

### Supporting Information

for Adv. Sci., DOI 10.1002/advs.202408311

RNF112 Facilitates Ubiquitin-Mediated Degradation of c-Myc, Suppressing Proliferation, Migration and Lipid Synthesis in Bladder Cancer

Kangping Xiong, Siming Chen, Huimin Xu, Sheng Tu, Hong Weng, Yejinpeng Wang, Mingxing Li, Jingtian Yu, Kaiyu Qian, Lingao Ju, Yi Zhang, Yu Xiao\*, Xinghuan Wang\* and Gang Wang\*

## **Supplementary Information**

# RNF112 Facilitates Ubiquitin-Mediated Degradation of c-Myc, Suppressing Proliferation, Migration and Lipid Synthesis in Bladder Cancer

Figures S1-S11: Pages 2-21

Tables S1-S6: Pages 22-28

Description of Datasets S1-S3: Pages 29

#### Figures S1-S11

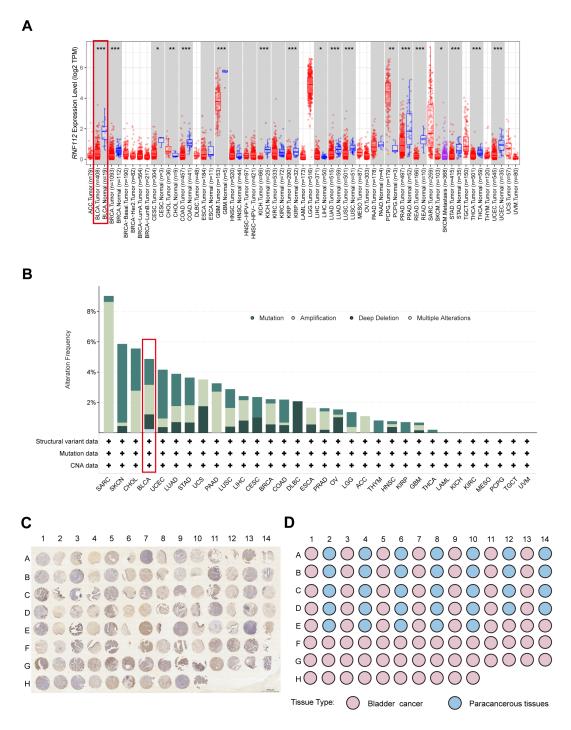



Figure S1. RNF112 is downregulated and mutated across cancers. Related to Figure 1.

(A) RNF112 mRNA expression across cancers was analyzed with the TIMER 2.0 online database (http://timer.comp-genomics.org/timer/). (B) Mutations and deep deletions of

RNF112 across cancers were analyzed via the cBioPortal website (https://www.cbioportal.org/). (C) IHC images of HBlaU108Su01 cohort. Scale bar = 2 mm. (D) Distribution of BLCA and paracancerous tissues samples.

Abbreviations in the Figure S1: BLCA: bladder urothelial carcinoma; SARC: sarcoma; SKCN: skin cutaneous melanoma; CHOL: cholangiocarcinoma; UCEC: uterine corpus endometrial carcinoma; LUAD: lung adenocarcinoma; STAD: stomach adenocarcinoma; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; UCS: uterine carcinosarcoma; PAAD: pancreatic adenocarcinoma; LIHC: liver hepatocellular carcinoma; CESC: cervical squamous cell carcinoma; BRCA: breast invasive carcinoma; COAD: colorectal adenocarcinoma; DLBC: diffuse large B-cell lymphoma; PCPG: pheochromocytoma and paraganglioma; ESCA: esophageal adenocarcinoma; PRAD: prostate adenocarcinoma; OV: ovarian serous cystadenocarcinoma; LUSC: lung squamous cell carcinoma; ACC: adrenocortical carcinoma; THYM: thymoma; KIRP: kidney renal papillary cell carcinoma; GBM: glioblastoma multiforme; THCA: thyroid carcinoma; LAML: acute myeloid leukemia; KICH: kidney chromophobe; LGG: brain lower grade glioma; MESO: mesothelioma; TGCT: testicular germ cell tumors; UVM: uveal melanoma. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.

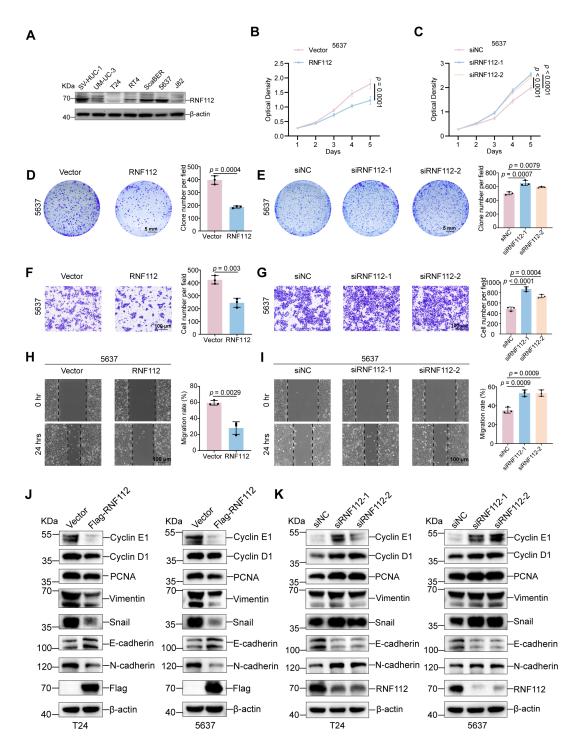
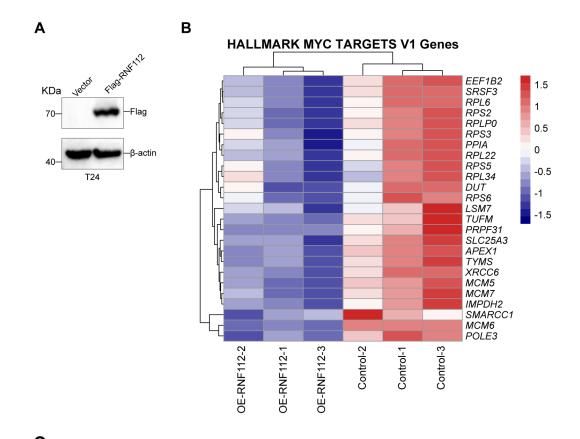




