]+, C19H29N4O6, requires 409).

3.2.3. General Procedure for the Preparation of Compounds 10a–c

In a typical experiment, to a solution of compound 9a (0.050 g, 0.13 mmol) in dry THF (2.0 mL),
1-H-tetrazole (0.065 g, 0.91 mmol) and then iPr2NP(OtBu)2 (0.57 mL, 1.8 mmol) were added under
nitrogen atmosphere. The reaction mixture was stirred at room temperature for 6 h (TLC monitoring:
AcOEt/MeOH, 9:1) and then tBuOOH (0.24 mL of a solution 5.5 M in decane, 1.3 mmol) was added
at room temperature. After 1 h (TLC monitoring: AcOEt/MeOH, 9:1), the reaction mixture was
evaporated under reduced pressure, diluted with AcOEt (10 mL), and washed with brine (10 mL).
The organic layer was dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure.
The residue was purified over a silica gel column eluted with increasing amounts of MeOH in AcOEt
(up to 5%) to afford pure 10a.

10a: Oil (60% yield over two steps). 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H, 2-H), 7.98 (s, 1H, 8-H),
6.11 (d, J = 2.7 Hz, 1H, 1’-H), 5.19 (dd, J = 6.1, 2.8 Hz, 1H, 2’-H), 5.02 (dd, J = 6.1, 2.6 Hz, 1H, 3’-H),
4.50–4.46 (m, 1H, 4’-H), 4.20–4.05 (complex signal, 4H, CH2OP, 5’-Ha,b), 4.03–3.95 (m, 2H, CH2N),
1.95–1.85 (m, 2H, CH2), 1.78–1.68 (m, 2H, CH2), 1.63 (s, 3H, CH3), 1.47 (s, 27H, 3 × OtBu), 1.44 (s, 9H,
OtBu), 1.38 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 156.4, 147.3, 147.0, 138.5, 125.0, 114.6, 90.6,
84.8 (d, J = 8.3 Hz), 84.6, 83.1 (d, J = 7.4 Hz), 83.0 (d, J = 7.2 Hz), 82.3 (d, J = 7.3 Hz), 81.3, 66.0 (d, J =

6.1 Hz), 65.9 (d, J = 6.5 Hz), 46.3, 29.9, 29.8, 29.7, 27.2, 26.2, 25.3. 31P NMR (202 MHz, CDCl3) δ −9.80 (s).
ESI-MS m/z 765 ([M + H]+, C33H59N4O12P2, requires 765).

10b: Oil (58% yield over two steps). 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H, 2-H), 7.96 (s, 1H, 8-H),
6.09 (d, J = 2.8 Hz, 1H, 1’-H), 5.18 (dd, J = 6.2, 2.9 Hz, 1H, 2’-H), 5.01 (dd, J = 6.2, 2.8 Hz, 1H, 3’-H),
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4.49–4.43 (m, 1H, 4’-H), 4.18–4.10 (m, 2H, 5’-Ha,b), 4.08–3.97 (m, 2H, CH2OP), 3.96–3.89 (m, 2H, CH2N),
1.85–1.75 (m, 2H, CH2), 1.73–1.65 (m, 2H, CH2), 1.61 (s, 3H, CH3), 1.45 (s, 29H, 3 × OtBu and CH2), 1.42
(s, 9H, OtBu), 1.36 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 156.4, 147.2, 147.0, 138.5, 125.0, 114.6,
90.6, 84.8 (d, J = 8.4), 84.6, 83.1 (d, J = 7.4), 83.0 (d, J = 7.3), 82.1 (d, J = 7.3), 81.3, 66.3 (d, J = 6.4), 66.0 (d,
J = 5.5), 46.8, 29.3, 29.8, 29.7, 29.4, 27.2, 25.3, 22.8. 31P NMR (202 MHz, CDCl3) δ –9.70 (s), −9.80 (s).
ESI-MS m/z 779 ([M + H]+, C34H61N4O12P2, requires 779).

