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At least two classes of human megakaryocyte progenitor cells have been identified: the
burst-forming unit megakaryocyte (BFU-MK) and the colony-forming unit megakaryocyte
(CFU-MK). The BFU-MK is the most primitive progenitor cell committed to the megakaryo-
cytic lineage. The CFU-MK appears to be a more differentiated megakaryocyte progenitor cell
and is thought to be ultimately a descendant of the BFU-MK. A number of recombinant cytokines
have recently been shown to be able to promote megakaryocyte colony formation in vitro.
Recombinant GM-CSF and IL-3, in particular, have the ability to promote both CFU-MK- and
BFU-MK-derived colony stimulatory formation. The activities of these two cytokines on in vitro
megakaryocytopoiesis are also additive. Recent results of clinical trials in both primates and
humans, in which these glycoproteins were administered in vivo, suggest that these cytokines,
both alone and in combination, can enhance in vivo thrombopoiesis and therefore may be
potentially useful in the treatment of thrombocytopenic disorders.

BACKGROUND

While the factors that control mammalian platelet production have now been
studied for several decades, the mechanisms that control this process remain poorly
defined. Although a number of investigators have clearly shown that the plasma of
thrombocytopenic animals is capable of stimulating thrombopoiesis, the exact identity
of the growth factors responsible for this activity has eluded the pursuit of a large
number of research groups [1-3]. During the past decade, advances in protein
purification and gene cloning have been applied to the isolation and characterization of
hematopoietic growth factors. Recently, these new tools have been applied to the study
of megakaryocytopoiesis, resulting in important new insights [1-4].

These investigations have been facilitated by the development of a variety of
semisolid assay systems, utilized to detect megakaryocyte progenitor cells [5-15]. In
vitro, these progenitor cells possess the ability to form colonies composed exclusively of
megakaryocytic elements. The presence of a hierarchy of megakaryocyte progenitor
cells is well established. This hierarchy has been defined by both the time of appearance
and the cellular composition of colonies derived from such progenitors [16—-19]. At
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TABLE 1
Characteristics of Human Megakaryocyte Progenitor Cells

BFU-MK CFU-MK
Time required for colonies to appear in vitro 21 days 12 days
Cells/colony 108.6 + 4.4 11.6 + 1.2
Foci/colony 23:04 1.2 +0.1
Elutriation profile 12-14 ml/minute 18-20 ml/minute
Phenotype CD34*DR~ CD34*DR*
Sensitivity to 5 Fluorouracil Resistant Sensitive

present, at least two classes of megakaryocyte progenitor cells have been identified: the
burst-forming unit megakaryocyte (BFU-MK) and the colony-forming unit megakary-
ocyte (CFU-MK)[16,18,19]. The BFU-MK is the most primitive progenitor cell
committed to the megakaryocyte lineage [16,18,19]. The CFU-MK appears to be a
more differentiated megakaryocyte progenitor cell and is thought to be ultimately a
descendant of the BFU-MK. The assays developed to detect these progenitor cells are
dependent upon their ability to form megakaryocyte colonies in vitro in response to
the addition of cytokines to semisolid media. The characteristics that allow one to
differentiate between the CFU-MK and BFU-MK present in normal human marrow
are listed in Table 1 [18,19].

A number of complex biological processes occur as the megakaryocyte progenitor
cell differentiates and proceeds toward the ultimate production of mature platelets
(Table 2). The megakaryocyte, a large but relatively rare cell present in human
marrow, is unique because of its ability to undergo nuclear endoreplication while
acquiring multiples of the normal amount of nuclear DNA. In this report we will
discuss exclusively the regulatory factors that control megakaryocyte progenitor cell
proliferation. It should be emphasized that while the processes of megakaryocyte
maturation and endoreduplication are also probably controlled by a variety of cyto-
kines, this subject is beyond the scope of this discussion [1-3]. A number of groups
have shown that the process of platelet production is regulated by one or more factors
that influence different cellular steps along the schema of megakaryocyte development
[20-22]. Williams et al. first suggested a two-factor requirement for megakaryocytopoie-
sis, whereby a megakaryocyte colony-stimulating factor (MK-CSF) selectively pro-
motes megakaryocyte colony formation while an additional factor, megakaryocyte
potentiator factor, influences megakaryocyte maturation [22]. MK-CSF is defined as a
unique lineage-specific cytokine which selectively promotes megakaryocyte colony
formation in vitro. The hypothesis that megakaryocytopoiesis is regulated by distinct
factors acting at different levels of cellular development has provided a framework for
investigation of the cytokine regulation of megakaryocytopoiesis.