Figure S2. RNF112 inhibits BLCA growth and metastasis *in vitro*. Related to Figure 2.

(A) RNF112 protein expression in SV-HUC-1 cells and various BLCA cell lines was detected by Western blot analysis. (B-C) The viability of 5637 cells with RNF112 knockdown (B) or overexpression (C) was determined via CCK-8 assays (n = 6). (D-E) Representative images of plate colony formation assays after the overexpression (D)

or knockdown (E) of RNF112 in 5637 cells and the corresponding statistical graphs (n = 3). Scale bar = 5 mm. **(F-G)** Representative images of transwell migration assays after overexpression (F) or knockdown (G) of RNF112 in 5637 cells and the corresponding statistical graphs (n = 3). Scale bar = 100 µm. **(H-I)** Representative images of wound healing assays after the overexpression (H) or knockdown (I) of RNF112 in 5637 cells and the corresponding statistical graphs (n = 3). Scale bar = 100 µm. **(J-K)** Western blot analysis was performed to detect changes in proliferation-associated proteins and EMT-associated proteins in 5637 and T24 cells after overexpression (J) or knockdown (K) of RNF112. *p*-values were determined by two-tailed unpaired Student's t-test (B, D, F, and H) and one-way ANOVA with Dunnett's multiple comparisons (C, E, G, and I). The data are shown as the means ± SDs.



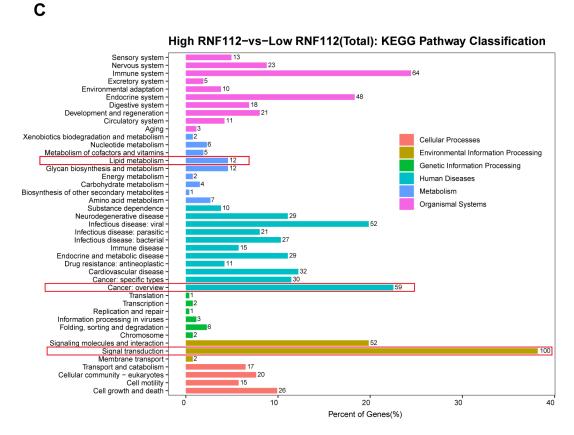



Figure S3. RNA-seq analysis revealed that RNF112 was associated with the MYC pathway and lipid synthesis in BLCA cells. Related to Figure 2 and Figure 3.

(A) Western blot analysis was used to verify the successful establishment of two stable T24-overexpressing cell lines (control and Flag-RNF112). (B) Heatmap diagram showing the top 25 genes in the HALLMARK MYC TARGETS V1 gene rankings in the control and RNF112-overexpressing groups from RNA-seq assays. p-value < 0.05 [or FDR < 0.25] was set as the threshold for the enrichment and reliability of the gene set. (C) KEGG pathway classification analysis of differentially expressed genes in the RNA-seq results.

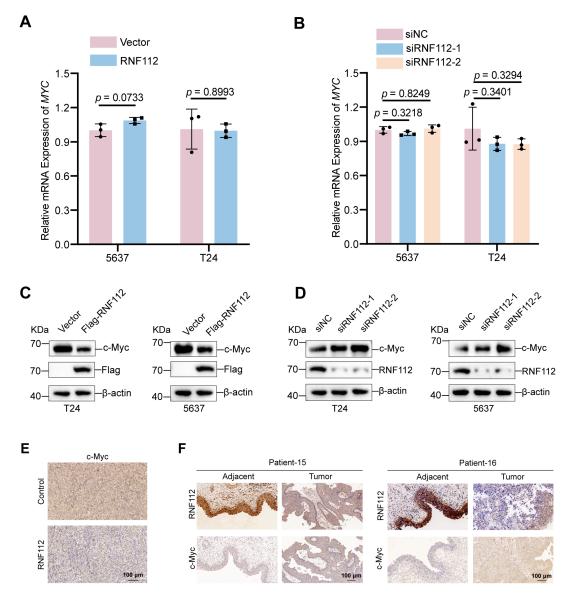



Figure S4. RNF112 downregulated c-Myc protein levels without affecting *MYC* mRNA levels. Related to Figure 4.

