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Abstract: The adsorption—for separation, storage and transportation—of methane, hydrogen and
their mixture is important for a sustainable energy consumption in present-day society. Graphene
derivatives have proven to be very promising for such an application, yet for a good design a
better understanding of the optimal pore size is needed. In this work, grand canonical Monte Carlo
simulations, employing Improved Lennard–Jones potentials, are performed to determine the ideal
interlayer distance for a slit-shaped graphene pore in a large pressure range. A detailed study of the
adsorption behavior of methane, hydrogen and their equimolar mixture in different sizes of graphene
pores is obtained through calculation of absolute and excess adsorption isotherms, isosteric heats
and the selectivity. Moreover, a molecular picture is provided through z-density profiles at low and
high pressure. It is found that an interlayer distance of about twice the van der Waals distance of the
adsorbate is recommended to enhance the adsorbing ability. Furthermore, the graphene structures
with slit-shaped pores were found to be very capable of adsorbing methane and separating methane
from hydrogen in a mixture at reasonable working conditions (300 K and well below 15 atm).

Keywords: graphene; methane; hydrogen; grand canonical Monte Carlo; adsorption; slit-shaped pore

1. Introduction

Methane and hydrogen gases have raised considerable attention because of the ad-
vantages they have over more traditional fossil fuels in the context of energy storage and
delivery [1]. While the role of methane is probably limited to an—important—transition
fuel that can easily be applied in existing technologies [2,3], hydrogen is becoming increas-
ingly relevant in the context of sustainable energy [4]. Indeed, it is an excellent choice
for long term energy storage in combination with renewable energy, while it also holds
promise to decarbonize the transportation sector. However, it does come with problems
related to safe and economical storage and transportation (which is currently done at very
low temperatures and high pressures) [5,6]. Adsorption on porous materials may allow for
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storage and transportation of substantial amounts of H2 as well as CH4 at ambient condi-
tions [7,8]. Aside from its role as transition fuel (while hydrogen-based technologies are
being developed), methane exhaust from industrial and transport processes is a major chal-
lenge to society because of its large greenhouse effect. To reduce the emission of methane,
materials are needed that can separate and capture the gas from exhaust mixtures [9].
Another process for which the separation of a methane/hydrogen mixture is of interest is
the purification of H2 gas after production, while the methane/hydrogen mixture itself has
shown promise to improve the energy delivery of pure methane or natural gas [10,11].

Clearly adsorbent materials are needed that can store (for transportation), capture or
separate gases ranging from pure hydrogen to pure methane and mixtures of interest in
between. Multiple materials have been suggested for this purpose such as metal organic
frameworks [12,13], activated carbon [8,14], nanocarbon materials [15,16] and others [17].
Particularly interesting are graphene and derived materials, such as graphene oxide, [18]
doped graphene [19] and defected graphene [20], relying on their van der Waals interaction
with the gases leading to physisorption [21]. Indeed, because of its specific electronic
properties and 2d-character, graphene has strong affinity for individual gas molecules [22].
A very interesting branch of graphene derivatives relies on careful tuning of the interlayer
space between separate graphene sheets by introducing pillars made, for example, out of
carbon nanotubes or fullerenes [23]. Very important for such efforts is to obtain a clear
picture of the ideal distance between layers of graphene at different operating conditions,
to accommodate as many molecules as possible. Therefore, in this work, different graphene
-pores have been simulated using Grand Canonical Monte Carlo simulations to study the
effect of different pore sizes on the adsorption of methane and hydrogen. More specifically,
interlayer distances of 5 Å, 8 Å, 14 Å and 20 Å were considered.

As in all separation processes, the operating conditions are of utter importance for
its applicability. In order to improve the current storage possibilities for hydrogen and
to facilitate the processes described above, adsorption preferentially takes place at low
pressures and around room temperature. This is essential because large pores can accom-
modate many molecules under high pressure, but will most likely be less selective [24].
Smaller pores with tuned interaction energies may render the need for high pressures less
important, relying more on the intrinsic selectivity of a pore for the adsorbate [25]. To take
this notion into account, the different considered pores were simulated in a pressure range
between 0 atm and 70 atm.

In many molecular simulation studies, such systems are modeled using the Lennard–
Jones potential to represent the dispersion interactions, despite the known limitations-at
both long and short distance range-of this potential [26,27]. In some cases, an electrostatic
energy term is added to further improve the picture via allocation of partial charges on the
molecules [28,29]. In this work, the Lennard–Jones potential, was replaced by the so-called
Improved Lennard–Jones (ILJ) potential, introduced by Pirani et al. [30,31]. It contains
an extra parameter in the exponent of the repulsive term to add the needed flexibility to
better describe the intermediate distance range of the interaction. The parameters for such
potentials are usually obtained by fitting to experimental data and are assumed-which is
not always justified-to be very transferable from one system to another [32,33]. On the
contrary, the parameters used in this work were specifically developed for the adsorption
of gas molecules on graphene by fitting to dimer interaction energies at density functional
theory (DFT) level [34–37].

The ILJ potential has been extensively tested in molecular dynamics (MD) simulations
with success in the past years, but has never been used in a Grand Canonical Monte Carlo
(GCMC) setting to the best of our knowledge [36,38,39]. While MD is a very useful tool,
the information obtainable from GCMC is complementary as the phase space is more
adequately explored, especially for gas adsorption [40–42]. Furthermore, GCMC allows
for simulation without a fixed number of particles in the system which is particularly
interesting for the description of experimental setups like gas adsorption in a pore [43,44].
As such, this work will be trialling the use of the ILJ potential in GCMC calculations to
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further exploit the better performance of the ILJ potential in specific systems of industrial
interest, such as the adsorption and separation of methane and hydrogen using graphene
with pores of different sizes at a large pressure range.