TABLE 2
Events Occurring During Megakaryocytopoiesis That Are Possibly Regulated by Humoral Factors

1. Progenitor cell proliferation (BFU-MK, CFU-MK)

2. Megakaryocyte polyploidization

3. Cytoplasmic maturation (membrane and organelle development) of megakaryocytes
4. Platelet release from megakaryocytes
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MEGAKARYOCYTE COLONY-STIMULATING FACTORS IN PLASMA

Urine, serum, and plasma obtained from patients with hypomegakaryocytic throm-
bocytopenia have been shown to be capable of promoting the formation of megakaryo-
cytic colonies in vitro [23-29]. This megakaryocyte colony-stimulating activity (MK-
CSA) is defined as the ability of conditioned media, plasma, serum, and purified or
recombinant cytokines to promote megakaryocyte colony formation in semisolid
media. It is unknown whether this MK-CSA is due to the presence of a single unique
MK-CSF or a combination of several cytokines with MK-CSA. Data have been
provided by several laboratories suggesting that the elaboration of MK-CSA in human
plasma or serum is not directly related to platelet numbers but rather inversely related
to megakaryocyte mass [23,24]. The elaboration of MK-CSA has been observed in a
variety of clinical disorders, including selective amegakaryocytic thrombocytopenia,
aplastic anemia, and marrow hypocellularity following cytotoxic chemotherapy or
chemoradiotherapy in preparation for allogeneic marrow transplantation [23-29].
Miura et al. have developed a small animal model that provides an opportunity to
define the relationship between platelet numbers and detectability of MK-CSA [24].
These investigators compared assayable MK-CSA in plasma of severely thrombocy-
topenic rats following irradiation to that detected in similarly irradiated animals who
received platelet transfusions in order to maintain normal platelet numbers [24].
Assayable MK-CSA was equally elevated in each of these experimental groups as
compared with animals not irradiated [24]. This work is in agreement with the
hypothesis that MK-CSA elaboration occurs independently of platelet numbers.

The cytokines responsible for plasma MK-CSA in hypomegakaryocytic individuals
must be identified in order to understand the contribution of various growth factors to
CFU-MK regulation in vivo. The biochemical purification of each of these cytokines
has recently been pursued by a number of different laboratories with limited success
[27,30,31]. A number of sources of MK-CSA, including aplastic anemia urine,
selective amegakaryocytic thrombocytopenia plasma, or thrombocytopenic plasma
obtained following the administration of sublethal irradiation to dogs have each been
used as starting materials for these purification procedures [23-29].

A polyclonal rabbit antiserum that neutralizes MK-CSA present in human plasma
has been devloped [32]. This antiserum did not neutralize the MK-CSA of interleukin
3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) but did
neutralize MK-CSA in a protein fraction partially purified from human plasma [32].
In addition, Mazur et al. recently reported that IL-3 and granulocyte-macrophage
(GM)-CSF neutralizing antibodies do not diminish the MK-CSA present in plasma
obtained from either thrombocytopenic dogs or humans [33]. These data collectively
indicate the presence of an additional cytokine(s) apart from GM-CSF or IL-3 in
human plasma exhibiting MK-CSA.

RECOMBINANT CYTOKINES WITH MEGAKARYOCYTE
COLONY-STIMULATING ACTIVITY

Determination of the range of activities of the purified and recombinant cytokines
already available have indicated that these cytokines can affect both in vitro and in vivo
megakaryocytopoiesis. Some of these cytokines actually have MK-CSA, while others
act in synergy with other factors to affect CFU-MK proliferation.

Data generated in a large number of laboratories are in agreement that recombinant
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TABLE 3
The Effect of Cytokine Combinations on BFU-MK-Derived Colony Formation

BFU-MK-Derived Colonies/

Cytokine(s) 5 x 10° CD34*DR " Cells Plated
None 0.0 + 0.0°
GM-CSF 200.0 pg/ml 26 +04
IL-1a 500.0 pg/ml 0.0 + 0.0
IL-3 1.0 ng/ml 58 +04
GM-CSF + IL-1a 22+06
GM-CSF + IL-3 10.0 + 1.8
IL-1a + IL-3 9.4+ 0.6

“Each point represents the mean + the standard error of the mean of pooled data obtained from
experiments performed in duplicate on at least four separate occasions.

GM-CSF and IL-3 both individually have MK-CSA in addition to their ability to
affect a number of other hematopoietic lineages [14,16,34—42]. In addition, the effects
of GM-CSF and IL-3 are additive in that colony formation by a combination of these
two growth factors approximates the sum of colony formation by each growth factor
alone [14,35,42]. GM-CSF and IL-3 have also been shown to enhance BFU-MK-
derived colony formation [19]. These actions on the BFU-MK are also additive. These
cytokines not only increase colony formation, but also increase the number of cells
comprising individual CFU-MK-derived colonies [14]. In addition, Briddell and
Hoffman have shown that IL-1a augments the ability of IL-3 to promote BFU-MK-
derived colony formation [19]. Although IL-1« by itself had no colony-stimulating
activity, its synergistic effect occurred in a dose-related fashion [19]. These observa-
tions are in no way subtle in that optimal concentrations of both IL-la and IL-3
promote similar numbers of BFU-MK-derived colonies, as do combinations of optimal
concentrations of GM-CSF and IL-3 (Table 3) [19].