(A-B) Effects on MYC mRNA expression after the overexpression (A) or knockdown (B) of RNF112 in 5637 and T24 cells were detected via qRT-PCR (n = 3). (C-D) The effects of RNF112 overexpression (C) or knockdown (D) on the c-Myc protein in 5637 and T24 cells were detected by Western blot analysis. (E) Representative images of IHC staining of tumor tissue from subcutaneous xenografts in the control and RNF112-overexpressing groups. Scale bar = 100  $\mu$ m. (F) Representative IHC staining of RNF112 and c-Myc in serial tumor tissue sections (n = 3) from Zhongnan Hospital. Scale bar = 100  $\mu$ m. The p-values were determined by two-tailed unpaired Student's t-

test (A) and one-way ANOVA followed by Dunnett's multiple comparisons (B). The data are shown as the means  $\pm$  SDs.

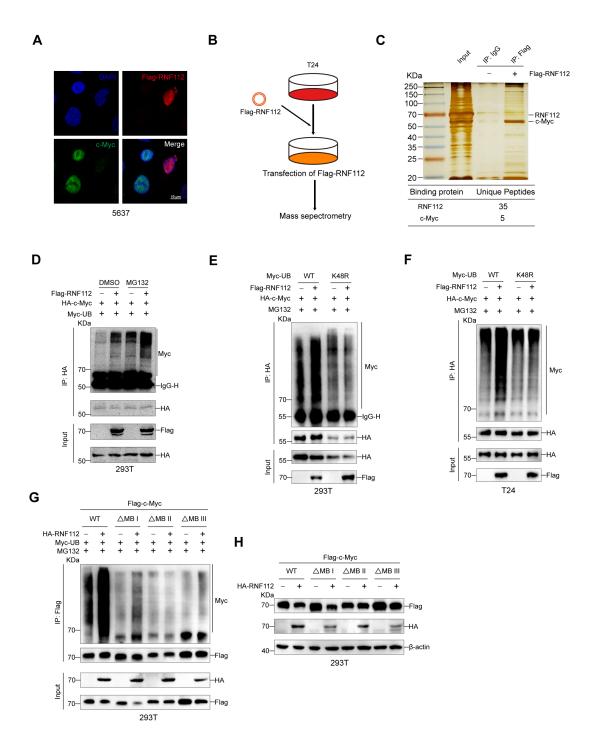



Figure S5. RNF112 bound to the MBII structural domain of c-Myc and promoted its degradation via ubiquitination. Related to Figure 5.

(A) Immunofluorescence staining was used to detect the expression and localization of Flag-RNF112 (red) and c-Myc (green) in 5637 cells, and the nuclei were stained with DAPI (blue). Scale bar =  $10 \mu m$ . (B) Flow chart of the IP-MS analyses. (C) T24 cells were transfected with Flag-RNF112 plasmid and then subjected to IP experiments with

Flag antibody, followed by silver staining (top) and mass spectrometry (bottom). (**D**) The respective plasmids were transfected into 293T cells for 48 hrs, DMSO or MG132 (10  $\mu$ M) was added for 8 hrs, and a ubiquitination assay was used to determine the effect of RNF112 on c-Myc ubiquitination. (**E-F**) The indicated plasmids were transfected into 293T (E) and T24 (F) cells for 48 hrs, followed by the addition of MG132 (10  $\mu$ M) for 8 hrs. Ubiquitination assays were performed to detect the polyubiquitination of the c-Myc protein. (**G**) The respective plasmids were transfected into 293T cells for 48 hrs, and MG132 (10  $\mu$ M) was added for 8 hrs. Anti-Flag antibody was added to perform the ubiquitination assays. (**H**) The indicated plasmids were transfected into 293T cells for 48 hrs. Changes in the level of the Flag-c-Myc protein in each group of cells were detected by Western blot.

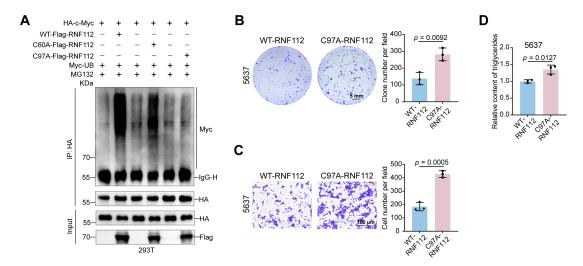



Figure S6. Functional effects of WT-RNF112 and C97A-RNF112 overexpression in 5637 cells.

(A) 293T cells were transfected with the respective plasmids for 48 hrs, and MG132 (10  $\mu$ M) was added for 8 hrs. An anti-HA antibody was added to perform the ubiquitination assays. (B) Representative images of plate colony formation assays after the overexpression of WT-RNF112 or C97A-RNF112 and the corresponding statistical graphs (n = 3) in 5637 cells. Scale bar = 5 mm. (C) Representative images of transwell migration assays after overexpression of WT-RNF112 or C97A-RNF112 and the corresponding statistical graphs (n = 3) in 5637 cells. Scale bar = 100  $\mu$ m. (D) Statistical graphs showing the relative triglyceride content after the overexpression of WT-RNF112 or C97A-RNF112 in 5637 cells. *p*-values were determined by two-tailed unpaired Student's t-test (B, C, and D). The data are shown as the means  $\pm$  SDs.