10c: Oil (62% yield over two steps). 1H NMR (400 MHz, CDCl3) δ 7.98 (s, 1H, 2-H), 7.97 (s, 1H, 8-H),
6.11 (d, J = 2.8 Hz, 1H, 1’-H), 5.20 (dd, J = 6.2, 2.8 Hz, 1H, 2’-H), 5.02 (dd, J = 6.2, 2.7 Hz, 1H, 3’-H),
4.50–4.46 (m, 1H, 4’-H), 4.19–4.10 (m, 2H, 5’-Ha,b), 4.08–4.00 (m, 2H, CH2OP), 3.97–3.90 (m, 2H, CH2N),
1.83–1.74 (m, 2H, CH2), 1.70–1.61 (complex signal, 5H, CH2 and CH3), 1.47 (s, 31H, 3 × OtBu and 2 ×
CH2), 1.43 (s, 9H, OtBu), 1.38 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 156.4, 147.2, 147.0, 138.5,
125.0, 114.6, 90.6, 84.8 (d, J = 8.4), 84.6, 83.1 (d, J = 7.4), 83.0 (d, J = 7.3), 82.0 (d, J = 7.4), 81.3, 66.5 (d,
J = 6.4), 66.0 (d, J = 5.6), 46.9, 30.0, 29.9, 29.8, 29.7, 27.2, 26.2, 25.3, 25.2. 31P NMR (202 MHz, CDCl3) δ
−9.70 (s), −9.80 (s). ESI-MS m/z 793 ([M + H]+, C35H63N4O12P2, requires 793).

3.2.4. General Procedure for the Preparation of Compounds 11a–c

In a typical experiment, compound 10a (0.020 g, 0.026 mmol) was dissolved in a 1:1 (v/v) solution
of TFA in H2O (1.0 mL) at 0 ◦C [56]. The reaction mixture was warmed to room temperature, stirred
for 4 h (TLC monitoring: iPrOH/NH3(aq)/H2O, 6:3:1) and then lyophilized.

11a: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 9.08 (s, 1H, 2-H), 8.54 (s, 1H, 8-H), 6.23 (d, J =

3.8 Hz, 1H, 1’-H), 4.76–4.72 (m, 1H, 2’-H), 4.52–4.47 (m, 1H, 3’-H), 4.45–4.40 (m, 1H, 4’-H), 4.30–4.24 (m,
1H, 5’-Ha), 4.23–4.13 (complex signal, 3H, CH2OP, 5’-Hb), 4.01–3.95 (m, 2H, CH2N), 1.96–1.86 (m, 2H,
CH2), 1.77–1.68 (m, 2H, CH2). 13C NMR (100 MHz, D2O) δ 155.1, 150.9, 146.3, 138.5, 118.2, 89.6, 83.9 (d,
J = 8.5 Hz), 74.7, 69.4, 65.9 (d, J = 5.3 Hz), 63.9 (d, J = 4.5 Hz), 47.2, 26.5 (d, J = 6.8 Hz), 25.0. 31P NMR
(202 MHz, D2O) δ 0.00 (s), −0.08 (s). ESI-MS m/z 499 ([M − H]–, C14H21N4O12P2, requires 499).

11b: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 9.06 (s, 1H, 2-H), 8.47 (s, 1H, 8-H), 6.17 (d, J =

3.7 Hz, 1H, 1’-H), 4.68–4.65 (m, 1H, 2’-H), 5.51–4.47 (m, 1H, 3’-H), 4.37–4.33 (m, 1H, 4’-H), 4.21 (ddd, J
= 11.9, 4.4, 2.4 Hz, 1H, 5’-Ha), 4.13–4.07 (complex signal, 3H, CH2OP, 5’-Hb), 3.91–3.86 (m, 2H, CH2N),
1.80–1.72 (m, 2H, CH2), 1.67–1.58 (m, 2H, CH2), 1.42–1.33 (m, 2H, CH2). 13C NMR (100 MHz, D2O) δ
154.9, 150.9, 146.1, 138.3, 117.9, 89.5, 83.8 (d, J = 8.6 Hz), 74.6, 69.2, 66.2 (d, J = 5.2 Hz), 63.7 (d, J = 3.8
Hz), 47.4, 28.9 (d, J = 6.8 Hz), 27.9, 21.6. 31P NMR (202 MHz, D2O) δ −0.03 (s), −0.14 (s). ESI-MS m/z
513 ([M − H]–, C15H23N4O12P2, requires 513).