The paper is oulined as follows: In Section 2, the computational details of the work
are discussed together with the ILJ potential and used models. Results are presented in
Section 3 and some conclusions are presented in Section 4.

2. Computational Details

GCMC simulations were performed by means of the LAMMPS package [45,46] with
an in-house implementation of the ILJ potential. The pores were represented by two
parallel sheets of graphene in their usual honeycomb-like structure [47,48], consisting of
1660 carbon atoms each with a C-C bond distance of 1.42 Å. Pillars to maintain the interlayer
distance were omitted and graphene layers were maintained rigid-atomic positions fixed
at the initial positions-during the whole simulation. Periodic boundary conditions were
applied in the x- and y-directions with interlayer distances of 5 Å, 8 Å, 14 Å and 20 Å along
the z-axis. Because of this set-up, an infinite pore is simulated and no hydrogens were
introduced to cap off graphene edges, while in the z-direction, the box size was taken such
that the box walls coincided with the graphene planes. All simulations were performed
at a temperature of 300 K and in a pressure range between 0 atm and 70 atm, typical
operating conditions for such adsorption processes. As is usual in GCMC simulations,
the volume, temperature and chemical potential-controlled via the pressure-were taken as
independent thermodynamic variables. Three kinds of moves were considered to construct
the Markov chain: Particle deletion, particle insertion and particle displacement, all with
equal probability, whereby a particle is understood to be either methane or molecular
hydrogen. A total of 5 × 105 configurations were simulated to reach a converged uptake of
the gas molecules as an ensemble average, while a cutoff distance of 14 Å was used and
convergence was further monitored via properties like temperature and energy. Adsorption
isotherms were then obtained by plotting the evolution of the uptake at different pressures.

For the adsorption isotherms, both the absolute and excess amounts of molecules
were calculated whereby the latter was obtained by subtracting the amount that would be
present in a bulk gas with the same volume, from the absolute amount adsorbed

ne
i = na

i − ρVporeyi, (1)

where ne
i and na

i are the excess and absolute amount adsorbed, respectively, of com-
pound i. The absolute amount adsorbed of a given simulation is the number of molecules
that are present in the simulation box after convergence. Vpore is the pore volume, which
equals the volume of the simulation box, yi is the mole fraction of compound i and ρ is the
gas density at the specified pressure and temperature as calculated by the Soave-Redlich-
Kwong equation of state [49].

It has been experimentally verified that methane adsorption obeys the Toth equa-
tion [50]

na
i = qm

i
kiP[

1 + (kiP)
t
] 1

t
, (2)

where P is the pressure, qm
i is the adsorption capacity at saturation, ki is the Langmuir

equilibrium constant of compound i and t is a fitting parameter. The value of t as extrapo-
lated from the data in ref. [50] is 0.91 at 300 K, justifying the use of a simpler Langmuir
model. Actually, the inherent deficiencies of this model (e.g., the surface must be a perfectly
flat plane with no corrugations, there is a mono-layer coverage only and there are no
interactions between adsorbate molecules and adjacent adsorption sites) can be essentially
disregarded in the present systems as the adsorbent is composed of pristine graphene
sheets, the adsorption coverage is not too large and the interaction between adsorbate
molecules is very weak [34,37]. In fact, this model has already been used in this con-
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text [21,51–53]. Therefore, the obtained absolute adsorption isotherms from GCMC were
fitted to the Langmuir equation

na
i = qm

i
kiP

1 + kiP
. (3)

This choice is further validated by the quality of the Langmuir fittings with R2 values
of 0.985 and higher, as discussed below.

Density profiles of the pure components and mixtures were calculated as the amount
of molecules falling within spatial bins in the z-direction of the simulation box as an average
over time, while the selectivity was calculated using

Sa,b =
(xa/xb)pore

(xa/xb)bulk
, (4)

where x is the mole fraction and a and b represent different molecules (i.e., CH4 and H2).
Isosteric heats of adsorption were calculated using the fluctuation method [54]

Qm =
〈U〉〈N〉 − 〈UN〉
〈N2〉 − 〈N〉〈N〉 + kbT, (5)

where the angle brackets denote ensemble averages, U is the configuration energy of the
system, N the number of particles, kb is the Boltzmann constant and T the temperature.

The force field used to model the gas-gas and the graphene-gas interactions assumes
that the intermolecular interactions are pairwise additive and both the gas molecules and
graphene sheets are rigid (all optimized at the B3LYP/631G** DFT level of theory). The only
considered contribution to the intermolecular interaction is a van der Waals term, namely
the ILJ potential [30,31]

V(R) = ε

[
m

n(R)−m

( r0

R

)n(R)
− n(R)

n(R)−m

( r0

R

)m
]

, (6)

where

n(R) = β + 4
(

R
r0

)
. (7)

Here, ε and r0 represent the potential well and its location, while β is a dimensionless
parameter that provides extra flexibility for fitting to the interaction energy curve. The β
value is loosely related to the hardness of the interacting systems and is usually confined
to an interval between 7 and 9 (although this may be lowered for systems with relatively
strong electrostatic interactions), while m is 6 in all cases [55]. Note that the improvement
of the ILJ potential over the LJ potential has been demonstrated elsewhere [31,34,55].