Recently, continuous infusions of human IL-3 in a primate, the cynomolgus macaque,
have been reported to result in profound increases in mean platelet counts [43,44].
Administration of recombinant GM-CSF to primates also has resulted in some modest,
albeit inconsistent, effects on platelet numbers [45]. Krumwieh and Seiler have further
explored the in vivo action of these cytokines by administering them in sequence
[43,44]. Primates were first injected with IL-3 and then subsequently with GM-CSF
[43,44]. Such priming with IL-3 followed by GM-CSF administration resulted in a
dose-dependent significant increase in platelet numbers, even though IL-3 and GM-
CSF alone, at the doses administered, had no significant influence on platelet numbers
[44]. Most exciting of all, infusions of IL-3 to patients with a variety of hematological
disorders and bone marrow failure states have resulted in a sixfold increase in platelet
numbers in five out of eight evaluable patients [46]. This increase in platelet numbers
resulted in increased marrow cellularity and appearance of greater numbers of marrow
megakaryocytes [46]. These preliminary findings suggest that IL-3 might be a
clinically useful pharmacological agent for the treatment of thrombocytopenic disor-
ders.

Another recombinant cytokine, IL-6, has recently been shown to have profound
effects on thrombopoiesis. IL-6 was originally characterized as a T-cell-derived factor
that promoted the terminal maturation of activated B cells to immunoglobulin-
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producing cells [47]. This cytokine has been shown to be identical to B, interferon, 26
kd protein, and hybridoma growth factor [47]. Recently Ishibashi et al. have shown
that in vivo administration of IL-6 produces an increase in peripheral platelet numbers
while promoting megakaryocyte maturation and ploidy in vitro [48,49]. Hill et al. have
also demonstrated a dose-response relationship between the amount of IL-6 adminis-
tered and the level of increased platelet numbers detected in mice [50]. In addition, this
group has shown that both the number of detectable murine splenic and marrow
megakaryocyte colony-forming cells were increased in mice that had received IL-6
[50]. Ziedler et al. demonstrated that IL-6 administered to seven cynomolgus monkeys
resulted in a 2-3.5-fold increase in the number of platelets [51]. Interestingly, no
synergistic effects were observed in the peripheral blood of these animals when IL-6
was combined simultaneously with G-CSF, GM-CSF, or IL-3 [51].

Some question has arisen concerning the mechanism by which IL-6 affects megakary-
ocyte colony formation. Several investigators have reported that IL-6 alone has no
MK-CSA [51-55]. Koike and co-workers have further suggested that IL-6 requires a
factor or factors present in serum in order to promote megakaryocyte colony formation
[56]. Other groups have, however, reported that IL-6 can act independently on
non-adherent low-density T-cell-depleted bone marrow subpopulations (NALDT ™) to
promote megakaryocyte colony growth [57,58]. In addition, Lotem et al. have pre-
sented data to indicate that IL-6 plays an even more critical role in the regulation of the
CFU-MK [59]. They have suggested that the induction of megakaryocyte colony
formation by IL-3 is actually due to the endogenous production of IL-6 by bone
marrow accessory cells [59].

Our group has shown that the addition of both human IL-la and IL-6 to the
NALDT" cell population resulted in the stimulation of CFU-MK-derived colony
formation, while neither IL-1a or IL-6 alone stimulated megakaryocyte colony growth
[60]. A similar synergistic effect of IL-1a and IL-6 on hematopoiesis affecting other
cell lineages has been previously reported by several groups [61-64]. In addition, our
studies indicate that the MK-CSA of IL-6 on low-density bone marrow cells can be
significantly inhibited by the addition of anti-IL-1a polyclonal neutralizing antisera
[60]. Similar additions of anti-GM-CSF antisera to low-density bone marrow cultures
containing IL-6 had no effect on the MK-CSA of IL-6, indicating that the MK-CSA of
IL-6 was not due to the secondary elaboration of GM-CSF [60]. Our findings therefore
suggest that IL-6 cannot act alone on the CFU-MK from human bone marrow cells but
rather requires the presence of IL-la in order to promote megakaryocyte colony
formation [60].

The hypothesis by Lotem et al. that IL-3 exerts its MK-CSA through the action of
IL-6 is not supported by data generated in our laboratory [59]. The addition of
anti-IL-6 antisera to cultures containing IL-3 had no significant effect on the MK-CSA
of IL-3 [60]. Another discrepancy between our report and that of Lotem et al. concerns
the appearance of megakaryocyte colonies in assays to which no exogenous cytokines
are added. While Lotem et al. attributed such so-called baseline colony formation to
the endogenous production of IL-6, our data failed to substantiate this conclusion
[59,60]. The reasons for such discrepancies remain unknown.

The effect of the in vivo administration of IL-6 alone or in combination with other
cytokines to animals or humans with disorders of thrombopoiesis remains unknown.
The results of such studies are eagerly awaited.
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CONCLUSION

Our understanding of the growth factors that control platelet production has greatly
expanded over the last decade. The entry of these growth factors into clinical trial
provides promise that in the future we will have to rely to a lesser degree upon platelet
transfusion therapy for the treatment of patients with life-threatening thrombocytope-
nia. In addition, the availability of these cytokines may permit in vitro production of
sufficient numbers of platelets that might be useful for transfusion therapy.
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