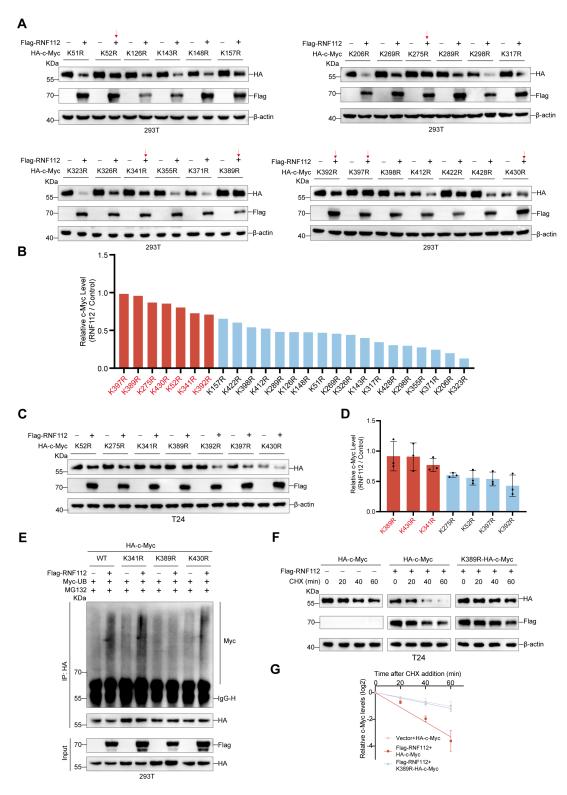



Figure S7. RNF112 promotes the ubiquitination of c-Myc at C389 Related to Figure 5.

(A) The respective plasmids were transfected into 293T cells for 48 hrs, and Western blot analysis was performed to detect the expression of various exogenous HA-c-Myc mutants. (B) Relative c-Myc protein expression levels in each group shown in Figure

S6A. **(C)** The respective plasmids were transfected into T24 cells for 48 hrs. Western blot analysis was used to detect the protein expression of HA-c-Myc in the K52R, K275R, K341R, K389R, K392R, K397R, and K430R groups. **(D)** Relative c-Myc protein expression levels in each group shown in Figure S6C. **(E)** The respective plasmids were transfected into 293T cells for 48 hrs. MG132 (10  $\mu$ M) was added for 8 hrs. An anti-HA antibody was added to perform the ubiquitination assays. **(F)** Western blot analysis was conducted by transfecting the respective plasmids into T24 cells for 48 hrs and incubating them with CHX (50  $\mu$ g/mL) for the indicated times (n = 3). **(G)** Statistics of the relative grayscale values of the c-Myc protein shown in Figure S7F.

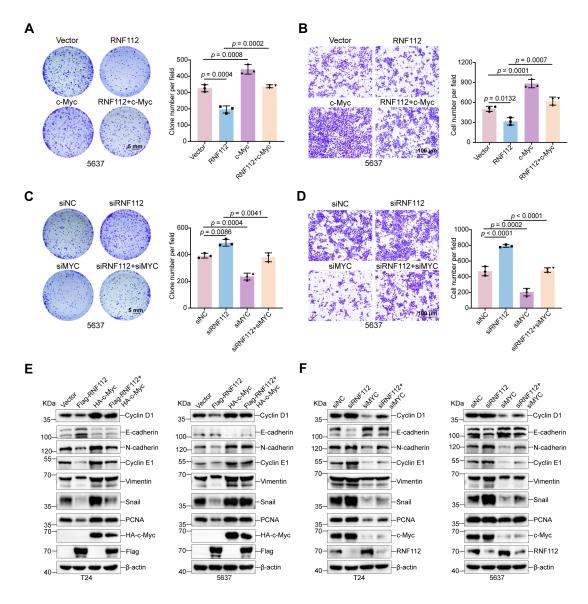



Figure S8. RNF112 inhibits BLCA progression via c-Myc *in vitro*. Related to Figure 6.

(A) Representative images (left panel) and statistical analysis (right panel) of colony formation assays in 5637 cells overexpressing RNF112 and c-Myc, respectively, or in combination (n = 3). Scale bar = 5 mm. (B) Representative images (left panel) and statistical analysis (right panel) of transwell assays in 5637 cells overexpressing RNF112 and c-Myc, respectively, or in combination (n = 3). Scale bar = 100  $\mu$ m. (C) Representative images (left panel) and statistical analysis (right panel) of colony formation assays in 5637 cells with RNF112 and c-Myc knockdown separately or in combination (n = 3). Scale bar = 5 mm. (D) Representative images (left panel) and statistical analysis (right panel) of transwell assays of 5637 cells with RNF112 and c-

Myc knockdown separately or in combination (n = 3). Scale bar = 100  $\mu$ m. (E-F) Western blot analysis was performed to detect changes in the expression of proliferation-associated proteins and EMT-associated proteins in BLCA cells with RNF112 and c-Myc overexpression (E) or RNF112 and c-Myc knockdown (F). The *p*-values were determined by one-way ANOVA followed by Dunnett's multiple comparisons test (A, B, C, and D). The data are shown as the means  $\pm$  SDs.