The interaction parameters for the methane and hydrogen molecules and their interac-
tions with graphene were taken from previous publications and are given in Table 1 [34,37].
For completeness, the principle of the fitting procedure is shortly described, while more
details can be found in the original papers. A large amount of randomly generated dimer
interaction energies were obtained at DFT-level and different suitable potentials were fitted
to this data. The quality of these potentials was checked by benchmarking against CCSD(T)
and DFT (using the B97-D level of theory) calculations on a set of symmetric dimers which
were not present in the fitting data. After, the performance of the potentials was further
tested in MD simulations by calculating diffusion coefficients, which is directly comparable
to experiment [34]. While different models were fitted in these previous works whereby the
ILJ potential was complemented with a Coulombic sum (testing different charge schemes),
the cheapest considered model, a united-atom model without partial charges, was found
to show good performance for methane and hydrogen [34,37]. Therefore, this latter, com-
putationally cheaper model (with a single interaction center and no atomic charges) was
chosen for the investigations performed in the current work. It should be stressed that
because of the fitting to DFT-level interaction energies, the electrostatic and other possible
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interaction types are implicitly taken into account in the potential. Indeed, this procedure
has proven successful in several MD studies [36,38,39]. The interaction parameters for the
methane/hydrogen interaction, were developed specifically for this work following the
same procedure described before and thus, no combination rules were used.

Table 1. The interaction parameters used in this work.

System ε (kcal mol−1) r0 (Å) β Ref.

CH4-CH4 0.421 4.169 8.216 [34]
CH4-H2 0.180 3.816 5.618 This work
H2-H2 0.091 3.552 5.618 [37]

Cgraph-CH4 0.210 3.938 8.185 [34]
Cgraph-H2 0.088 3.527 6.813 [37]

3. Results and Discussion

The gas uptake of molecular hydrogen and methane and an equimolar mixture of
both in a slit-shaped pore was simulated. The pores were composed of two graphene
sheets whereby the interlayer distance was varied to simulate different pore sizes. More
specifically, interlayer distances of 5 Å, 8 Å, 14 Å and 20 Å were considered. This means
that very narrow pores, about the size of the adsorbates, were simulated on one end and
pores with a size of about five times the van der Waals radius of the adsorbates on the
other. In Figure 1, a schematic representation is given of the van der Waals radii-taken as
the equilibrium distance of the force field-of both methane and hydrogen in comparison to
the size of the pores indicated by horizontal lines.

Figure 1. A schematic representation of the gas molecules within the considered pores. The spheres
represent the van der Waals radii of methane (blue) and hydrogen (red) and the black lines represent
the graphene sheets.

3.1. Adsorption Behavior

In Figure 2, the absolute adsorption isotherms for the respective pore sizes are shown
for methane and hydrogen, both in their respective pure phases as well as in their equimolar
mixture. In the main text, only volumetric adsorption isotherms are shown, while the
gravimetric isotherms can be found in SI as the behavior is rather similar for all systems.
In this work, results obtained at 1 atm, representing low pressure conditions, are compared
to results obtained at 70 atm as a representation of extreme operating conditions. In this
reasoning, the absolute uptakes of the pores at 1 atm and 70 atm are given in Table 2.
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Figure 2. Absolute adsorption isotherms for pure methane (top left), methane from the equimolar
mixture (top right), pure hydrogen (bottom left) and hydrogen from the equimolar mixture (bottom
right) at 300 K. The dots represent calculated values, while the full lines show the fitted Langmuir
isotherm. Please notice the different scales on the y-axes.

Table 2. The absolute uptakes in the bulk in mmol cm−3 for the pure methane, pure hydrogen and
both in their equimolar mixture at pressures of 1 atm and 70 atm (between brackets), both at 300 K.

Pore Size (Å) Pure CH4 Pure H2 CH4 Mixt. H2 Mixt.

5 0.08 (0.08) 0.08 (0.13) 0.00 (0.00) 0.08 (0.11)
8 5.50 (11.61) 0.12 (3.08) 3.98 (10.93) 0.05 (0.35)
14 0.50 (13.66) 0.07 (2.70) 0.29 (10.11) 0.04 (0.50)
20 0.34 (11.44) 0.06 (2.63) 0.19 (6.78) 0.03 (0.62)

When considering the pure methane gas first, it is seen that the behavior of the adsorp-
tion isotherm is drastically different for the considered pore sizes. The smallest pore, the
5 Å pore, shows nearly no adsorption of methane gas as is seen by the near-zero absolute
adsorption isotherm which remains flat along the entire pressure range (0.08 mmol cm−3

at both low and high pressure). The 8 Å pore shows a very fast saturation with increasing
pressure. Indeed, at 1 atm it has already reached 5.50 mmol cm−3, about half of its maxi-
mum capacity (11.61 mmol cm−3 at 70 atm) and at 15 atm it has already reached close to its
maximum capacity meaning that raising the pressure further does not accommodate many
more molecules. For the larger pores of 14 Å and 20 Å, the convergence is slower with
rising pressure and no plateau is reached within the investigated pressure range. Indeed,
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at 1 atm they have only reached uptakes of 0.50 mmol cm−3 and 0.34 mmol cm−3, respec-
tively, while at 70 atm, they adsorb 13.66 mmol cm−3 and 11.44 mmol cm−3, respectively.
The absolute adsorption isotherms of the 14 Å and the 20 Å pore cross the 8 Å pore isotherm
at 40 atm and 70 atm, respectively, adsorbing a larger amount of molecules per unit of
volume above those pressures. Such behavior was also reported before by Chen [56] et al.
From this, it seems that below 40 atm, the 8 Å pore is the most efficient one, while above
40 atm, the 14 Å becomes more efficient and it remains as such within the remainder of the
investigated pressure range.

