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SUMMARY

The soil moisture active/passive (SMAP) mission represents a significant advance
in measuring soil moisture from satellites. However, its large spatial-temporal
data gaps limit the use of its values in near-real-time (NRT) applications. Consid-
ering this, the study uses NRT operational metadata (precipitation and skin
temperature), together with some surface parameterization information, to
feed into a random forest model to retrieve the missing values of the SMAP L3
soil moisture product. This practice was tested in filling the missing points for
both SMAP descending (6:00 AM) and ascending orbits (6:00 PM) in a crop-domi-
nated area from 2015 to 2019. The trained models with optimized hyper-param-
eters show the goodness of fit (R2R 0.86), and their resulting gap-filled estimates
were compared against a range of competing productswith in situ and triple collo-
cation validation. This gap-filling scheme driven by low-latency data sources is first
attempted to enhance NRT spatiotemporal support for SMAP L3 soil moisture.

INTRODUCTION

Soil moisture observations are of great importance for hydro-meteorological and agricultural applica-

tions.1–4 The growing recognition of the role of soil moisture underscores the need to obtain continuous,

high-resolution quasi-global soil moisture data products in near real time (NRT) from space. During the

past four decades, microwave-based satellite observations have proven to be an effective tool for satisfying

this need.5 During this period, a progressive series of experiments verified by truck-mounted sensors,

aircraft, and space-borne sensors demonstrated that passive microwave radiometry can be applied to

accurately retrieve surface soil moisture data (top �5 cm).6

Soil moisture active/passive (SMAP) is the first mission designed to combine active and passive sensors to

provide NRT soil moisture data and recognize frozen/thawed states on the land surface.7 The volumetric

accuracy goal for SMAP soil moisture retrievals is 0.04 m3/m3 (unbiased Root-Mean-Squared Error,

ubRMSE) for the case of volumetric water vegetation content less than 5 kg/m2. Extensive validation activity

has demonstrated the high quality of SMAP soil moisture products,8–11 as well as the potential feasibility of

operational applications of SMAP-derived soil moisture products, e.g., flood modeling,12 irrigation map-

ping,13 and drought monitoring.14

Nevertheless, daily gaps often occur in level 2 and 3 SMAP products, which can limit their application. This

issue is often more pressing in areas where soil moisture retrieval fails, or is flagged as unreliable, due to

radio frequency interference (RFI), dense vegetation, or intense rainfall. To enhance the accuracy, vertical

support, and spatiotemporal coverage of its level 2 and 3 soil moisture products, the SMAP mission also

generates a time-continuous data assimilation product (SMAP L4) based on the assimilation of SMAP Tb
measurements into a land surface model (LSM).15 However, these advantages come at the expense

of slightly increased data latency (average of about 2.5 days) due to a time lag incurred by the use of

gauge-based precipitation as a required input for the SMAP L4 analysis.16 In addition, because the SMAP

L4 system is based on the assimilation of rescaled SMAP brightness temperature, the climatology of surface

soil moisture estimates provided by the SMAP L4 analysis is not consistent with SMAP L2/L3 retrieval prod-

ucts.16 Therefore, there remains the potential need for high-quality gap filling of SMAP L2/L3 products.

In addition, several past studies have made efforts on improving the temporal availability of satellite soil

moisture products. The synergistic use of multiple Sun-synchronous orbit satellites can rapidly improve
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the spatial and temporal support of an individual satellite. Liu et al.17 explored the possibility of using

SMAP products directly for the gap-filling of the essential climate variable soil moisture in Europe. Kim

and Lakshmi18 applied Cyclone Global Navigation Satellite System–derived signal-to-noise ratio data in

estimating soil moisture and filling them into the gap of missing spatial and temporal values in SMAP.

Gruber et al.19 used the triple collocation (TC) method for merging soil moisture retrievals from spaceborne

active and passive microwave instruments based on weighted averaging of the error characteristics of

individual data sets. However, such synergistic uses rely heavily on the availability of different satellite

observations, and the mismatches of their overpass time could introduce errors into the ultimate inte-

grated products. In addition, geostatistical techniques20 and multiple regression have also been provided

as alternatives for gap-filling,21 where such interpolation methods fail when handling large spatial or tem-

poral gaps.22

Machine learning (ML), as a powerful tool for processing nonlinear problems, can feasibly be used to

capture correlations between satellite soil moisture (or its decomposition modes) and complementary in-

formation, mainly including meteorological forcing, geographic information, and vegetation conditions.

Previous works have demonstrated that ML is a more robust way for filling gaps in satellite soil moisture

retrievals than using geostatistics.22–25 However, some predictors from satellites (e.g., Moderate Resolu-

tion Imaging Spectroradiometer Land Surface Temperature [LST] and Normalized Difference Vegetation

Index) are often only applicable to clear-sky conditions due to cloud contamination.26 In this way, the

gaps would be ignored (removed) or prepopulated before running the ML model, which introduces uncer-

tainty into the predicted results. In addition, the spatial/temporal transferability of the trained model is still

vague (possible overfitting and underfitting) because the substantially large parameter space, especially

hyper-parameter optimization and meta-modeling, is computationally expensive due to the need to train

a large number of model configurations.27 Therefore, how to efficiently perform a hyperparametric search

is a current challenge in the field of ML.

Given the challenges discussed, the objectives of the present research are to (1) explore the suitability of NRT

satellite precipitation and reanalysis data for SMAP L3 gap-filling, (2) report the utility of the successive halving

search (SHS) in determining hyper-parameters for the random forest model, and (3) combine in situ validation

and TC analysis to test the performance of gap-filling data sets and multiple on-orbit satellite products. The

study area of this research is the Huai River basin of China (hereinafter referred to as the HRB), which is domi-

nated by extensively irrigated cropland and has an urgent need for NRT soil moisture monitoring. The full

names of the relevant specific organizations, algorithms and products can be viewed in Table 1.
Region of interest

Study area

The selected study area, the 270,000 km2 HRB, is located between 30�55’—36�36’ N and 111�55’—121�25’ E
(Figure 1). Because of its location in the transitional zone between the East Asian monsoon humid and the

semi-humid regions, its weather is complex and highly variable with ample rainfall.28 Its general meteoro-

logical and hydrographic characteristics are summarized by an average annual temperature of 11�C–16�C,
average annual pan evaporation of 900–1500 mm, and average annual precipitation of 888 mm. The pre-

cipitation during the wet season (June to September) accounts for 50%–80% of the annual total precipita-

tion. The region is prone to hydrologic extremes and has a historical record of frequent floods and drought.