11c: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 9.05 (s, 1H, 2-H), 8.46 (s, 1H, 8-H), 6.17 (d,
J = 3.7 Hz, 1H, 1’-H), 4.69–4.65 (m, 1H, 2’-H), 4.44–4.40 (m, 1H, 3’-H), 4.37–4.33 (m, 1H, 4’-H), 4.21
(ddd, J = 11.9, 4.0, 2.5 Hz, 1H, 5’-Ha), 4.13–4.06 (complex signal, 3H, CH2OP, 5’-Hb), 3.90–3.84 (m, 2H,
CH2N), 1.78–1.68 (m, 2H, CH2), 1.62–1.54 (m, 2H, CH2), 1.40–1.28 (m, 4H, 2 × CH2). 13C-NMR (101
MHz; D2O): δ 156.0, 150.4, 146.8, 138.8, 117.5, 88.9, 84.0 (d, J = 8.8 Hz), 74.7, 69.7, 66.3 (d, J = 5.5 Hz),
64.0 (d, J = 4.6 Hz), 47.6, 29.4 (d, J = 6.6 Hz), 28.4, 25.1, 24.4. 31P NMR (202 MHz, D2O) δ −0.03 (s),
−0.14 (s). ESI-MS m/z 527 ([M − H]–, C16H25N4O12P2, requires 527).

3.2.5. General Procedure for the Preparation of Compounds 12a–c

In a typical experiment, to a solution of compound 8a (0.050 g, 0.13 mmol) in dry THF (2.0 mL),
1-H-tetrazole (0.028 g, 0.40 mmol) and then iPr2NP(OtBu)2 (0.29 mL, 0.91 mmol) were added under
nitrogen atmosphere. The reaction mixture was stirred at room temperature for 6 h (TLC monitoring:
AcOEt/MeOH, 95:5) and then tBuOOH (0.24 mL of a solution 5.5 M in decane, 1.3 mmol) was added
at room temperature. After 1 h (TLC monitoring: AcOEt/MeOH, 95:5), the reaction mixture was
evaporated under reduced pressure, diluted with AcOEt (10 mL), and washed with brine (10 mL).
The organic layer was dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure.
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The residue was purified over a silica gel column eluted with increasing amounts of AcOEt in CH2Cl2
(up to 50%) to afford pure 12a.

12a: Oil (57% yield over two steps). 1H NMR (400 MHz, C6D6) δ 7.80 (s, 1H, 2-H), 7.37 (s, 1H, 8-H), 6.15
(d, J = 2.1 Hz, 1H, 1’-H), 5.08 (dd, J = 6.2, 2.2 Hz, 1H, 2’-H), 4.93 (dd, J = 6.1, 3.0 Hz, 1H, 3’-H), 4.36–4.32
(m, 1H, 4’-H), 3.88–3.80 (m, 2H, CH2N), 3.65 (dd, J = 11.1, 4.7 Hz, 1H, 5’-Ha), 3.60–3.49 (complex signal,
3H, CH2OP, 5’-Hb), 1.63–1.53 (m, 2H, CH2), 1.50 (s, 3H, CH3), 1.41 (s, 18H, 2 × OtBu), 1.37–1.28 (m,
2H, CH2), 1.21 (s, 3H, CH3), 0.87 (s, 9H, tBu), −0.04 (s, 3H, SiCH3), −0.06 (s, 3H, SiCH3). 13C NMR
(100 MHz, C6D6) δ 155.9, 147.0, 138.2, 125.5, 113.6, 90.4, 87.1, 85.1, 81.5, 81.1, 81.0, 65.6 (d, J = 6.1 Hz),
63.3, 45.5, 29.8, 29.6, 29.5, 27.0, 25.9, 25.6, 25.1, 18.1, −5.70, −5.80. 31P NMR (202 MHz, C6D6) δ –8.50 (s).
ESI-MS m/z 687 ([M + H]+, C31H56N4O9PSi, requires 687).