Lin et al. [21] have reported adsorption isotherms of methane on graphene slit-like
pores with interlayer distances of 20 Å and beyond. They found the same trend of lowering
of the molar density with increasing pore size and also found Langmuir behavior, indicat-
ing a single adsorption layer on every graphene sheet, as is also reflected in our adsorption
isotherms. The late convergence of the larger pores is also reflected in their adsorption
isotherm which starts to converge at around 250 atm. Importantly they have not included
pores smaller than 20 Å despite the increased adsorption capacity of methane with decreas-
ing pore width. They also did not study hydrogen adsorption nor the methane/hydrogen
mixture. The absolute adsorption capacity of the pores can also be compared to a series of
MOFs as reported by Zhang et al. [57] who reported the highest adsorption for the NJU-Bai
structure with a total uptake of 6.48 mmol cm−3 at 64.15 atm. This means that the most
efficient pore in this work (i.e., 8 Å) considerably outperforms the reported MOFs and
already reaches similar uptakes at pressures as low as 2 atm. Gravimetrically, the difference
is even more striking as the considered pores outperform a series of MOFs as reported by
Korman et al. [58] by an order of magnitude. Indeed, the highest value they found was
0.14 mmol g−1 at 1.2 atm compared to 2.96 mmol g−1 (see Supplementary Materials).

The picture is quite similar for methane in the equimolar CH4/H2 mixture. Indeed
the 5 Å pore still shows close to no adsorption of methane (0.002 mmol cm−3 at 1 atm
and 0.0004 mmol cm−3 at 70 atm). The 8 Å pore shows very similar behavior as for the
adsorption of the pure methane gas, although the adsorption uptake does lower slightly
to 3.98 mmol cm−3 at 1 atm and 10.93 mmol cm−3 at 70 atm. Moreover, the large pores
do behave slightly different upon adsorption of the mixture as the methane adsorption
isotherm on the 14 Å pore is no longer crossing the 8 Å isotherm at around 40 atm, but is set
to do so just outside the investigated pressure range. It shows uptakes of 0.29 mmol cm−3

and 10.11 mmol cm−3 at 1 atm and 70 atm, respectively, again slightly lower than for the
pure methane. Likewise, the 20 Å pore sees its adsorption of methane molecules shifted
to higher pressures with the uptake at 1 atm dropping to 0.19 mmol cm−3 at 1 atm and
6.78 mmol cm−3 at 70 atm.

For the hydrogen gas (please note the different scale on the y-axis compared to
the adsorption isotherms for methane), it is seen that, as for methane, the smallest pore
adsorbs only a very limited amount of pure hydrogen, 0.08 mmol cm−3 at 1 atm and
0.13 mmol cm−3 at 70 atm. For the larger pores, the 8 Å pore proves the most effective in ab-
solute numbers with adsorption uptakes of 0.12 mmol cm−3 (1 atm) and 3.08 mmol cm−3

(70 atm). Crucially, the uptake is always much lower than for methane, especially at low
pressures. The 14 Å and 20 Å pore are very similar in their behavior with uptakes of
0.07 mmol cm−3 and 0.06 mmol cm−3, respectively, at 1 atm and 2.70 mmol cm−3 and
2.63 mmol cm−3, respectively at 70 atm.

Looking at the hydrogen uptake from the methane/hydrogen mixture, it is seen that
there is a strong influence from methane on the adsorption behavior of hydrogen for the
three largest pores. Indeed, the presence of methane seriously hinders the adsorption
of hydrogen, lowering the molecular uptake substantially to 0.05 mmol cm−3 for the
8 Å pore, 0.04 mmol cm−3 for the 14 Å pore and 0.03 mmol cm−3 for the 20 Å pore at
1 atm and 0.35 mmol cm−3, 0.50 mmol cm−3 and 0.62 mmol cm−3 at 70 atm, respectively.
Interestingly, the hydrogen uptake behavior as a function of the pore size is now reversed
compared to the pure hydrogen gas as the largest pore adsorbs the highest amount of
hydrogen per unit of volume. This relates to the lost selectivity of larger pores at high
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pressures, whereby all available molecules are pushed into the available volume. The 5 Å
pore adsorbs 0.08 mmol cm−3 and 0.11 mmol cm−3 at 1 atm and 70 atm, respectively. These
numbers are very similar as for the pure hydrogen gas given the very low adsorption of
methane from the mixture. Taken together with the results for the methane gas from the
mixture, this means that a graphene-based adsorbent, with an interlayer distance of 8 Å
is the most efficient one for methane capture and separation from the equimolar mixture
over the entire pressure range.

Langmuir models were fitted to the adsorption isotherms for the three larger pores
(i.e., 8 Å, 14 Å and 20 Å) for which the parameters are given in Table 3. The smallest studied
pore of 5 Å was left out since the very low uptake numbers do not allow for a reasonable
fitting of a Langmuir isotherm. Indeed, with the exception of the 5 Åpores, all Langmuir
fittings showed R2 values of at least 0.985. It is seen that, for methane, the adsorption
capacity rises with increasing interlayer distance, while the Langmuir equilibrium constant,
k, decreases. Since a larger k constant indicates a strong interaction with the solid material,
this suggests that better adsorption will be possible in smaller pores. The same trends are
observed for hydrogen, but the equilibrium constants are substantially smaller as could
be inferred from the adsorption isotherms themselves. For the mixture, it is seen that the
presence of the other gas, clearly influences the fitting parameters of the isotherm. For the
methane gas, qm behaves quite similar for the 8 Å and the 14 Å pores, while it is smaller
in the mixture than in the pure gas for 20 Å pores. In general, the equilibrium constants
are lower in the equimolar mixture, indicating a less favorable adsorption for methane in
the mixture. For the hydrogen molecule, the qm parameters are one order of magnitude
higher in the pure gas than in the mixture, while the equilibrium constants are one order of
magnitude lower.