These events have important food security consequences because, as a major grain production base, the

HRB has a very high area percentage of cropland29 and provides around 17% of total grain yield in China

together with a high population density of more than 160 million.30 It is an area where soil moisture moni-

toring is critically important and, as a result, has been targeted for the development of ground-based hy-

drological monitoring networks.

Unfortunately, the HRB region is also characterized by poor temporal coverage in SMAP L3 retrievals (Fig-

ure 2), which, therefore, does not meet the requirements for reliable regional continuous monitoring of soil

moisture. The HRB region is affected by aggressive flagging of SMAP L3 retrievals, likely linked to the pres-

ence of local anthropogenic RFI sources. In addition, it commonly experiences a number of natural char-

acteristics (e.g., active rainfall, dense vegetation, and complex topography) that can cause failures in

soil moisture retrieval algorithms.29 As such it represents an excellent test-case location for examining

the universality of latency-reduced gap-filling strategy over a cultivation-dominated area. In addition,
2 iScience 26, 105853, January 20, 2023



Figure 1. Basic information of the study area

(A) Location of the HRB in China.

(B) The DEM map of the basin with labeled river branches.

(C) The distribution of the HRB in situ soil moisture measurement sites (98) (sites labeled with gray inverted triangles).
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the abundant availability of in situ observations by the Ministry of Water Resources of China (MWR) in the

HRB (Figure 1C) allows for the reliable benchmarking of soil moisture data products within the region.

Data resources

Three diverse sources of data (Table 2) within the study area were used to achieve the study goals: sat-

ellite observations, LSM outputs, and in situ observations acquired from March 31, 2015, to December

31, 2019. Specifically, two passive microwave soil moisture products (Soil Moisture and Ocean Salinity

[SMOS] and Advanced Microwave Scanning Radiometer 2 [AMSR2]) and one SMAP-derived LSM data

set (SMAP L4) were applied to make intercomparisons with the gap-filled products. All satellite products

are retrieved from both daily ascending and descending orbits, while LSM outputs are provided hourly or

3-hourly.

Gap-filling object product

The National Aeronautics and Space Administration SMAP mission started data acquisition on March

31, 2015, and aims to measure the amount of water in the surface soil and freeze/thaw state everywhere

on Earth from space. Its observation system was originally based on a combined L-band radar (1.26 and

1.29 GHz) and radiometer (1.41 GHz) to leverage the relative advantages from both active and passive

microwave remote sensing for surface soil moisture (i.e., top �5 cm). However, on July 7, 2015, its radar

stopped transmitting due to an anomaly involving its high-power amplifier. Nevertheless, SMAP’s

radiometer has continued to operate and gather scientific data regularly. Here, the SMAP level 3 soil

moisture product (SMAP L3 for short in this study) for both ascending and descending SMAP orbits

was downloaded and resampled from EASE-Grid 2.0 onto a 0.25� 3 0.25� resolution geographic

projection.

Ancillary data for gap-filling

Global precipitation measurement product

The IMERG V06 Early Run (IMERG-E) product is freely available from the Goddard Earth Sciences Data

and Information Services Center. It is a quasi-real-time product with a temporal data latency of 4 hours.31

The spatial resolution of IMERG-E is 0.1�, and multiple temporal resolutions are available (i.e., 30 min, 3 h,
iScience 26, 105853, January 20, 2023 3



Figure 2. Percentage of data gaps in the SMAP soil moisture products

(A and B) The percentage of temporal data availability (i.e., days with retrievals divided by total days) of SMAP L3 over the

HRB for ascending orbits (18:00 local solar time) and descending orbits (6:00 local solar time), where the blank-pixel area

inside the basin is Hongze Lake.

(C and D) The global observation swath path of SMAP L3 on March 3, 2018, for ascending and descending orbits.
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1 day, and 7 days following data acquisition).32 IMERG-E possesses the capability for flood warning in

South China,33 and its 30-min product after preprocessing was used in this study as an input in the

gap-filling model.

SMAP L1-L3 ancillary data

The Goddard Earth Observing System, Version 5 Forward Processing (GEOS-5 FP) atmospheric tempera-

ture34 and IMERG data set are the only dynamic model products used in this study, and they have almost no

gaps in space. In particular, the required SMAP 0�5 cm LST in this study was obtained by averaging the skin

temperature and first-layer soil temperature products from the GEOS-5 FP system. Similarly, the corre-

sponding SMAP ancillary static data files contain soil attribution (clay, sand, and bulk density), digital eleva-

tion model (DEM), slope, and roughness values.

Validation data

In situ soil moisture

The in situ soil moisture automonitoring system, operated by the MWR, provides long-term soil moisture

records for three layers (i.e., 0–10 cm, 10–20 cm, and 20–40 cm beneath the ground surface). Depending on

the site, measurements are recorded either daily or every 10 days at 8:00 local solar time. MWR applies

quality-control processing to flag suspicious measurements35 and rejects invalid sites. Within the HRB, a

total of 98 sites (Figure 1C) have adequate sampling—defined as providing more than 100 records during

the study period (March 31, 2015, to December 31, 2019). Because SMAP’s effective detecting depth is usu-

ally shallow than 5 cm, only the first-layer (0–10 cm) in situ data set was used.

Advanced scatterometer soil moisture

Advanced scatterometer (ASCAT) is a real-aperture radar instrument that operates at the C-band (5.3 GHz,

5.7 cm wavelength) aboard the EUMETSAT MetOp-A (October 2006), MetOp-B (September 2012), and

MetOp-C (November 2018) satellites.36 It can retrieve soil moisture with a sensing depth of 2–5 cm.
4 iScience 26, 105853, January 20, 2023



Table 1. List of abbreviations

Abbreviation Expansion

AMSR-E Advanced Microwave Scanning Radiometer–Earth Observing System

AMSR2 Advanced Microwave Scanning Radiometer 2

ASCAT Advanced Scatterometer

CATDS Centre Aval de Traitement des Données

CLDAS China Land Data Assimilation System v2.0

DEM Digital Elevation Model

ECV-SM The Essential Climate Variable soil moisture data sets

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

HSAF Hydrology and Water Management

IMERG Integrated Multi-satellite Retrievals for GPM

JPL NASA’s Jet Propulsion Laboratory

GEOS-5 FP Goddard Earth Observing System, Version 5, Forward Processing

GMAO Global Modeling and Assimilation Office

GPM Global Precipitation Measurement

GSFC Goddard Space Flight Center

ISMN International Soil Moisture Network

LST Land Surface Temperature

MetOp Meteorological Operational satellite program

MODIS Moderate Resolution Imaging Spectroradiometer

MWR Ministry of Water Resources of the People’s Republic of China

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NMIC-CMA National Meteorological Information Center–China Meteorological Administration

NSIDC National Snow and Ice Data Center

SMOS Soil Moisture and Ocean Salinity

SMAP Soil Moisture Active Passive

TB Brightness Temperature
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ASCAT crosses the equator at 21:30 local solar time and 09:30 local solar time in descending and ascending

orbits, respectively. This study used the composite ASCAT soil moisture product (hereafter referred to as

ASCAT) derived at the Integrated Climate Data Center of Hamburg University37 based on reprocessed

version 5 of the EUMETSAT H-SAF H115 and H116 products. These composite data are sampled from

12.5 km swath orbit geometry to per grid cell (0.1� 3 0.1�) and daily released for both ascending and de-

scending paths. Composite ASCAT soil moisture retrievals are provided in relative units ranging between

0% (dry) and 100% (saturated). To acquire volumetric soil moisture, porosity data provided in each ASCAT

composite file were extracted to obtain volumetric soil moisture estimates in m3m�3 units.