12b: Oil (61% yield over two steps). 1H NMR (400 MHz, C6D6) δ 7.81 (s, 1H, 2-H), 7.28 (s, 1H, 8-H), 6.16
(d, J = 2.2 Hz, 1H, 1’-H), 5.07 (dd, J = 6.2, 2.2 Hz, 1H, 2’-H), 4.92 (dd, J = 6.1, 2.9 Hz, 1H, 3’-H), 4.35–4.32
(m, 1H, 4’-H), 3.90–3.84 (m, 2H, CH2N), 3.65 (dd, J = 11.1, 4.7 Hz, 1H, 5’-Ha), 3.52 (dd, J = 11.1, 4.4 Hz,
1H, 5’-Hb), 3.50–3.38 (m, 2H, CH2OP), 1.50 (s, 3H, CH3), 1.43 (s, 18H, 2 × OtBu), 1.42–1.32 (m, 4H, 2 ×
CH2), 1.21 (s, 3H, CH3), 1.13–1.04 (m, 2H, CH2), 0.86 (s, 9H, tBu), −0.04 (s, 3H, SiCH3), −0.06 (s, 3H,
SiCH3). 13C NMR (100 MHz, C6D6) δ 156.8, 147.9, 147.8, 139.1, 126.5, 114.6, 91.4, 88.1, 86.0, 82.4, 81.9 (d,
J = 6.7 Hz), 66.9 (d, J = 6.1 Hz), 64.3, 47.0, 30.6, 30.5, 30.4, 29.9, 28.0, 26.6, 26.1, 23.4, 19.1, −4.70, −4.80.
31P NMR (202 MHz, C6D6) δ −8.50 (s). ESI-MS m/z 701 ([M + H]+, C32H58N4O9PSi, requires 701).

12c: Oil (60% yield over two steps). 1H NMR (400 MHz, C6D6) δ 7.77 (s, 1H, 2-H), 7.24 (s, 1H, 8-H),
6.16 (d, J = 1.8 Hz, 1H, 1’-H), 5.06 (dd, J = 6.1, 1.9 Hz, 1H, 2’-H), 4.91 (dd, J = 5.9, 2.7 Hz, 1H, 3’-H),
4.36–4.31 (m, 1H, 4’-H), 3.96–3.88 (m, 2H, CH2N), 3.64 (dd, J = 11.0, 4.6 Hz, 1H, 5’-Ha), 3.51 (dd, J =

11.1, 4.4 Hz, 1H, 5’-Hb), 3.48–3.36 (m, 2H, CH2OP), 1.50 (s, 3H, CH3), 1.45 (s, 18H, 2 × OtBu), 1.40–1.30
(m, 4H, 2 × CH2), 1.20 (s, 3H, CH3), 1.15–1.09 (m, 2H, CH2), 1.00–0.90 (m, 2H, CH2), 0.86 (s, 9H, tBu),
−0.04 (s, 3H, SiCH3), −0.07 (s, 3H, SiCH3). 13C NMR (100 MHz, C6D6) δ 156.8, 147.9, 147.8, 126.6, 114.6,
91.4, 88.1, 86.1, 82.4, 81.8 (d, J = 6.6 Hz), 67.1 (d, J = 6.1 Hz), 64.3, 47.0, 31.0, 30.1, 30.6, 30.5, 30.4, 28.0,
26.8, 26.6, 26.0, 19.0, −4.70, −4.80. 31P NMR (202 MHz, C6D6) δ −8.4 (s). ESI-MS m/z 715 ([M + H]+,
C33H60N4O9PSi, requires 715).

3.2.6. General Procedure for the Reparation of Compounds 13a–c

In a typical experiment, to a solution of compound 12a (0.051 g, 0.074 mmol) in dry THF (1.0 mL),
TBAF (0.089 mL of a 1.0 M solution in dry THF, 0.089 mmol) was added dropwise [57]. The reaction
mixture was stirred at room temperature for 1 h (TLC monitoring: AcOEt/MeOH; 9:1) and then
evaporated under reduced pressure. The residue was purified over a silica gel column eluted with
increasing amounts of MeOH in AcOEt (up to 5%) to afford the pure 13a.