Table 3. Parameters for a fitted Langmuir isotherm against the calculated values from Figure 2. qm in
mmol cm−3 and k in atm−1.

Pore
Pure CH4 Pure H2 CH4 Mixt. H2 Mixt.

qm k qm k qm k qm k

8 Å 11.405 0.909 7.833 0.009 11.023 0.536 0.405 0.048
14Å 22.470 0.023 13.094 0.004 24.420 0.010 0.716 0.029
20 Å 31.178 0.008 18.170 0.002 19.898 0.007 0.989 0.020

A comparison between the uptake in the pore and the possible uptake of bulk gas in
an empty container, is given as excess adsorption isotherms in Figure 3 and the explicit
values at 1 atm and 70 atm can be found in Table 4. As explained before, the plots give the
uptake in the pore that is higher (in excess) than the uptake in an empty container (i.e.,
bulk gas). This thus allows a good assessment of the pores’ efficiency to capture and store
the studied gases.
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Figure 3. Excess adsorption isotherms for pure methane (top left), methane from the equimolar
mixture (top right), pure hydrogen (bottom left) and hydrogen from the equimolar mixture (bottom
right) at 300 K. Please notice the different scales on the y-axes.

Table 4. The excess uptakes in mmol cm−3 for the pure methane, pure hydrogen and both in their
equimolar mixture at pressures of 1 atm and 70 atm (between brackets), both at 300 K.

Pore Size (Å) Pure CH4 Pure H2 CH4 Mixt. H2 Mixt.

5 0.04 (−3.08) 0.04 (−2.60) −0.04 (−3.17) 0.04 (−2.63)
8 5.46 (8.44) 0.08 (0.34) 3.93 (7.77) 0.01 (−2.39)
14 0.46 (10.50) 0.03 (−0.03) 0.25 (6.95) −0.00 (−2.24)
20 0.29 (8.27) 0.02 (−0.11) 0.15 (3.61) −0.01 (−2.12)

For pure methane, it is seen that the 5 Å pore, which showed close to no adsorption,
has an excess amount of molecules adsorbed of 0.04 mmol cm−3 and −3.08 mmol cm−3 at
1 atm and 70 atm, respectively. This indicates that the presence of the graphene sheets is
actually prohibiting methane molecules to enter the simulation box, rather than adsorbing
them. Looking at the equilibrium distance of the Cgraph-CH4 interaction, the methane
molecule prefers to maintain an ideal distance of 3.938 Å to either graphene sheet which is
not possible in a pore of only 5 Å. Moreover, the closeness of the methane to the graphene
sheets forces the molecules out of the pore through repulsive interactions. From the
remaining pores, it is clear that all three of them have a higher molar density than the
bulk phase as is evidenced by the strongly positive excess adsorption isotherms at high
pressures with uptakes of 8.44 mmol cm−3, 10.50 mmol cm−3 and 8.27 mmol cm−3 at
70 atm for the 8 Å , 14 Å and 20 Å pores, respectively. At low pressures, the 8 Å pore is
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seen to be very efficient with an excess uptake of 5.46 mmol cm−3 at 1 atm, whereas the
14 Å and 20 Å pore adsorb only 0.46 mmol cm−3 and 0.29 mmol cm−3, respectively.

As already indicated by the absolute adsorption isotherms, the adsorption efficiency
slightly lowers when going from pure methane to methane from the mixture. Indeed,
these numbers drop slightly to −0.04 mmol cm−3, 3.93 mmol cm−3, 0.25 mmol cm−3

and 0.15 mmol cm−3 in increasing pore size order, at 1 atm and to −3.17 mmol cm−3,
7.77 mmol cm−3, 6.95 mmol cm−3 and 3.61 mmol cm−3 at 70 atm. Interestingly, the excess
adsorption isotherm for the 8 Å pore for both pure methane and methane from the mixture,
show a negative gradient above 15 atm (the pressure whereby the pore is saturated),
indicating that the density rises faster with increasing pressure in an empty container
than in the pore. At this point, the gas molecules would prefer to stay in the bulk volume
over going inside the pore as they will lose entropy by being confined at this pressure.
Similar trends were found for a 0.8/0.2 CH4/H2 mixture in carbon cilindrical cavities,
where indeed, larger pores showed lower adsorption and only the smallest pores maxima
in their excess adsorption isotherms. [15] Differently to our results, however, they reported
substantial methane adsorption in a pore of only 4.6 Å diameter; note that these were
not slit-shaped pores though and the geometry of the pore plays a key role at these small
pore sizes.