SMOS soil moisture

As one of only two on-orbit satellites operating in the L-band (i.e., 1.43 GHz, 21 cm) frequency, European

Space Agency’s SMOS is the first satellite designed for measuring global surface soil moisture and ocean

salinity.38 SMOS has provided scientific soil moisture estimates twice a day (ascending/descending orbit,

6:00 AM/6:00 PM local solar time) on a 25-km EASE-Grid2 projection since November 2009.39 The SMOS

level 3 daily quasi-global soil moisture data set (SMOS L3) was publicly accessed from Centre Aval de

Traitement des Données.

AMSR2 soil moisture

As the successor of the AMSR Earth Observing System sensor, AMSR2 was launched in May 2012 and de-

signed for measuring microwave emissions from the surface and the atmosphere of the earth. It detects

passive microwave frequencies from 6.925 to 89.3 GHz and began the release of scientific data on
iScience 26, 105853, January 20, 2023 5



Table 2. Overview of the products involved in the gap-filling model and validation

Sources (version) Institution Resolution support Data latency (required)

Gap-filling data

SMAP (SPL3SMP) NASA-GSFC 36 km/d 50 h

Day of year (DOY) / 0.25� 3 0.25� /

Latitude (LAT)

Longitude (LON)

Rainfall (IMERG Early Run) NASA-GPM 0.1�/0.5 h 4 h

LST (GEOS-5 FP) NASA-GMAO 0.25� 3 0.3125�/h 7 h

DEM (DEM_M36_003) NASA-JPL 36 km /

Slope (DEMSLP_M36_00)

Roughness (M36_002)

Clay (M36_004) NSIDC/NASA 36 km /

Bulk (M36_004)

Sand (M36_004)

Validation data

In situ data MWR / Real-time

ASCAT (H-SAF V7) EUMETSAT-HSAF-UHAM-ICDC 0.1� 3 0.1�/d 12–36 h

SMOS (SMOS_L3) European Space Agency 25 km/d 4 h

AMSR2 (6.9 GHz) NASA 25 km/d 3 h

CLDAS (CLDAS v2.0) NMIC-CMA 0.0625�/h 1 h

SMAP_L3 (SPL3SMP) NASA 36km/d 50 h

SMAP_L4 (SPL4SMGP) NASA 9km/3h 7 d
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July 3, 2012.40 Its gridded soil moisture product is based on a combination of daytime (10:30 PM local solar

time) and nighttime (1:30 AM local solar time) data and covers more than 99% of the globe every 2 days.41

This study used the Land Parameter Retrieval model soil moisture product based on 6.9-GHz AMSR2

observations.42

China Land Data Assimilation System v2.0 soil moisture product

An LSM output, the China Land Data Assimilation System v2.0 (CLDAS) soil moisture data set covering

eastern Asia, was used for TC analysis in this study. The China Meteorological Data Service Center is in

charge of the data distribution derived from CLDAS operation in real time (at a latency of 1 h) and in

NRT (at a latency of 2 days) since 2008.43 The CLDAS soil moisture products are averaged from a three-

member ensemble of off-line LSMs (i.e., the Community LandModel version 3.5, the Common LandModel,

and the Noah Multi-parameterization 1.4 Land Surface Model) driven by 40,000 automatic meteorological

stations observations, satellite precipitation, and numerical weather predictions.44 Compared with other

LSM outputs, the CLDAS soil moisture product (hereinafter referred to as ‘‘CLDAS’’) shows a better perfor-

mance with finer spatial-temporal resolution (0.0625� 3 0.0625�, hourly). CLDAS is freely available from the

National Science & Technology Infrastructure of China. In the present study, only CLDAS top-layer (0�5 cm)

soil moisture at 6:00 AM/PM was selected.

SMAP L4 soil moisture geophysical data

The SMAP L4 soil moisture geophysical data (SPL4SMGP) product45 consists of 3-hourly soil moisture estimates

obtained via the assimilation of SMAP L1C TB observations into the GEOS-5 Catchment LSM,46 with the inputs

of the surface meteorological forcing data stream (including precipitation) from a global atmospheric model

output by assimilating a very large number (greater than 107 per day) of conventional and satellite-based ob-

servations of the atmosphere.47 It provides perfect spatial-temporal coverage in its soil moisture estimates by

filling the gaps in SMAP observations due to orbit and land surface characteristics. However, this coverage

comes at the expense of increased data latency. The forward processing of the Catchmentmodel background

takes nearly 3 days to complete, and the official data latency requirement for SPL4SMGP is within 7 days.
6 iScience 26, 105853, January 20, 2023



Figure 3. Work flowchart for gap-filling SMAP soil moisture products and validation of the subsequent

continuous soil moisture product
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Methodologies

This section describes (1) data preprocessing to a unified framework, (2) the construction of a random forest

regression model for predicting values within missing pixels, and (3) the calculation of evaluation metrics

for product validation. The entire work flowchart for the approach is shown in Figure 3.
Data preprocessing

To increase the frequency of data available for training the gap-filling model, this study omitted quality

control procedures for the SMAP L3 product. However, quality control was applied to SMOS L3 retrievals

before the intervalidation. Specifically, SMOS L3 pixels were rejected when their Data Quality Index was

over 0.07 or equal to fill values that indicate retrievals failed. Similarly, pixels were also rejected if the

RFIfraction (percentage of RFI) variable was higher than 0.3.48

Next, all inputs and training targets for the gap-fillingmodel and participated evaluation products (ASCAT,

AMSR2, SMOS_L3, SMAP_L4, and CLDAS) were resampled onto a fixed 0.25� grid by the nearest neighbor

interpolation. In addition, all IMERG precipitation products were resampled to a daily time scale.
Random forest–based gap-filling approach

Random Forest (denoted by RF below) is a meta-estimator capable of performing both classification and

regression tasks through the use of decision trees and their regressor.49 RF fits many decision trees on

various seed samples of the data set and uses averaging to improve its prediction accuracy and exert over-

fitting control. Similarly, its computational efficiency allows for quick applications to large data sets.50

Bagging, i.e., bootstrap aggregation sampling in the RF model, indicates training every decision tree

regressor in the random forest on a different sample where sampling is done with replacement. Next, a collec-

tion of decision tree regressors that run in parallel without anymutual interaction determine the final prediction.