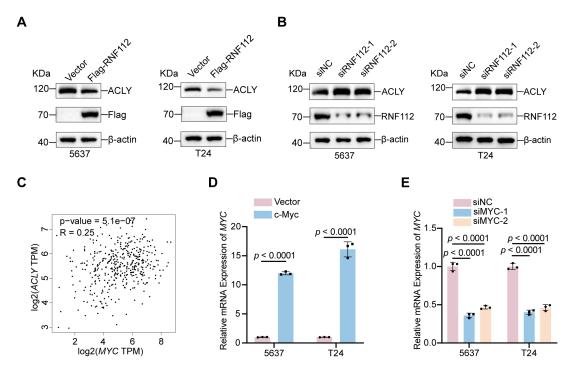



Figure S9. RNF112 was negatively correlated with ACLY protein levels, and MYC mRNA was positively correlated with ACLY mRNA. Related to Figure 7.

(A-B) Effects of RNF112 overexpression (A) or knockdown (B) on the ACLY protein detected in BLCA cells by Western blot. (C) Spearman's correlation analysis was used to estimate the correlation between ACLY mRNA and MYC mRNA in BLCA tissues in the GEPIA dataset. (D-E) qRT-PCR was used to validate the efficiency of MYC overexpression (D) or knockdown (E) in the 5637 and T24 cell lines (n = 3). p-values were determined by two-tailed unpaired Student's t-test (D) and one-way ANOVA followed by Dunnett's multiple comparisons (E). The data are shown as the means  $\pm$  SDs.

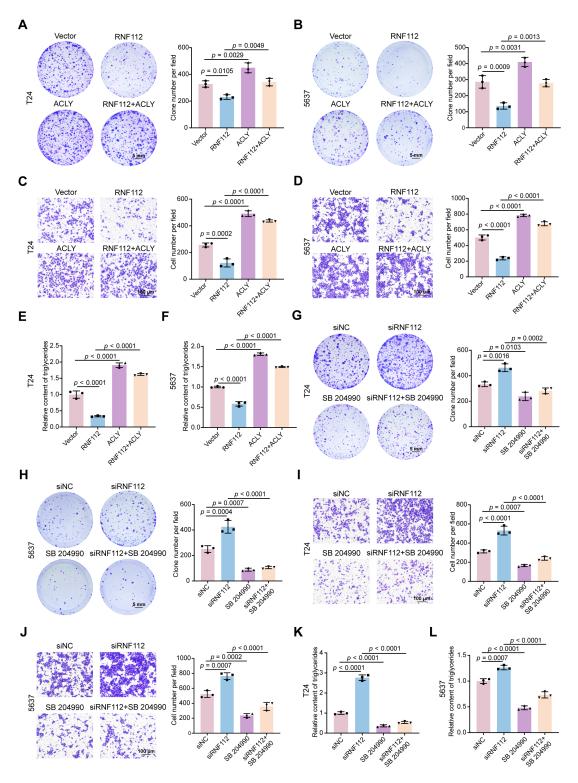



Figure S10. RNF112 inhibits proliferation, metastasis, and lipid synthesis in BLCA via ACLY.

(A-B) Representative images and statistical analysis of colony formation assays in T24 cells (A) and 5637 cells (B) overexpressing RNF112 and ACLY (n = 3). Scale bar = 5 mm. (C-D) Representative images and statistical analysis of transwell migration assays

in T24 cells (C) and 5637 cells (D) overexpressing RNF112 and ACLY (n = 3). Scale bar = 100  $\mu$ m. (E-F) Statistical graphs showing the relative triglyceride levels in T24 cells (E) and 5637 cells (F) overexpressing RNF112 and ACLY. (G-H) Representative images and statistical analysis of colony formation assays in T24 cells (G) and 5637 cells (H) with RNF112 knockdown combined with SB 204990 (30  $\mu$ M) treatment (n = 3). Scale bar = 5 mm. (I-J) Representative images and statistical analysis of Transwell assays in T24 cells (I) and 5637 cells (J) with RNF112 knockdown combined with SB 204990 (30  $\mu$ M) treatment (n = 3). Scale bar = 100  $\mu$ m. (K-L) Statistical graphs showing the relative triglyceride levels in T24 cells (K) and 5637 cells (L) in which RNF112 was knocked down in combination with SB 204990 (30  $\mu$ M) treatment (n = 3). p-values were determined by one-way ANOVA followed by Dunnett's multiple comparisons test (A-L). The data are shown as the means  $\pm$  SDs.

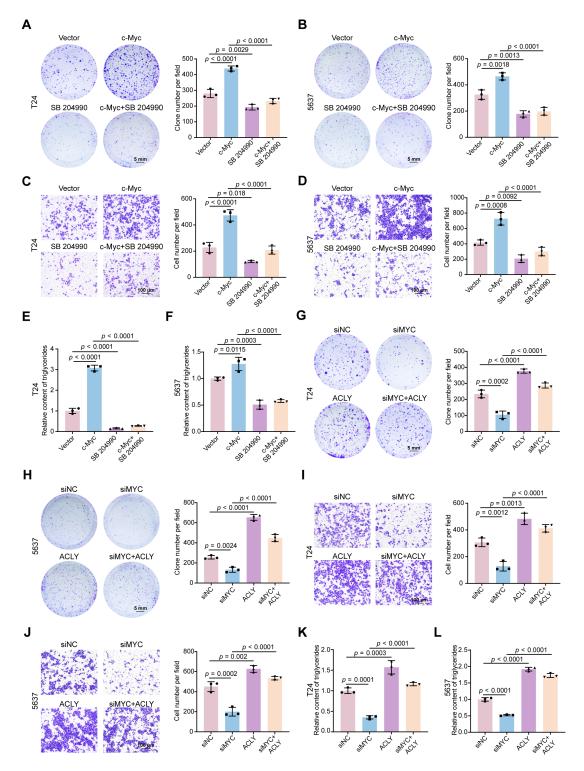



Figure S11. c-Myc promotes proliferation, metastasis, and lipid synthesis in BLCA via ACLY.