For pure hydrogen in the 5 Å pore, the excess adsorption is mostly strongly negative
(0.04 mmol cm−3 at 1 atm, but−2.63 mmol cm−3 at 70 atm) meaning that, although the pore
does adsorb hydrogen, there is a lot less hydrogen present in the pore than there would be
in the same volume of bulk hydrogen. The 8 Å pore shows a slight advantage compared
to the bulk molar density, although this advantage is only present at low pressures and
slowly dwindles with increasing pressure as can be seen by the maximum that is present
in the excess adsorption isotherm, uptakes of 0.08 mmol cm−3 and 0.34 mmol cm−3 are
reported for pure hydrogen at 1 atm and 70 atm and −2.39 mmol cm−3 for hydrogen
from the mixture at the same pressures. For the larger pores, it seems like the graphene
barely influences the amount of hydrogen gas in the simulation box, as the large size
of the pore compared to the hydrogen molecules (and the relatively weak interaction
with graphene), leaves the hydrogen molecule as in bulk. For the 14 Å pore, uptakes of
0.03 mmol cm−3 and −0.005 mmol cm−3 are found at 1 atm for the pure hydrogen and
hydrogen from the mixture, while −0.03 mmol cm−3 and −2.24 mmol cm−3 are found
at 70 atm. The values for the 20 Å pore are almost equal with an excess adsorption
of 0.02 mmol cm−3 and −0.11 mmol cm−3 for the pure hydrogen at 1 atm and 70 atm,
respectively, and −0.01 mmol cm−3 and −2.12 mmol cm−3 at the same pressures for
hydrogen from the mixture. The above results for the absolute adsorption isotherms
are confirmed in the sense that adsorption of hydrogen from the gas mixture is strongly
disfavored, leading to strongly negative excess adsorption isotherms. The smallest pore
(i.e., 5 Å) shows an excess adsorption of 0.04 at 1 atm and −2.63 at 70 atm, while the 8 Å
pore shows an adsorption of 0.01 at 1 atm and −2.39 at 70 atm. The two largest pores
(14 Å and 20 Å) have an excess adsorption of −0.005 mmol cm−3 and −0.01 mmol cm−3

at 1 atm, respectively and −2.24 mmol cm−3 and −2.12 mmol cm−3 at 70 atm. A similar
qualititative result was reported by [15] for hydrogen adsorption from a 0.2/0.8 CH4/H2
mixture on carbon cilindrical cavities: Lowering excess adsorption curves with increasing
pore size, which reach a maximum at relatively low pressures.

Figure 4 shows the isosteric heats of adsorption, as a function of pressure, for the pure
methane gas and the pure hydrogen gas in the 8 Å, 14 Å and 20 Å pores. The 5 Å pore is
left out since the isosteric heat is very close to 0 as almost no methane gas is adsorbed in
this pore. The 8 Å pore shows a high isosteric heat compared to the 14 Å and 20 Å pores,
indicating a stronger adsorption of the methane molecule in this pore as observed before.
Interestingly, the isosteric heat is about twice the size of the larger pores which may be
explained by the fact that in the 8 Å pore, the methane molecules are in ideal position to
adsorb to both graphene sheets at the same time leading to an interaction that is twice
as strong. For the larger pores, the molecules adsorb to only one sheet and feel a lower
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influence from the opposing graphene sheet. This is further confirmed by the observation
that the 14 Å shows a slightly higher isosteric heat than the 20 Å pore, the closeness of the
opposing graphene sheet, seems to substantially influence the isosteric heat. For hydrogen,
the three larger pores all show a maximum at lower pressures, lowering into a plateau at
higher pressures. Again, the 8 Å pore has by far the highest isosteric heat, followed by
the 14 Å and then the 20 Å pore. While the adsorption isotherm showed little difference
between these three pores, the difference is clear in the isosteric heat of adsorption. Again,
these results are significantly higher than values reported in the literature for zeolites,
MOFs and activated carbons. Indeed, a comparison between some adsorbents is made in
the work by Abdulsalam et al. [59] and only some types of multi-walled carbon nanotubes
are reported to have isosteric heats (Qm = 9.91 kcal mol−1) close to the value reported for
the 8 Å pore in this work. The remaining adsorbents all have isosteric heats lower than
7 kcal mol −1.

Figure 4. The isosteric heat of adsorption for methane and molecular hydrogen within the inves-
tigated pores and at the entire pressure range considered and at 300 K. Please notice the different
scales on the y-axes.

The results that were so far presented allow drawing some conclusions on the ad-
sorption behavior of pure methane, pure hydrogen and their equimolar mixture on the
investigated pores. First of all, the slit-shaped pores show a clear preference for the ad-
sorption of methane over hydrogen. Indeed, at the chosen temperature, much more pure
methane is adsorbed into the pores than pure hydrogen with the exception of the small-
est pore, which is too small to accommodate methane molecules. Secondly, there is a
correlation between the closeness of the opposing graphene sheet and the affinity of the
pore to adsorb gas molecules due to overlapping of either graphene sheet with the gas
molecule. Indeed, it is suggested that a slit-shaped pore with the size of twice the van
der Waals interaction of the adsorbate is most ideal as it maximizes the interaction with
both pore walls. This was also noted by Rzepka et al. and Kuchta et al. [60,61] for the
adsorption of molecular hydrogen in a 7 Å pore. While such a pore was not considered
in this work, it can be inferred that a 7 Å pore would outperform the 8 Å pore in terms of
hydrogen adsorption. However, the difference is not expected to be large enough to make
the considered slit-pores very attractive for hydrogen adsorption. Thirdly, large pressures
are needed in order for the larger pores to outperform the smaller ones as their adsorption
isotherm saturates a lot slower with rising pressure. These conclusions hold for both
methane and hydrogen, even though the latter has less affinity for the investigated pores.
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Indeed, for hydrogen it was already found in the past that pristine graphene pores are not
able to adsorb large amounts of molecular hydrogen at room temperature [62]. However,
in a context of gas separation as is under investigation here, this can be beneficial if the
difference in adsorption capacities of both molecules is sufficiently large as is shown below.
Finally, it is important to bare in mind that the temperature plays a key role in adsorption,
although its effect was outside the scope of this study as the focus was specifically on room
temperature conditions for ease of application. Indeed, 300 K is a very high temperature for
hydrogen compared to its critical point, while it is a relatively low temperature for methane.
As such, different performance results may be obtained at other temperatures as has been
established in the past by Bénard et al. [63]. Indeed, they found that the adsorption of
hydrogen on pristine graphene pores can reach considerable levels at low temperatures.