After data cleaning, a total of 742,851 sets of data (each set contains 11 features) participated in themodel con-

struction. In this article, thewhole successful SMAP L3 retrievals were used as training data, which could be split

into internal training and validation in each iteration by out-of-bag (oob) sampling after bagging. Finally, the

predictor information located in these grids could drive the trained model to fill in the missing records.
iScience 26, 105853, January 20, 2023 7



Table 3. Hyper-parameters for both two models

Hyper-parameter Initial range

Ascending model

oob score(R2) = 0.86

Descending model oob

score (R2) = 0.86

n_estimators 100–2000 1200 1400

max_depth 10–100 20 20

max_features 1/0.5/log2/sqrt 0.5 0.5

min_samples_leaf 2, 5, 9 8 5

min_samples_split 1, 2, 4 2 2
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Hyper-parameter tuning and model training

The SHS is developed to overcome the inefficiency of the high-dimensionality hyper-parameter configura-

tion space because the number of evaluations increases exponentially as the number of hyper-parameters

increases.51 The logic of the SHS is to assign a small amount of resources to the hyper-parameter combi-

nations (assuming n sets) for evaluation, and at each iteration, half of the poorly performing hyper-param-

eter configurations are discarded, while the better performing half proceeds to the next iteration with a

double budget until the final best hyper-parameter combination is determined.52

SHS-based algorithms as the built-in functions can be easily called from the scikit-learn library.53 Accord-

ingly, SHS-based random search (HalvingRandomSearchCV) and grid search (HalvingGridSearchCV) were

adopted successively in this study to determine the hyper-parameters of the random forest model. The

former is used to search a set of fuzzy values for certain hyper-parameters, and the latter is used to search

the ultimate combination around fuzzy values. At the same time, the training process also sets 5-fold cross-

validation to avoid overfitting. The initial hyper-parameter ranges and the ultimate hyper-parameter

configuration are reported in Table 3.

Moreover, during the training stage, oob samples are automatically drawn from the training set for model

reliability testing, whose performance can be measured by the coefficient of determination (i.e., oob score

in the random forest model, referred to in Table 3). After obtaining the trained RF model, locations where

SMAP L3 soil moisture was unsuccessful (or otherwise unavailable) were predicted and used to backfill the

original SMAP L3 mesh network and produce the integrated, continuous data set.
Statistical metrics for direct comparison

The Pearson correlation coefficient (R), unbiased root mean square difference (ubRMSD), and relative bias

(Rbias) are used to directly compare the gridded products against in situ soil moisture observations. The

relative formulas for these three metrics are as follows:

R =

Pn
i = 1ðOBSi � OBSÞðSATi � SATÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðOBSi � OBSÞ2Pn
i = 1ðSAT � SATÞ2

q (Equation 1)
Rbias =

Pn
i = 1ðSATi � OBSiÞPn

i = 1ðOBSiÞ 3 100% (Equation 2)
ubRMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1ðSATi � OBSiÞ2

n
� ðRbias=100Þ2

s
(Equation 3)

where n represents the total number of sampled retrievals; i is the node of time series; and OBS and SAT

indicate in situ observations and the satellite-derived soil moisture, respectively. Accordingly, OBS and

SAT express the mean value of in situ data and the satellite-derived soil moisture.
TC analysis

TC, proposed by Stoffelen,54 is a common approach for estimating the random error variance of at least three

collected, independent, measurement systems without access to a true error-free representation. The essen-

tial assumption of TC is the mutual independence of errors between the three select measurement systems.
8 iScience 26, 105853, January 20, 2023
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Figure 4. Comparison of the gap-filling effects

(A–F) Comparison of original (A, C, and E) and gap-filled SMAP L3 (B, D, and F) retrievals for the SMAP descending path on three consecutive days (May 15,

2016–May 17, 2016).

(G–I) An example (multiyear) time series for three sample pixels labeled with black squares. The shadings represent the general flood season over the HRB.
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For soil moisture, the TC triplet consists of an active microwave-based retrieval (X), a passive microwave-

based retrieval (Y), and a model output (Z). This triplet is assumed to be linearly related to true soil moisture

values via:

X = aX + bXT + εX

Y = aY + bY T + εY

Z = aZ + bZT + εZ

(Equation 4)

where a, b, and ε represent additive systematic errors, multiplicative systematic errors, and additive zero-

mean random errors of each data set, respectively, compared with the true value (T).

If the TC assumptions hold, then the error variances can be estimated via averaging the cross-multiplied

differences among them.55 The ubRMSD in each data set can be calculated based on the error variance

below:

ubRMSDX =
ffiffiffiffiffiffiffi
s2
εX

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
X � sXYsXZ

sYZ

r

ubRMSDY =
ffiffiffiffiffiffi
s2
εy

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Y � sYXsYZ

sXZ

r

ubRMSDZ =
ffiffiffiffiffiffiffi
s2
εZ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Z � sXYsXZ

sXY

r
(Equation 5)

In particular, the extended TC method, proposed by McColl et al.,56 was applied here to obtain the corre-

lation coefficient estimates (R):

Ri;T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
i s

2
T

b2
i s

2
T + s2

εi

s
(Equation 6)

where Ri;T represents the correlation coefficient between each data set and the unknown truth of soil mois-

ture. Here, the metrics for the TC-based ubRMSD in Equation 5 and the correlation coefficient (Ri;T ) ob-

tained in Equation 6 are used to evaluate various soil moisture products. Further details about TC can

be found in the STAR Methods.

RESULTS

Figure 4 presents the example results on descending orbit for the comparison of the original SMAP L3 and

integrated RF-SMAP for 3 days (May 15, 2016–May 17, 2016) and three time series of soil moisture at three

different pixels in the HRB. The proposed method can describe the spatial distribution of soil moisture by

filling the missing pixels in the original SMAP L3, but the specific data quality needs to be further verified

and analyzed. In this section, the integrated data were separated into mutually exclusive ‘‘SMAP-retrieved’’

and ‘‘gap-filled’’ temporal periods data, namely SMAP L3 and RF-SMAP, to ensure that validation targets

only soil moisture estimates generated by the RF-SMAP regression procedure (i.e., only gap-filled values),

while the same validation procedure also been applied for the integrated data set (see Figures S4–S6).