(A-B) Representative images and statistical analysis of colony formation assays in T24 cells (A) and 5637 cells (B) overexpressing c-Myc combined with SB 204990 (30  $\mu$ M) treatment (n = 3). Scale bar = 5 mm. (C-D) Representative images and statistical

analysis of transwell migration assays in T24 cells (C) and 5637 cells (D) overexpressing c-Myc combined with SB 204990 (30  $\mu$ M) treatment (n = 3). Scale bar = 100  $\mu$ m. (E-F) Statistical graphs showing the relative triglyceride levels in T24 cells (E) and 5637 cells (F) overexpressing c-Myc combined with SB 204990 (30  $\mu$ M) treatment (n = 3). (G-H) Representative images and statistical analysis of colony formation assays in T24 cells (G) and 5637 cells (H) with c-Myc knockdown combined with ACLY overexpression (n = 3). Scale bar = 5 mm. (I-J) Representative images and statistical analysis of Transwell assays in T24 cells (I) and 5637 cells (J) with c-Myc knockdown combined with ACLY overexpression (n = 3). Scale bar = 100  $\mu$ m. (K-L) Statistical graphs showing the relative triglyceride levels in T24 cells (K) and 5637 cells (L) in which c-Myc was knocked down and ACLY was overexpressed. *p*-values were determined by one-way ANOVA followed by Dunnett's multiple comparisons test (A-L). The data are shown as the means  $\pm$  SDs.

Tables S1-S6

Table S1. Clinicopathological characteristics of the HBlaU108Su01 cohort.

|            | Variables  | iables Total (n = 68) | RNF112 high RNF112 low |                     | n valua         | Statistics |
|------------|------------|-----------------------|------------------------|---------------------|-----------------|------------|
|            | variables  | 10tai (ii – 00)       | expression $(n = 34)$  | expression (n = 34) | <i>p</i> -value | method     |
| Gender     | female     | 10 (14.70)            | 3 (8.82)               | 7 (20.59)           | 0.3047          | Fisher's   |
| (%)        | male       | 58 (85.30)            | 31 (91.18)             | 27 (79.41)          | 0.3047          | exact      |
| Age (year) | ≤ 65       | 25 (37.31)            | 14 (41.18)             | 11 (33.33)          | 0.5060          | C1:        |
| (%)        | > 65       | 42 (62.69)            | 20 (58.82)             | 22 (66.67)          | 0.5069          | Chi-square |
| Subtype    | NMIBC      | 17 (26.98)            | 13 (39.39)             | 4 (13.33)           | 0.00=0          | Fisher's   |
| (%)        | MIBC       | 46 (73.02)            | 20 (60.61)             | 26 (86.67)          | 0.0250          | exact      |
| AJCC       | < Stage II | 11 (18.64)            | 8 (26.67)              | 3 (10.34)           | 0.1906          | Fisher's   |
| stage (%)  | ≥ Stage II | 48 (81.36)            | 22 (73.33)             | 26 (89.66)          | 0.1806          | exact      |
| T (0/)     | < T2       | 17 (26.98)            | 13 (39.39)             | 4 (13.33)           | 0.0250          | Fisher's   |
| T (%)      | ≥ T2       | 46 (73.02)            | 20 (60.61)             | 26 (86.67)          | 0.0250          | exact      |
| NI (0/)    | N0         | 47 (81.03)            | 23 (79.67)             | 24 (85.71)          | 0.5070          | Fisher's   |
| N (%)      | $N \ge 1$  | 11 (18.97)            | 7 (23.33)              | 4 (14.29)           | 0.5079          | exact      |
| Tumor      | ≤3 cm      | 21 (34.43)            | 12 (37.50)             | 9 (31.03)           | 0.5057          | CI.        |
| Size (%)   | > 3 cm     | 40 (65.57)            | 20 (62.50)             | 20 (68.97)          | 0.5956          | Chi-square |

**RNF112** expression group: The median RNF112 histochemistry score was the cutoff value.

Tumor size: longest diameter, cm.

**Statistical significance:** Determined by two-tailed chi-square tests or two-tailed Fisher's exact tests.

No adjustments were made for multiple comparisons.

Table S2. Clinicopathological characteristics of the Zhongnan Hospital cohort.