13a: Glassy solid (99% yield). 1H NMR (500 MHz, C6D6) δ 8.04 (s, 1H, 2-H), 7.28 (s, 1H, 8-H), 6.15 (d,
J = 2.2 Hz, 1H, 1’-H), 5.10–5.05 (complex signal, 2H, 2’-H, 3’-H), 4.40–4.36 (m, 1H, 4’-H), 4.07 (d, J =

12.0 Hz, 1H, 5’-Ha), 3.87–3.80 (m, 2H, CH2N), 3.75 (d, J = 11.9 Hz, 1H, 5’-Hb), 3.48 (t, J = 7.3 Hz, 2H,
CH2OP), 1.55–1.48 (complex signal, 5H, CH2 and CH3), 1.40 (s, 18H, 2 × OtBu), 1.37–1.29 (m, 2H, CH2),
1.18 (s, 3H, CH3). 13C NMR (100 MHz, C6D6) δ 156.9, 148.1, 147.7, 140.2, 126.3, 114.3, 93.2, 87.8, 85.7,
82.9, 82.2 (d, J = 6.7 Hz), 66.6 (d, J = 6.0 Hz), 63.7, 46.6, 30.5, 30.4, 28.1 (d, J = 7.1 Hz), 27.9, 26.8, 25.9. 31P
NMR (202 MHz, C6D6) δ −8.70 (s). ESI-MS m/z 573 ([M + H]+, C25H42N4O9P, requires 573).

13b: Amorphous white solid (99% yield). 1H NMR (500 MHz, C6D6, 60 ◦C) δ 7.75 (s, 1H, 2-H), 7.20 (s,
1H, 8-H), 5.92 (d, J = 3.3 Hz, 1H, 1’-H), 5.13–5.08 (complex signal, 2H, 2’-H, 3’-H), 4.47–4.44 (m, 1H,
4’-H), 3.89–3.93 (m, 1H, 5’-Ha), 3.89–3.83 (m, 2H, CH2N), 3.67 (d, J = 10.7 Hz, 1H, 5’-Hb), 3.49–3.38
(m, 2H, CH2OP), 1.49 (s, 3H, CH3), 1.46–1.38 (complex signal, 20H, CH2, 2 × OtBu), 1.37–1.31 (m, 2H,
CH2), 1.18 (s, 3H, CH3), 1.15–1.07 (m, 2H, CH2). 13C NMR (100 MHz, C6D6, 60 ◦C) δ 156.8, 148.0, 147.7,
140.2, 126.3, 114.3, 93.2, 87.8, 85.7, 82.9, 82.0, 66.9, 63.8, 47.1, 30.6, 30.5, 30.4, 29.8, 28.2, 25.9, 23.4. 31P
NMR (202 MHz, C6D6, 60 ◦C) δ −8.70 (s). ESI-MS m/z 587 ([M + H]+, C26H44N4O9P, requires 587).
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13c: Amorphous white solid (99% yield). 1H NMR (500 MHz, C6D6, 60 ◦C) δ 7.70 (s, 1H, 2-H), 7.18 (s,
1H, 8-H), 5.90 (d, J = 3.5 Hz, 1H, 1’-H), 5.09–5.04 (complex signal, 2H, 2’-H, 3’-H), 4.39–4.35 (m, 1H,
4’-H), 3.97–3.88 (complex signal, 3H, 5’-Ha, CH2N), 3.67 (d, J = 12.0 Hz, 1H, 5’-Hb), 3.43 (t, J = 7.3 Hz,
2H, CH2OP), 1.49 (s, 3H, CH3), 1.44 (s, 18H, 2 × OtBu), 1.40–1.29 (m, 4H, 2 × CH2), 1.22–1.12 (complex
signal, 5H, CH2, CH3), 1.03–0.95 (m, 2H, CH2). 13C NMR (100 MHz, C6D6, 60 ◦C) δ 156.8, 148.0, 147.7,
140.2, 126.3, 114.3, 93.2, 87.8, 85.7, 82.9, 82.0, 66.9, 63.8, 47.1, 30.6, 30.5, 30.4, 29.8, 28.2, 25.9, 23.4. 31P
NMR (202 MHz, C6D6, 60 ◦C) δ −8.70 (s). ESI-MS m/z 601 ([M + H]+, C27H46N4O9P, requires 601).