Validation will examine the accuracy of RF-SMAP estimates relative to existing, independent soil moisture

product (i.e., AMSR2, SMOS L3, and the SMAP DA product—SMAP L4) by (1) examining the temporal

behavior of each product using observation records (in situ validation) and (2) examining their detailed

spatial features (all but SMAP L4) pixel by pixel by applying TC (TC validation). In both cases, SMAP L3

and RF-SMAP retrievals will be evaluated relative to the AMSR2, SMOS L3, and SMAP L4 products.

In situ validation

Because the in situ daily acquisition is at local 8:00 AM, the satellite products acquired need to be selected

on the daytime pass, e.g., AMSR2 descending product (1:30 PM), SMAP L3 descending product (6:00 AM),

RF-SMAP descending product (6:00 AM), SMOS L3 ascending product (6:00 AM), and SMAP L4 (7:30 AM)

analysis.
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Figure 5. Boxplots for the spatial distribution of R, ubRMSD, and Rbias values for AMSR2, SMOS L3, SMAP L3,

RF-SMAP, and SMAP L4 retrievals versus daytime in situ data

The left, middle, and right columns represent the metrics during the entire study period, the wet season, and the dry

season, respectively.
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Their performance during the whole study period, the wet season (May to September), and the dry season

(October to April) was evaluated first. Boxplots (Figure 5) display the distribution of R, ubRMSD, and Rbias

evaluation statistics calculated across all available in situ validation sites. SMAP L3 is, unexpectedly, slightly

superior to SMAP L4—especially with regards to its median R values during all seasons.

After these two existing SMAP baseline products, in which the R values are above 0.5, the next best product is

RF-SMAP. It has consistently good evaluation metrics with SMAP L3 and has slightly improved (median R =

0.41) during the wet season versus other periods. Furthermore, RF-SMAP holds the lowest median ubRMSD

(%0.05 m3/m3) among these intercompared products. However, a significant decline of retrieval quality dur-

ing the dry season can be found in RF-SMAP—likely associated with SMAP’s overall degraded retrieval capa-

bility (i.e., reduced number of collected granules) during the cold season (December to February).

Relatively poorer retrieval quality is observed in the AMSR2 and SMOS L3 products. AMSR2 illustrates the

lowest R and overestimates in situ observations during all three time periods, and this tendency is greater

during the dry season (median Rbias = 138.19%). SMOS L3 exhibits the most unstable performance—as

reflected by the width of their performance boxplots in Figure 5, which may be related to known SMOS

RFI issues in eastern Asia.57 In addition, extreme overestimated outliers can be seen in SMOS L3 retrievals

during both the wet and dry seasons.

Next, the temporal cumulative distribution function (CDF) tool was calculated for seasonal analysis (Fig-

ure 6). Overall, the shape of the CDF curves varies greatly among soil moisture data sets and between sea-

sons. Nearly all AMSR2 retrievals are above the median values of in situ data for both the wet and dry sea-

sons. The range of the CDF curves for AMSR2 and SMOS L3 is larger than that for the three SMAP-related

data sets, indicating their larger dynamic range versus the in situ data. In contrast, the SMAP-related prod-

ucts show relatively good agreement with in situ data, and RF-SMAP retrievals largely inherit this good fit. A

larger SMAP L3 discrepancy versus in situ data is seen during the wet season, which is likely due to errors

being introduced in the vegetation correction during the retrieval.58
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Figure 6. Comparison of the values distribution between the gap-filled data and in-situ data

(A–J) The CDF curves of AMSR2 (A and B, blue line), SMOS L3 (C and D, red line), SMAP L3 (E and F, carmine line), RF-

SMAP for gaps (G and H, green line), and SMAP L4 (I and J, orange line) compared with in situ data (gray line) during the

wet (left column) and dry (right column) seasons.
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Despite the overall stable accuracy of RF-SMAP, there are significant geographic variations in its accuracy.

Figure 7 shows in situ-based spatial metrics (the R, ubRMSD, and Rbias) sampled versus in situ soil moisture

observations. Results suggest that SMAP L3 and SMAP L4 present the best correlation with ground refer-

ence observations across space, and RF-SMAP follows, while AMSR2 and SMOS L3 demonstrate the weak-

est correlations with significant bias. Besides, RF-SMAP can match the widespread good consistency of

SMAP L3 and has a smaller error distribution although its R-values are degraded a little. This is explainable

because RF-SMAP always predicts data under unfavorable retrieval conditions.

Beyond that, an interesting phenomenon is shown in the Rbias map: AMSR2 overestimates the in situmea-

surements while a widespread underestimation is seen in the other four data sets. This is consistent with

previous studies suggesting that the Land Parameter Retrieval Model algorithm tends to overestimate

soil moisture.40 In addition, both SMAP L3 and SMAP L4 have been found to underestimate soil moisture

within the Little Washita Watershed network8,59 in Oklahoma, USA, which contains geophysical conditions

(annual precipitation, land cover, terrain, etc.) similar to that of the HRB.

The differences in the temporal sampling period lead to potentially unfair comparisons between SMAP L3

and RF-SMAP. To examine this possibility, Figure 8 shows the fluctuations of the daily average of SMAP L3

retrieval frequency and IMERG precipitation for the pixel where the in situ sites locate. The time-domain

distribution is such that SMAP L3 tends to collect relatively more retrievals during the wet season than in

the dry season. That is to say, the gap-filling model is actively applied to fill gaps during the dry season
12 iScience 26, 105853, January 20, 2023



Figure 7. Statistical metrics based on in-situ observations for the RF-SMAP and four competitive datasets

(A–O) Ground observation-based temporal R, ubRMSD, and Rbias maps for AMSR2 (A–C), SMOS L3 (D–F), SMAP L3 (G–I), RF-SMAP (J–L), and SMAP L4

(M�O).
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Figure 8. Time-series comparison of the retrieved quantities for SMAP_L3 descending orbit

(A and B) Time series for the daily number of SMAP L3 descending retrievals (A) and IMERG precipitation (B) during the

study period in the site-located pixels (98). The black line indicates the temporal smoothing by using a 15-day moving-

average window. Gray shading represents the wet season.
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with relatively more complex surface conditions (e.g., heterogeneous variations of soil freeze/thaw state of

snow cover). Similarly, a significant fraction of missing SMAP L3 observations is associated with intense rain-

fall. Therefore, the RF-SMAP product is tasked to retrieve soil moisture under relatively difficult conditions.
TC validation