|         | Patients   | Age | Gender | Subtype | Grade | TNM stage |
|---------|------------|-----|--------|---------|-------|-----------|
|         | Patient-1  | 83  | Male   | MIBC    | High  | T3N0Mx    |
|         | Patient-2  | 66  | Male   | MIBC    | High  | T2bN0Mx   |
|         | Patient-3  | 76  | Female | MIBC    | High  | T2bN0Mx   |
|         | Patient-4  | 64  | Male   | MIBC    | High  | T2aN0Mx   |
|         | Patient-5  | 80  | Male   | NMIBC   | High  | T1N0Mx    |
|         | Patient-6  | 71  | Male   | MIBC    | High  | T4aN1M1   |
|         | Patient-7  | 55  | Male   | MIBC    | High  | T3N0Mx    |
|         | Patient-8  | 69  | Male   | MIBC    | High  | T4N0Mx    |
|         | Patient-9  | 59  | Male   | MIBC    | High  | T4aN0Mx   |
|         | Patient-10 | 69  | Male   | NMIBC   | Low   | T1N0Mx    |
|         | Patient-11 | 61  | Male   | NMIBC   | High  | T1N0Mx    |
|         | Patient-12 | 73  | Male   | MIBC    | High  | T3N0Mx    |
|         | Patient-13 | 65  | Male   | MIBC    | High  | T2bN0Mx   |
|         | Patient-14 | 51  | Male   | MIBC    | High  | T3bN0Mx   |
|         | Patient-15 | 69  | Male   | MIBC    | High  | T4N0Mx    |
|         | Patient-16 | 68  | Male   | MIBC    | High  | T2aN0Mx   |
|         | Patient-17 | 68  | Male   | MIBC    | High  | T2bN1Mx   |
| RT-PCR  | Patient-18 | 79  | Male   | NMIBC   | Low   | T1N0Mx    |
| ĮKI-PCK | Patient-19 | 76  | Female | MIBC    | High  | T2bN0Mx   |
|         | Patient-20 | 67  | Male   | MIBC    | High  | T3bN2Mx   |
|         | Patient-21 | 70  | Male   | MIBC    | High  | T2bN0Mx   |
|         | Patient-22 | 75  | Male   | MIBC    | High  | T2bNxMx   |
|         | Patient-23 | 87  | Male   | MIBC    | High  | T2N0Mx    |
|         | Patient-24 | 80  | Male   | MIBC    | High  | T2N0MX    |
|         | Patient-25 | 69  | Male   | NMIBC   | High  | T1N0Mx    |
|         | Patient-26 | 84  | Male   | MIBC    | High  | T3aN0Mx   |
|         | Patient-27 | 65  | Male   | MIBC    | High  | T4N0Mx    |
|         | Patient-28 | 63  | Female | NMIBC   | High  | T1N0Mx    |
|         | Patient-29 | 57  | Male   | NMIBC   | High  | T1N0Mx    |
|         | Patient-30 | 71  | Male   | MIBC    | High  | T3aN1Mx   |
|         | Patient-31 | 64  | Male   | MIBC    | High  | T2N0Mx    |
|         | Patient-32 | 65  | Male   | NMIBC   | High  | TisN0Mx   |
|         | Patient-33 | 73  | Male   | MIBC    | High  | T3N0Mx    |
|         | Patient-34 | 69  | Male   | NMIBC   | High  | T1N0Mx    |
|         | Patient-35 | 74  | Male   | MIBC    | High  | T3N0Mx    |
|         | Patient-36 | 47  | Female | NMIBC   | High  | T1N0Mx    |

|     | Patient-37 | 73 | Male   | MIBC  | High | T2N0Mx  |
|-----|------------|----|--------|-------|------|---------|
|     | Patient-38 | 50 | Male   | NMIBC | High | T1N0Mx  |
|     | Patient-39 | 82 | Male   | NMIBC | High | T1N0Mx  |
|     | Patient-40 | 55 | Female | NMIBC | High | T1N0Mx  |
|     | Patient-41 | 78 | Male   | MIBC  | High | T4N1Mx  |
|     | Patient-42 | 67 | Female | NMIBC | Low  | T1N0Mx  |
|     | Patient-43 | 93 | Male   | MIBC  | High | T4aNxMx |
|     | Patient-44 | 84 | Male   | MIBC  | High | T3aN0Mx |
|     | Patient-45 | 75 | Male   | NMIBC | High | T1aNxMx |
|     | Patient-46 | 59 | Male   | MIBC  | High | T2aN0Mx |
|     | Patient-47 | 70 | Male   | NMIBC | High | T1N0Mx  |
|     | Patient-48 | 82 | Female | MIBC  | High | T3N1Mx  |
|     | Patient-49 | 55 | Male   | NMIBC | High | T1aN0Mx |
|     | Patient-50 | 72 | Male   | MIBC  | High | T4aN0Mx |
|     | Patient-51 | 66 | Male   | NMIBC | High | T1N0Mx  |
| IHC | Patient-52 | 66 | Male   | NMIBC | Low  | T1N0Mx  |
|     | Patient-53 | 60 | Male   | NMIBC | Low  | T1N0Mx  |

**qRT-PCR:** quantitative reverse transcription PCR.

**IHC:** immunohistochemistry.

Table S3. The siRNA sequences used in this study.

| Gene      | siRNA No. | siRNA sequence (5'-3') |
|-----------|-----------|------------------------|
| DATE: 112 | si#1      | CCUGAGUGCCGGAAGAUAUTT  |
| RNF112    | si#2      | CCUUCCUCCAACCAUUUTT    |
| ) W.C.    | si#1      | GCUUGUACCUGCAGGAUCUTT  |
| MYC       | si#2      | GGAAGAAAUCGAUGUUGUUTT  |

Table S4. Primers used for the qRT-PCR assay.