Figure 5 gives the selectivity of methane over hydrogen for the different pores consid-
ered. It is seen that the 8 Å gives by far the highest selectivity and that it shows a peak at
around 2 atm, to be 85.3. Furthermore, the selectivity at 1 atm is still very high at 76.68 thus
suggesting again that a graphene slit pore of 8 Å is very suitable for methane separation
from hydrogen. The larger pores also show lower selectivities without a maximum, where
it is clear that larger pores show a smaller preference for methane over hydrogen. This
confirms the idea that graphene-based materials with tuned larger pores are less selective
and allow easier entrance of the hydrogen molecules in this case. The 5 Å pore is a special
case which favors the adsorption of hydrogen based on molecular size, thus giving a
selectivity very close to 0, although the small amount of H2 molecules entering keeps it
from being very useful as mentioned before.

Figure 5. Selectivity for the different pores of methane over hydrogen for an equimolar mixture in
the entire considered pressure range.

Kumar et al. [11] have reported equimolar methane/hydrogen selectivities for different
graphite slit-pore widths at 298 K. They found the same trend of decreasing selectivity
with increasing pore size, although they found that the selectivity decreased with rising
pressure for a given pore. In our results, the selectivity rises slightly with the pressure and
then seems to stabilize. Similar to our results, they found an extremely high selectivity,
around 250, for the methane molecule in a 7.3 Å pore which is comparable to our 8 Å pore
having a very high selectivity. This selectivity drops very fast when increasing the pore
size already below 20 for a 12 Å pore. Furthermore, they reported a selectivity of around
10 for the 15 Å pore and around 8 for the 19 Å pore. These results are in the same range as
our 14 Å and 20 Å pore results. The differences in the values in their work and this work
may be explained by the use of a generic force field with Lorentz-Berthelot mixing rules,
while this work used a tailor-made force field.
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3.2. Molecular Picture

In order to gain insight on the molecular distribution of the gas molecules within the
pores, z-density profiles were calculated as shown in Figure 6 at 1 atm and Figure 7 at 70 atm.
To ease comparison, reduced distance units were used meaning that the two graphene
sheets are located at 0 and 1 on the x-axis. More specifically, the distance, r, is divided by
the respective interlayer distances to obtain the reduced distance, d. Relevant snapshots
with the host molecules configurations for these simulations are given in Supplementary
Materials at both 1 atm and 70 atm.

Figure 6. Z-density profiles at 1 atm for pure methane (top left), methane in the mixture (top right),
pure molecular hydrogen (bottom left) and molecular hydrogen from the mixture (bottom right) in
the different considered pores at 300 K. Reduced distance units are used so that the graphene sheets
of the pores are located at 0 and 1 on the x-axis. Please notice the different scales on the y-axes.

For pure methane at a pressure of 1 atm, it is seen that close to no molecules are
adsorbed in the 5 Å pore, while a single, strong adsorption layer is present in the middle
of the 8 Å pore. For the larger pores, two different adsorption layers are found, one on
either graphene sheet. It is seen that the adsorption layers for the 14 Å pore are positioned
slightly further from the graphene sheets than in the 20 Å pore. This is presumably caused
by the opposing graphene sheet in the 14 Å pore being closer than in the 20 Å pore and
pulling the adsorption layer slightly further from the ideal position to the closest graphene
sheet. The simulated molecular distribution is very similar in nature as in the simulations
reported by Yu et al. [64] for a 10 Å and 20 Å pore as well as the center of mass probability
distributions for methane adsorbed in graphene reported by Collins et al. [65]. For the
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mixture, all pores behave very similar as for the pure gas. For the 5 Å pore, there is
still barely any methane adsorption, while the 8 Å, 14 Å and 20 Å pores show the same
qualitative behavior as for the pure methane, but at slightly lower quantities.

Figure 7. Z-density profiles at 70 atm for pure methane (top left), methane in the mixture (top right),
pure molecular hydrogen (bottom left) and molecular hydrogen from the mixture (bottom right) in
the different considered pores at 300 K. Reduced distance units are used so that the graphene sheets
of the pores are located at 0 and 1 on the x-axis. Please notice the different scales on the y-axes.

For the adsorption of pure hydrogen in the 14 Å and the 20 Å pores, two adsorption
layers are seen close to the graphene sheets, but there is a substantial gas phase in the
middle, where gas molecules are free to behave as bulk hydrogen. This bulk phase is not
present in the 8 Å pore because of a lack of space, the small size of the hydrogen molecule
does allow for the presence of two overlapping adsorption layers. The 5 Å pore, conversely,
shows one single adsorption layer in the middle of the pore. In the mixture the quantitative
picture is very different for the three largest pores as the presence of methane strongly
influences the hydrogen adsorption. However, qualitatively, the situation is quite similar
with still 2 overlapping adsorption layers in the 8 Å pore, a single adsorption layer in the
5 Å pore and two separate layers with a bulk gas phase in the middle, for the largest pores.

It is interesting to note that the competition in the larger pores is stronger and more
hydrogen is able to enter the pore compared to the 8 Å pore. This is caused by space
left in the middle of the pore by methane. Indeed, it is clearly seen that in the middle
of the pore, the space is occupied by hydrogen molecules, more than methane as has
been observed previously [15]. This is due to the preferential adsorption of methane into
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graphene versus hydrogen, as already inferred from Figure 5 (selectivity curves), while
hydrogen preferentially takes up the middle region of the pore

At 70 atm there is a very large increase in the amount of methane molecules that can
enter the respective pore. Indeed, the single layer of methane in the 8 Å pore shows an
increase by a ten-fold in the amount of molecules that adsorb. Likewise for the 14 Å and
20 Å pores, the largest adsorption layers increase considerably, while a third adsorption
layer is found in the former and even a fourth in the latter. Indeed, there is now a large
proportion of methane molecules present in the middle of the pore, contrary to the situation
at 1 atm, which forms second adsorption layers (when seen from the viewpoint of the
graphene sheet) instead of forming bulk gas as was the case for hydrogen. In the 5 Å pore,
there is still no considerable adsorption found, even at this high pressure, due to steric
effects as already mentioned.