Given the very sparse in situ observations in the central and eastern HRB, TC-based validation was used as a

pixel-by-pixel alternative way to evaluate four passive-related soil moisture products (AMSR2, SMOS L3,

SMAP L3, and RF-SMAP). Note that SMAP L4 was not applied in the TC approach because it likely contains

obvious cross-correlated errors with both modeled data and the SMAP L3 product, which violates a core

TC assumption. Therefore, the ‘‘ASCAT-AMSR2-CLDAS,’’ ‘‘ASCAT-SMOS L3-CLDAS,’’ ‘‘ASCAT-SMAP

L3-CLDAS,’’ and ‘‘ASCAT-RF-SMAP-CLDAS’’ triplets were involved separately in TC analysis during the

daytime (AMSR2 ascending orbit at 1:30 PM, SMOS ascending orbit at 6:00 AM, and SMAP descending

orbit at 6:00 AM) and nighttime (AMSR2 descending orbit at 1:30 AM, SMOS descending orbit at

6:00 PM, and SMAP ascending orbit at 6:00 PM).

In general, there are no obvious differences between daytime and nighttime TC-based results (Figure 9),

and the spatial patterns of the TC-based metrics are similar to gauge-based ones shown earlier in Figure 7.

SMAP L3 still provides the best performance, with most R-values generally above 0.6. The spatial pattern of

R for RF-SMAP is similar to that for SMAP L3 except with degraded performance. Large areas of the eastern

HRB demonstrate low R values for both SMAP L3 and RF-SMAP.

The other L-band retrieved product, SMOS L3, presents a spatial R distribution similar to that of RF-SMAP

but with an area of missing results within the southeast corner of the HRB and relatively low R (i.e., nearly

half of the SMOS R map is less than 0.4). Similarly, AMSR2 demonstrates consistently poor correlation

particularly during nighttime (R ranges from 0 to 0.4).

The spatial distribution of the TC-based ubRMSD for daytime and nighttime retrievals is shown in Figure 10.

For all products, little variations are seen between daytime and nighttime results. AMSR2 and SMOS L3

show higher ubRMSD over the whole HRB than SMAP-related products. In addition, the two products

appear to have an opposing spatial relationship such that pixels with higher ubRMSD for AMSR2 corre-

spond to lower ones for SMOS L3 and vice versa. As for SMAP L3 and RF-SMAP, both demonstrate wide-

spread low ubRMSD. However, the ubRMSD for RF-SMAP is generally lower than that for RF-SMAP (most

western pixels are <0.04 m3/m3) and SMAP L3, especially in the southern and eastern HRB. This emphasizes

the benefit of integrating RF-predicted values with the original SMAP L3 time series. In addition, it is note-

worthy that a common area of extremely high ubRMSD (R0.08 m3/m3) in all data sets is seen in the south-

eastern HRB.
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Figure 9. R-values map based on TC method for the RF-SMAP and four competitive datasets

(A–H) Temporal TC-based R maps for AMSR2 (A and B), SMOS L3 (C and D), SMAP L3 (E and F), and RF-SMAP (G and H)

are calculated by single collocation triplet: ‘‘ASCAT-XXX-CLDAS,’’ where ‘‘XXX’’ represents one of the passive remote

sensing products (i.e., AMSR2, SMOS L3, or SMAP L3).
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DISCUSSION

If supplied with good hyper-parameters, the proposed gap-filling model can be trained and run for

5-year records in a 270,000-km2 area within a computational time of 15 minutes (platform: Intel Xeon

W-2155 3.3 GHz/96 GB). As a result, the RF-SMAP product can be easily and quickly retrospectively up-

dated to match new release versions of the SMAP L3 product. To ensure that this gap-filling pattern can

be transmitted in an NRT system, these two key dynamic inputs (precipitation and LST) are collected

from low-latency operational data products (i.e., global precipitation measurement products and

GEOS-5 FP), and other ancillary statistic variables are consistent with the official data versions released

by SMAP. The homogeneity of the area is a problem for SMAP, due to the Sun-synchronous orbit leaving

gaps in data in these areas (Figures 2C and 2D). Therefore, this method can be readily extended to new

geographic locations benefitted from the open-source inputs and programmatic hyper-parameters

searching methods. Moreover, the test includes a total of 5-year data records (2015–2020) covering

most of the time since the SMAP was launched, making the method robust in terms of temporal

transferability.
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Figure 10. ubRMSD-values map based on TC method for the RF-SMAP and four competitive datasets

(A–H) Temporal TC-based ubRMSD maps for AMSR2 (A and B), SMOS L3 (C and D), SMAP L3 (E and F), and RF-SMAP

(G and H) are calculated by single collocation triplet: ‘‘ASCAT-XXX-CLDAS’’, where ‘‘XXX’’ represents one of the passive

remote sensing products (i.e., AMSR2, SMOS L3, or SMAP L3).
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Although RF works reasonably well with the default hyper-parameters provided by software packages in

most classification cases, the RF regression issues still require tuning the hyper-parameters to some extent

for improving the model efficiency and accuracy.60 Considering that the overall budget is very limited in

most practical situations, the hyper-parameters optimization should be able to prioritize the evaluation

of the objective function and have strong anytime performance, which indicates the ability to detect

optimal or near-optimal configurations even with very limited budgets.61 Given this, SHS is an extremely

simple yet powerful multifidelity algorithm selection strategy especially to avoid significant budget con-

sumption,62 which can be easily called from scikit-learn to help users build a robust model.

In terms of the weight applied to specific inputs into the RF model (Table 4), relatively greater weights

are assigned to static variables (e.g., the biggest contributor is latitude) versus time-varying variables.

This phenomenon is closely connected with the climate characteristics of the HRB, where the warm

temperate monsoon climate in the north and the subtropical climate in the south63,64 typically lead to

a larger amount of soil moisture spatial variability. Similarly, there is a gradual rising gradient for latitude

from southeast to northwest. These two factors are intuitively reflected in latitude and DEM information.
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Table 4. Features contribution score of RF internal training for ascending and descending orbit model

Features Score-ascending (%) Features Score-descending (%)

Latitude 44.33 Latitude 42.99

DOY 12.61 DOY 13.21

DEM 11.71 DEM 11.56

LST 8.71 LST 10.63

Precipitation 6.72 Longitude 6.77

Longitude 6.48 Precipitation 4.30

Roughness 2.43 Roughness 3.47

Sand 2.30 Clay 2.22

Clay 2.25 Bulk density 1.80

Slope 1.28 Sand 1.74

Bulk density 1.19 Slope 1.30
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In contrast, soil attributions (e.g., clay content, sand content, and bulk density) and surface descriptions

(e.g., roughness, slope) have relatively little impact on prediction accuracy. This finding can be partly in-

terpreted by the relatively flat terrain in the region and the relatively homogeneous soil type (lime

concretion black soil and yellow fluvo-aquic soil) present in the HRB.65,66 Despite the high contribution

of static variables to model training, it can be seen from Figure 4 that the predicted data (RF-SMAP) still

maintain adequate temporal variability in accordance with the time variation trend of the original

SMAP L3.