3.2.7. General Procedure for the Preparation of Compounds 14a–c

In a typical experiment, compound 13a (0.020 g, 0.035 mmol) was dissolved in a 1:1 (v/v) solution
of TFA in H2O (1.0 mL) at 0 ◦C. The reaction mixture was warmed to room temperature, stirred for 4 h
(TLC monitoring: iPrOH/NH3(aq)/H2O, 6:3:1) and then lyophilized.

14a: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 9.09 (s, 1H, 2-H), 8.51 (s, 1H, 8-H), 6.16 (d, J =

4.2 Hz, 1H, 1’-H), 4.72–4.68 (m, 1H, 2’-H), 4.39–4.35 (m, 1H, 3’-H), 4.28–4.24 (m, 1H, 4’-H), 4.17 (t, J =

7.2 Hz, 2H, CH2OP), 4.00–3.95 (m, 2H, CH2N), 3.92 (dd, J = 13.0, 2.0 Hz, 1H, 5’-Ha), 3.82 (d, J = 12.8,
3.5 Hz, 1H, 5’-Hb), 1.91–1.83 (m, 2H, CH2), 1.74–1.66 (m, 2H, CH2). 13C NMR (175 MHz, D2O) δ 154.8,
151.0, 146.0, 138.8, 118.1, 89.8, 85.3, 74.1, 69.4, 66.0, 60.4, 47.1, 26.4, 24.9. 31P NMR (202 MHz, D2O) δ
−0.14 (s). ESI-MS m/z 419 ([M − H]–, C14H20N4O9P, requires 419).

14b: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 9.01 (s, 1H, 2-H), 8.50 (s, 1H, 8-H), 6.16 (d, J
= 4.4 Hz, 1H, 1’-H), 4.75–4.71 (m, 1H, 2’-H), 4.42–4.38 (m, 1H, 3’-H), 4.30–4.26 (m, 1H, 4’-H), 4.15 (t, J =

7.2 Hz, 2H, CH2OP), 4.00–3.92 (complex signal, 3H, CH2N, 5’-Ha), 3.84 (d, J = 12.8, 3.9 Hz, 1H, 5’-Hb),
1.86–1.78 (m, 2H, CH2), 1.73–1.65 (m, 2H, CH2), 1.48–1.39 (m, 2H, CH2). 13C NMR (175 MHz, D2O) δ
155.2, 150.7, 146.2, 139.0, 118.9, 89.6, 85.3, 74.1, 69.6, 66.3, 60.5, 47.4, 28.9, 27.9, 21.6. 31P NMR (202 MHz,
D2O) δ −0.04 (s). ESI-MS m/z 433 ([M − H]–, C15H22N4O9P, requires 433).

14c: White foam (99% yield). 1H NMR (500 MHz, D2O) δ 8.92 (s, 1H, 2-H), 8.49 (s, 1H, 8-H), 6.16 (d, J =

4.4 Hz, 1H, 1’-H), 4.76–4.72 (m, 1H, 2’-H), 4.44–4.39 (m, 1H, 3’-H), 4.31–4.27 (m, 1H, 4’-H), 4.15 (t, J =

7.2 Hz, 2H, CH2OP), 3.97–3.91 (complex signal, 3H, CH2N, 5’-Ha), 3.84 (d, J = 12.8, 3.9 Hz, 1H, 5’-Hb),
1.84–1.76 (m, 2H, CH2), 1.69–1.61 (m, 2H, CH2), 1.46–1.34 (m, 4H, 2 × CH2). 13C NMR (175 MHz, D2O)
δ 155.6, 150.2, 146.3, 139.1, 119.5, 89.4, 85.3, 74.1, 69.5, 66.6, 60.6, 47.5, 29.2, 28.3, 25.0, 24.2. 31P NMR
(202 MHz, D2O) δ 0.04 (s). ESI-MS m/z 447 ([M − H]–, C16H24N4O9P, requires 447).