| Gene           | Forward primer (5'-3')  | Reverse primer (5'-3')  |
|----------------|-------------------------|-------------------------|
| RNF112         | GCTTGGCAAACGGGAGAGAA    | CAGGCAGATGGAGCAGGTAG    |
| $\beta$ -actin | CATGTACGTTGCTATCCAGGC   | CTCCTTAATGTCACGCACGAT   |
| MYC            | GTCAAGAGGCGAACACACAC    | TTGGACGGACAGGATGTATGC   |
| ACLY           | GAAGCTGACCTTGCTGAACC    | CTGCCTCCAATGATGAGGAT    |
| ACACA          | TCACACCTGAAGACCTTAAAGCC | AGCCCACACTGCTTGTACTG    |
| SCD            | TCATAATTCCCGACGTGGCT    | CCCAGAAATACCAGGGCACA    |
| HMGCR          | TGGCAACAACAGAAGGTTGTC   | CGTGCAAATCTGCTAGTGCT    |
| FASN           | ACAGCGGGGAATGGGTACT     | GACTGGTACAACGAGCGGAT    |
| HMGCS1         | GATGTGGGAATTGTTGCCCTT   | ATTGTCTCTGTTCCAACTTCCAG |
| CPT1A          | TCCAGTTGGCTTATCGTGGTG   | TCCAGAGTCCGATTGATTTTTGC |
| CPT1B          | CCTGCTACATGGCAACTGCTA   | AGAGGTGCCCAATGATGGGA    |
| SREBF1         | ACAGTGACTTCCCTGGCCTAT   | GCATGGACGGGTACATCTTCAA  |

**qRT-PCR:** quantitative reverse transcription PCR.

Table S5. Details of the antibodies used in this study.

| Protein    | Catalog No. | Source                    | Dilution or amount            |
|------------|-------------|---------------------------|-------------------------------|
| GFP        | SC-9996     | Santa Cruz                | IF/1:200                      |
| Flag       | AE092       | ABclonal                  | IP/1 μg WB/1:1000             |
| HA         | AE105       | ABclonal                  | IP/1 μg WB/1:1000             |
| Flag       | F1804       | Sigma                     | IP/1 μg WB/1:1000 IF/1:200    |
| HA         | TA180128    | Origene                   | IP/1 μg WB/1:1000             |
| Myc-tag    | AE010       | ABclonal                  | WB/1:1000                     |
| RNF112     | A15333      | ABclonal                  | IP/1 μg WB/1:1000 IHC/1:100   |
| c-Myc      | 18583       | Cell Signaling Technology | IP/1 μg WB/1:1000 IF/1:200    |
| c-Myc      | ab32072     | Abcam                     | ChIP/8 µg WB/1:1000 IHC/1:100 |
| Snail      | 3879S       | Cell Signaling Technology | WB/1:1000                     |
| Cyclin D1  | ab134175    | Abcam                     | WB/1:1000                     |
| Cyclin E1  | ab33911     | Abcam                     | WB/1:1000                     |
| Vimentin   | 5741S       | Cell Signaling Technology | WB/1:1000                     |
| Ki67       | ab16667     | Abcam                     | IHC/1:200                     |
| GST        | 10000-0-AP  | Proteintech               | WB/1:1000                     |
| His        | 66005-1-Ig  | Proteintech               | WB/1:5000                     |
| ACLY       | A3719       | ABclonal                  | WB/1:1000                     |
| E-cadherin | 3195        | Cell Signaling Technology | WB/1:500                      |
| N-cadherin | 13116       | Cell Signaling Technology | WB/1:500                      |
| PCNA       | 10205-2-AP  | Proteintech               | WB/1:1000                     |
| β-Actin    | AC026       | ABclonal                  | WB/1:1000                     |

WB: Western blot.

**IF:** immunofluorescence. **IHC:** immunohistochemistry.

ChIP: Chromatin immunoprecipitation.

Table S6. Primers used for the ChIP assay.

| Amplicons | Forward primer (5'-3')  | Reverse primer (5'-3')  |
|-----------|-------------------------|-------------------------|
| ACLVDI    | GTCAGATGTGTAGTTTTGTGGTT | CCCAGTGCATACTCAATTTTATA |
| ACLY-P1   | AG                      | GAT                     |
| ACLV D2   | AATAATGTTGCTGGTTGGTGCA  | TTGGGATTACAGGCATGTCCCAC |
| ACLY-P2   | GCA                     | C                       |
| ACLY-P3   | GCCGGTTAATCATGAAACATTT  | TTCACTGATTTTTGATGGACACA |
| ACLI-P3   | AAGT                    | CT                      |
| ACLY-P4   | GGGCCAGGGAGTGATGATTGCG  | AACTCCAGAGAGAACCGCCAGA  |
| LDHA      | TCCTGACTCAGGCTCATGGC    | AGACAACCGACCGGCAGA      |

**ChIP:** Chromatin immunoprecipitation.

#### **Description of Datasets S1-S3**

#### Dataset S1. Details of the hallmark pathways enriched by GSEA.

Pathways enrichment analysis of the gene expression data obtained from RNA-seq (GSE270143) was performed via hallmark gene sets.

#### Dataset S2. Differential metabolites.

Differential metabolites from LC-MS-based untargeted metabolomics analysis using BLCA T24 cells overexpressing RNF112 and control cells. Metabolites were considered significantly different if they met the criteria of p-value < 0.05 and a fold change (FC)  $\geq$  1.2 or  $\leq$  1/1.2.

#### Dataset S3. IP-MS identification of RNF112-associated proteins.

T24 cells were transfected with Flag-RNF112 plasmid and then subjected to IP experiments with Flag antibody, followed by mass spectrometry.