Seasonal variations in the number of retrievals will be no doubt transmitted into the gap-filling model

training, which means that the model has higher robustness in the case of a larger data size. For example,

Figure 5 shows that a lower RF-SMAP quality can be found during the dry season than in the wet season.

The consistency of such site validation can be compromised by the fact that there are very few valid refer-

ence values (involved in model training) during the winter season. However, the CDF of SMAP L3 is more

consistent with the in situ data in the dry season than with those in the wet season, due to the relatively small

temporal variation in soil moisture during the dry season, which allows for a good fit to the CDF. It was

found that the number of SMAP L3 retrievals within the dry season increased slightly from year to year

within the SMAP historical record. This implies that gap-filling will become progressively less difficult as

the SMAP mission matures.

In situ validation and TC analysis can bemutually complementary. For example, because TC is blind to bias,

Rbias values provided by in situ validation can complement TC-based results by providing a novel assess-

ment of bias. In turn, TC-based metrics can provide precision-based evaluation metrics over continuous

spatial domains—even in areas lacking in situ instrumentation. Note that although spatial patterns in tem-

poral correlation (R) obtained from both in situ validation and TC analysis are roughly comparable

(compare Figures 7 and 9), the TC-based correlations are higher. This is due to a few factors: (1) In situ vali-

dation is limited to available point-scale sites and, therefore, suffers from representativeness error when

used to estimate grid-scale soil moisture,67 whereas TC analysis generally compensates for this effect;

(2) time and depth mismatches exist between fixed in situ measurements (8:00 AM, 0–10 cm) and satellite

observation (C-band for 0–2 cm at 1:30 PM and L-band for 0–5 cm at 6:00 AM), which can complicate the

interpretation of validation results; and (3) rigorous testing of TC assumptions is difficult, and the violation

of these assumptions can bias TC-based results.

Under the recognition that both in situ validation and TC analysis have their insufficiency, some valuable

evaluation information can still be obtained. Overall, all evaluated products show an acceptable correlation

with true values in the area north of the Huai River mainstem, while the accuracy was very poor in the south-

eastern and southern HRB areas. However, in these areas, comparisons with in situ data suggest that RF-

SMAP is less biased than other intercompared satellite products.

Intuitively, a key consideration is how much RF-SMAP outperforms other continuous products such as

SMAP L4. While RF-SMAP retrievals are generally less precise than SMAP L3, and clearly inferior to
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SMAP L4, they are also available at reduced temporal latency with an accuracy that is very close to the

SMAP SM retrieval accuracy goal (i.e., ubRMSD = 0.04 m3/m3).
Conclusions

Benefitting from the NRT release of IMERG-E precipitation (�4-h latency) and GEOS-5 FP LST (�7-h la-

tency), the proposed gap-filling model in this study can compensate the regional missing values of

SMAP L3 within a few minutes once SMAP L3 releases, which is faster than the generation of SMAP L4

(a mean latency of �2.5 days). This practice breaks through the limitations of application caused by the

original data gaps and the high latency of the entire retrospective data products following the update

of an operational algorithm.

Overall, RF-SMAP is able to follow the good performance of SMAP L3 very well. Its median ubRMSD is al-

ways around 0.05 m3/m3 compared to the in situ data, which is very close to the accuracy goal for the SMAP

mission. Similarly, during the wet season, the median R for RF-SMAP (0.41) is higher than that for AMSR2

(0.17) and SMOS L3 (0.21) but lower than that for SMAP L3 (0.59) and SMAP L4 (0.57). This is because the

proposed gap-filling model tends to predict soil moisture under conditions that are not conducive to sat-

ellite inversion (e.g., dense vegetation or intense rainfall, deterioration was observed for RF-SMAP during

the dry season, which is due to a significant reduction in the sample size of SMAP L3 retrievals, required for

RF-model training, during this period).

The TC results agree with in situ-based statistical metrics, suggesting that they can provide reliable eval-

uation results in the south and southeastern HRB where in situ observations are sparse. Poor R patterns can

be observed for both RF-SMAP and SMAP L3 in these areas where the large manmade L-band RFI sources

are reported and frequent precipitation events occur. Moreover, in situ-based R-values for the results are

usually artificially degraded by upscaling/representativeness errors present in the ground.
Limitation of the study

Some limitations of this study are as follows: (1) The built model dominated by static inputs implicitly

weakens the ability to predict extreme values because the model tends to increase accuracy with a certain

value of certainty of predicted values; (2) the depth mismatch between in situ and satellite observations

could bring potential uncertainty toward in situ validation results; and (3) despite the high accessibility

of the data required by the model, the method has only been tested in relatively flat terrain, predominantly

agricultural study area, and further research is needed to reconstruct other more complex areas.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python version 3.9 Python Software Foundation https://www.python.org/

MATLAB (Figures plotting) MathWorks https://www.mathworks.com/

ArcGIS 10.8 (study area) ESRI https://support.esri.com/en/products/desktop/arcgis-desktop/arcmap/10-8

Scikit-learn (RF Model) Google https://scikit-learn.org/

Snellius Dutch National Supercomputer https://www.surf.nl/en/dutch-national-supercomputer-snellius

Deposited data

SMAP_L3 soil moisture NASA https://nsidc.org/data/spl3smp/versions/8#anchor-1

SMAP_L3 Ancillary Data

(GEOS-5 FP LST is included)

NASA/GMAO https://nsidc.org/data/SMAP_L1_L3_ANC_GEOS/versions/1

SMOS ESA https://bec.icm.csic.es/global-land-datasets/

ASCAT NOAA https://www.cen.uni-hamburg.de/en/icdc/data/land/ascat-soilmoisture.html

AMSR2 GES DISC https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_A_SOILM3_001/summary

CLDAS CMA http://data.cma.cn/mdrd/?r=data/detail&dataCode=NAFP_CLDAS2.0_NRT
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Xiaoyi Wang (wangxiaoyi.nk@gmail.com).

Materials availability

This study did not generate new unique physical materials.