3.2.8. Procedure for the Preparation of Compound 16

Compound 15 (0.020 g, 0.042 mmol) was dissolved in a 1:1 (v/v) solution of TFA in H2O (0.5 mL)
at 0 ◦C. The reaction mixture was warmed to room temperature, stirred for 4 h (TLC monitoring:
iPrOH/NH3(aq)/H2O, 6:3:1) and then lyophilized. Colorless syrup (99% yield). 1H-NMR (500 MHz;
D2O): δ 8.53 (s, 1H, 8-H), 8.42 (s, 1H, 2-H), 6.15 (d, J = 5.9 Hz, 1H, 1’-H), 4.84–4.78 (m, 1H, 2’-H, partially
covered by residual solvent signal), 4.54 (dd, J = 4.9, 3.7 Hz, 1H, 3’-H), 4.41–4.40 (m, 1H, 4’-H), 4.18 (t, J
= 7.3 Hz, 2H, CH2N), 4.12–4.08 (m, 2H, 5’-Ha,b), 3.63 (t, J = 6.5 Hz, 2H, CH2O), 1.88–1.82 (m, 2H, CH2),
1.66–1.60 (m, 2H, CH2), 1.47–1.40 (m, 2H, CH2). 13C-NMR (101 MHz; D2O): δ 158.1, 148.9, 147.9, 139.9,
123.4, 87.2, 84.2 (d, J = 8.8 Hz), 74.4, 70.4, 64.3 (d, J = 4.8 Hz), 61.4, 47.3, 30.8, 28.5, 22.0. 31P NMR (202
MHz, D2O) δ 1.87 (s). ESI-MS m/z 433 ([M − H]–, C15H22N4O9P, requires 433).

3.2.9. Procedure for the Preparation of Compound 18

Compound 17 (0.040 g, 0.070 mmol) was dissolved in a 1:1 (v/v) solution of TFA in H2O (0.5 mL)
at 0 ◦C. The reaction mixture was warmed to room temperature, stirred for 4 h (TLC monitoring:
iPrOH/NH3(aq)/H2O, 6:3:1), and then lyophilized. The crude was dissolved in TEAB 0.1 M buffer,
passed over a PVDF 0.45 µm filter and purified by HPLC (see Section 3.1). The fractions containing
the triethylammonium salt of compound 18 were collected and lyophilized. The salt was dissolved
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in water and treated with Dowex D50 (H+ form). Then, the resin was removed by filtration and the
solution lyophilized. Colorless syrup (50% yield). 1H-NMR (400 MHz; D2O): δ 8.41 (s, 1H, 8-H), 8.33 (s,
1H, 2-H), 6.08 (d, J = 5.7 Hz, 1H, 1’-H), 4.80 (m, 1H, 2’-H, covered by residual solvent signal), 4.47–4.42
(m, 1H, 3’-H), 4.31–4.26 (m, 1H, 4’-H), 4.15 (t, J = 7.2 Hz, 2H, CH2N), 3.92 (dd, J = 12.7, 2.8 Hz, 1H,
5’-Ha), 3.85 (dd, J = 12.8, 4.1 Hz, 1H, 5’-Hb), 1.86–1.77 (m, 2H), 1.65–1.53 (m, 4H), 1.48–1.41 (m, 2H).
13C NMR (101 MHz; D2O): δ 155.3, 150.6, 146.3, 139.2, 119.0, 89.7, 85.5, 74.3, 69.6, 60.6, 47.4, 28.0, 26.4
(J = 3.6 Hz), 25.7 (J = 121.3 Hz), 21.5 (J = 4.8 Hz). 31P NMR (202 MHz; D2O): δ 31.9. ESI-MS m/z 417
([M − H]–, C15H22N4O8P, requires 417).