It was shown in the previous sections that the higher the pressure, the lower the
advantage of the graphene pore becomes compared to an empty container at the same
pressure. Again, this behavior can be understood by looking at the z-density profile and
considering the equilibrium distance for the graphene-methane interaction, the pore of
8 Å allows methane molecules to enter the pore and sit in a position where the centre of
mass is located more or less at the ideal distance from both graphene sheet feeling optimal
attraction from both. There is, however, only a small region where this is possible and once
this layer is saturated, the amount of molecules that further enter the system lowers. Newly
entering molecules will now be forced to be placed closer to the graphene sheets, costing
more energy. For the larger pores of 14 Å and 20 Å, the saturation of the pore requires
larger pressures. There are now two ideal positions for the methane molecules, at either
graphene sheet. As these ideal positions gets filled up, there is still room left in the middle
of the pore to take up less ideal positions.

For hydrogen, it is interesting that, whereas at 1 atm, the 5 Å pore showed the highest
adsorption peak, at 70 atm this is replaced by the 8 Å pore, where an overlapping double
layer is found. In general, as expected, much larger quantities of molecules are adsorbed
under these high pressures. It is also notable that no third or fourth adsorption layer is
observed in the larger pore, but rather a large bulk gas is present in the middle of the pore
reinforcing the results that, at these conditions of temperature and pressure, hydrogen is
not attracted by graphene.

Interestingly, the effect of the high pressure is rather limited on the behavior of the
methane gas within the mixture. Whereas it could be expected that large pressures make
any molecule adsorb, rendering the pore less selective, this effect is quite limited. Indeed,
the z-density profile for methane in the mixture is rather similar to the profile of the pure
methane gas. Conversely, the hydrogen is significantly prohibited to adsorb in the pore in
the presence of methane, leaving only small amounts of adsorption. The exception being
of course the 5 Å pore, where methane molecules do not enter and thus not hinder the
hydrogen adsorption.

4. Conclusions

In this work, the adsorption of methane, hydrogen and their equimolar mixture in
graphene structires with slit-shaped pores of different sizes was investigated at a large
pressure range and a temperature of 300 K using GCMC simulations and a tailor-made
ILJ force field. Specific attention was dedicated to the role of the pore size, by means
of varying the interlayer distance (between 5 Å and 20 Å) between the graphene pore
walls. Absolute and excess adsorption isotherms, isosteric heats, selectivities and z-density
profiles were calculated.

The obtained adsorption isotherms showed that the 8 Å, 14 Å and 20 Å pores are
capable of adsorbing a large amount of methane, substantially outperforming an empty
container of the same size. Thereby, the 8 Å pore was the most efficient one at pressures
below 40 atm and the 14 Å was most efficient at higher pressures leading to an isosteric heat
of about twice the value compared to that obtained for larger pores. For pure hydrogen
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systems at these conditions, only the 8 Å pore showed some benefit compared to an empty
container, while the 14 Å and 20 Å pores barely influenced the presence of hydrogen in
the simulation box. The smallest considered pore of 5 Å pore proved too be to narrow to
adsorb substantial amounts of methane and/or hydrogen. For the mixture, it was shown
that methane is strongly favored over hydrogen since almost no hydrogen was adsorbed
in all considered pores and the methane adsorption was only hindered to a small extent by
the present hydrogen. This is very good, for instance, to remove CH4 as impurities from a
hydrogen stream.

The isosteric heats of adsorption showed a decreasing trend with increasing pore size
due to the diminishing interaction of the adsorbate with the opposing graphene sheets.
Indeed, in the 8 Å pore, the methane molecules are capable of positioning themselves at
the ideal distance of either graphene sheet. For larger pores, the adsorbed molecule is
forced to ’choose’ between either graphene sheet and the interaction with the other sheet
diminshes with increasing interlayer distance. This is also reflected in the z-density profiles
where it is seen that the adsorption layers on a given graphene sheet are located closer
to that graphene sheet when the interlayer distance increases and the attraction of the
opposing sheet dwindles. In accordance with the adsorption isotherms, the isosteric heat
for hydrogen is about 4 to 5 times lower than for methane.

Given the clear preference of the pore walls for methane over hydrogen, a very
high selectivity was found for the 8 Å, 14 Å and 20 Å pores. Especially the 8 Å pore
showed a selectivity of over 80 at relatively low pressures, but also the larger pores
show selectivities above 10 over the entire pressure range. Overall, the use of fine-tuned
graphene pores seems very promising for the separation of methane/hydrogen mixtures
at reasonable operating conditions. Given the use of more advanced pore materials at
optimized interlayer distances, such as graphyne, gyroid materials, pillared materials or
square pores, the adsorption and separation capacities may be further increased.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1:
Gravimetric adsorption isotherms at 1 atm for pure methane, pure hydrogen and their equimolar
mixture. Figure S2: Gravimetric adsorption isotherms at 70 atm for pure methane, pure hydrogen and
their equimolar mixture. Figures S3–S23: Snapshots at 1 atm for pure methane, pure hydrogen and
their mixture. Figure S4: Snapshots at 70 atm for pure methane, pure hydrogen and their mixture.
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