Data and code availability

d The download links of all involved datasets are listed in the key resources table.

d The key codes have been deposited at GitHub (https://github.com/xiaoyi-wong/RF-SMAP) and are pub-

licly available as of the date of publication.

d Any detailed information about this paper is available from the lead contact upon request.

METHOD DETAILS

In the data pre-processing stage, quality control was not applied to SMAP_L3 in this paper, this is given the

dramatic reduction in the number of training targets after quality control and the small difference in per-

formance before and after data quality (see Figure S1). Similarly, all the competing datasets omitted quality

control procedure for the sake of fairness. Besides, a simple correlation analysis among variables involved

in gap-fillingmodeling has been shown in Figure S2, which could be useful for the influence of each variable

in prediction values and the accuracy of gap-filling model.

The detailed description of the random forest run setup and the derivation of the TC method has been

listed as follow.

For the Random Forest regressor, all the datasets were acquired from March 31, 2015, to December 31,

2019, and resampled at a geographic grid with a 0.25-degree resolution by the nearest interpolation

method.

In order to match the requirement of the RF model, the 3D (date-latitude-longitude) inputs and target data

containing were forced to be flattened as a 2D array (date-variables). The dataset would be divided into two
22 iScience 26, 105853, January 20, 2023

mailto:wangxiaoyi.nk@gmail.com
https://github.com/xiaoyi-wong/RF-SMAP
https://www.python.org/
https://www.mathworks.com/
https://support.esri.com/en/products/desktop/arcgis-desktop/arcmap/10-8
https://scikit-learn.org/
https://www.surf.nl/en/dutch-national-supercomputer-snellius
https://www.surf.nl/en/dutch-national-supercomputer-snellius
https://nsidc.org/data/spl3smp/versions/8%23anchor-1
https://nsidc.org/data/SMAP_L1_L3_ANC_GEOS/versions/1
https://bec.icm.csic.es/global-land-datasets/
https://www.cen.uni-hamburg.de/en/icdc/data/land/ascat-soilmoisture.html
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_DS_A_SOILM3_001/summary
http://data.cma.cn/mdrd/?r=data/detail&amp;dataCode=NAFP_CLDAS2.0_NRT


ll
OPEN ACCESS

iScience
Article
parts according to whether the target is marked as missing or not, respectively the successful retrievals set

and the missing set waiting to be filled. The former could be fed into the RF model to forcefully find the

relationship between the inputs and the target, the trained model could be driven by the latter data cor-

responding to the missing set. After that, the output would be reshaped into a 3D array assigned to the

locations where SMAP fails to measure.

Hyperparameter tuning consists of having successive random search (HRS) and successive grid

search (HGS), which is much less time-consuming than traditional methods (e.g., learning curve and

grid search). In addition to the discrete parameters listed in Table 3, the search steps of n_estimators

and max_depth set in HRS and HGS are 200 and 10, respectively. At the same time, enabling

parallel computing (n_job = �1, a key parameter in scikit-learn) can significantly improve the

training efficiency of the model. Note that the initial best n_estimators for Ascending model is

1600, and its output model is very large (�50 GB), so we set it to 1200 instead (the resulting training

accuracy is barely affected), and then the prediction intervals of the gap-filling model can be seen in

Figure S3.

For Triple Collocation (TC), its detailed derivation is summarized as follows:

X = aX + bX,T + εX

Y = aY + bY,T + εY

Z = aZ + bZ,T + εZ

(Equation A.1)

Where X, Y, and Z represent the observation from the non-homologous platform, T is the unknown true soil

moisture, a and b denote the systematic additive and multiplicative biases of the dataset (X or Y or Z). Their

covariance between random every two triplets can be calculated as:

QXY = CovðX ;Y Þ
= bXbYs

2
T + bXCovðεY ;TÞ+ bYCovðεX ; TÞ+aXEðεY Þ

+aYEðεX Þ+CovðεX ; εY Þ
QXZ = CovðX ;ZÞ

= bXbZs
2
T + bXCovðεZ ;TÞ+ bZCovðεX ;TÞ+aXEðεZÞ

+aZEðεX Þ+CovðεX ; εZÞ
QYZ = CovðY ; ZÞ

= bYbZs
2
T + bYCovðεZ ;TÞ+ bZCovðεY ;TÞ+aYEðεZÞ

+aZEðεY Þ+CovðεY ; εZÞ
(Equation A.2)

Where Q and E are covariance and expectation, s2ð $Þ denotes the variance. Under the assumptions

of the TC method: a). the random errors of each triplet have zero expectation, i.e., EðεÞ = 0; b). the

random errors of each triplet are independent of the true value, i.e., Covðεi ; TÞ; i˛ ðX ; Y ; ZÞ; c). the
random errors of each triplet are independent of each other, i.e., Covði; jÞ = 0; isj Equation A.2 can

be written as:

Qi;j =

8>><
>>:

bibjs
2
T ðTÞ+ s2ðεÞ; i = j

bibjs
2
T ðTÞ; isj

i; j˛ ðX ;Y ; ZÞ
(Equation A.3)

By solving for the variance from Equation A.3, ubRMSD can be calculated as below:

ubRMSDX =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðεX Þ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QXX � QXYQXZ

QYZ

s

ubRMSDY =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðεY Þ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QYY � QXYQYZ

QXZ

s

ubRMSDZ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðεZÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QZZ � QZXQZY

QXY

s
(Equation A.4)

Furthermore, for acquiring the correlation estimate, bist can be regarded as qi the covariance is con-

verted to:
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Qi;j =

8>><
>>:

q2i + s2
εj
; i = j

qiqj; isj

i; j˛ ðX; Y ;ZÞ
(Equation A.5)

The correlation coefficient r is obtained by deducing the mathematical relationship between the r and the

internal variables of TC:

Ri;T =
Covði;TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðiÞ,s2ðTÞp =

bis
2
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qii,s2ðTÞp =
qffiffiffiffiffiffi
Qii

p (Equation A.6)

Therefore, the correlation coefficients for each dataset against ‘‘T’’ are as follows

RX =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QXYQXZ

QXXQYZ

s

RY =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QYXQYZ

QYYQXY

s

RZ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QZXQZY

QZZQXY

s
(Equation A.7)
Hardware and computing environment used

In this research, the study area is made by ArcGIS 10.8, the data pre-processing is operated by Python and

MATLAB. The Random Forest model is built by Python 3.9 (the machine learning module is driven by scikit-

learn 1.1.2). All the analysis (statistical metrics and TC analysis) and plots are performed in MATLAB 2021a.

Apart from that, the High-Performance Computer (HPC) platform – Snellius of the Netherlands provides

great help in accelerating program handling.
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