3.3. Biology

Cytosolic Ca2+ Imaging

Differentiated C2C12 (days in vitro [DIV] 7) cells were incubated with 1 µM Fura-2/AM, 0.02%
pluronic F-127, and 200 µM sulfinpyrazone for 40 minutes at 37 ◦C in an extracellular-like medium
135 mM NaCl, 5 mM KCl, 0.4 mM KH2PO4, 1 mM MgCl2, 1 mM MgSO4, 1 mM CaCl2, 10 mM
4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid, and 10 mM glucose at pH 7.4. Cells were mounted
into an open-topped chamber and incubated for 10 minutes on the stage of the microscope, in the same
saline without Fura-2/AM. Experiments were performed at 37 ◦C. Fura-2 fluorescence was visualized
on an inverted microscope (Zeiss Axiovert 100, Jena, Germany) mounting a 20× ultraviolet permeable
objective (Olympus Biosystems GmbH, Planegg, Germany). Alternating excitation wavelengths of
340 and 380 nm were obtained with a monochromator (polychrome V; TILL Photonics, Kaufbeuren,
Germany) controlled by a custom-made software package, Roboscope (developed by Catalin Dacian
Ciubotaru, CNR Neuroscience Institute, Padua, Italy). A neutral density filter, UVND 0.6 (Chroma
Technology Corp., Bellows Falls, VT, USA), was used in the excitation pathway. The emitted
fluorescence was measured at 500–530 nm. Images were acquired every 10 s, with 200 ms exposure
time for each wavelength, by a TILL-Imago camera controlled by the same software. Regions of
interest, corresponding to the entire soma, were selected for Ca2+ imaging. The ratio of the emitted
fluorescence intensities (F340/F380) was normalized to the average value measured during the first
2 min of acquisition. The cells were challenged with different concentrations of target compounds
diluted in the experimental medium; addition of 10 mM caffeine was used as a control for Ca2+ release
from ryanodine receptors.

4. Conclusions

Cellular Ca2+ mobilization is involved in several physio-pathological processes, and the discovery
of molecules that could act as agonist or antagonist of cADPR is an appealing goal for medicinal
chemistry. cADPR has a unique structure, but its lability has strongly limited the comprehension
of cellular mechanisms regulated by Ca2+ mobilization. Synthetic chemistry partially remedied this
problem, generating more stable analogues whose preparation is very often laborious and low yielding.
In our laboratories, we synthesized many cIDPR derivatives as stable mimics of cADPR, discovering
that a pentyl chain replacing the “northern” ribose and one phosphate group could be sufficient to
retain the biological activity in PC12 cells differentiated in neurons. In this paper, we probed if the
cyclic structure was strictly necessary for the Ca2+ release from the intracellular stores, synthesizing a
small collection of linear precursors of cIDPR analogues. By varying the length of the N1 purine alkyl
chain and the position of the phosphate/phosphonate moieties, we obtained eight derivatives that
were tested for the Ca2+ mobilizing activity on C2C12 cells that express ryanodine receptors during
differentiation [52].

Unfortunately, we have not been able yet to detect any biological effect immediately after the
drug addition to the cell culture. We also cannot establish if the lack of activity can be attributed to the
absence of cyclic structure, to an inefficacious interaction with the cellular receptor or to a reduced
cellular permeability. Furthermore, the reinforcement of the effect of caffeine on the Ca2+ release from
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the stores by some compounds is intriguing and may be ascribed to a stimulus of Ca2+ release from
the ER, increasing the Ca2+ sensitivity of ryanodine receptors. However, further studies are ongoing
in our laboratories to check this assumption and to understand how the reinforcement mentioned
above could take place. The most pronounced effect has been found in the linear compounds 14 and 16
characterized by a pentyl chain attached at the N1 position of inosine. These preliminary data reinforce
our precedent findings [36,37] on the importance of the five carbon atoms alkyl chain for the design of
novel linear and cyclic cADPR/cIDPR analogues to be employed as Ca2+ modulators.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/8/476/s1,
S1–S23: copies of 1H-NMR and 31P-NMR spectra of compounds 8a–c, 9a–c, 10a–c, 11a–c, 12a–c, 13a–c, 14a–c, 16,
and 18; S24–S46: copies of 13C-NMR spectra of compounds 8a–c, 9a–c, 10a–c, 11a–c, 12a–c, 13a–c, 14a–c, 16, and
18; S-47: Figure S3.
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