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Chinese adult brain atlas with 
functional and white matter 
parcellation
Jingwen Zhu1 & anqi Qiu  1,2,3,4,5,6 ✉

Brain atlases play important roles in studying anatomy and function of the brain. as increasing 
interests in multi-modal magnetic resonance imaging (MRI) approaches, such as combining structural 
MRI, diffusion weighted imaging (DWI), and resting-state functional MRI (rs-fMRI), there is a need to 
construct integrated brain atlases based on these three imaging modalities. this study constructed a 
multi-modal brain atlas for a Chinese aging population (n = 180, age: 22–79 years), which consists of 
a T1 atlas showing the brain morphology, a high angular resolution diffusion imaging (HARDI) atlas 
delineating the complex fiber architecture, and a rs-fMRI atlas reflecting brain intrinsic functional 
organization in one stereotaxic coordinate. We employed large deformation diffeomorphic metric 
mapping (LDDMM) and unbiased diffeomorphic atlas generation to simultaneously generate the T1 and 
HARDI atlases. Using spectral clustering, we generated 20 brain functional networks from rs-fMRI data. 
We demonstrated the use of the atlas to explore the coherent markers among the brain morphology, 
functional networks, and white matter tracts for aging and gender using joint independent component 
analysis.

Background & Summary
Brain atlases have received a great deal of attention1–3, since they play important roles in studying anatomy and 
function of the brain in large populations4–6. Recently, there is an increasing interest in using multi-modal mag-
netic resonance imaging (MRI) approaches, such as structural MRI, diffusion weighted imaging (DWI), and 
resting-state functional MRI (rs-fMRI), for understanding brain development, degeneration, and abnormalities 
of gray matter and white matter tracts as well as functional organization. There is a need to construct integrated 
brain atlases based on structural MRI, DWI, and rs-fMRI such that the convoluted cortex, subcortical structures, 
white matter tracts, and functional networks are well aligned in a common stereotaxic coordinate space.

The well-known brain atlas, such as the MNI3 and ICBM7 atlases, was constructed based on structural 
T1-weighted images of Caucasian populations. Evidence has shown population differences in brain morphology 
among various ethnic groups8–10. In the past few years, several brain atlases targeting the Chinese population 
became available. Xing et al. constructed a set of brain structural atlases for various age and gender groups using 
1000 Chinse adults11. The brain of Chinese is rounder in shape8, shorter in length and height but has a larger 
width to length ratio12 than that of Caucasians. Liang et al. utilized the population-matched brain structural atlas 
and achieved better segmentation performance for Chinese subjects than using those Caucasians-based brain 
structural atlases12. Yang et al. constructed a brain surface atlas based on a Chinese population and demonstrated 
better alignment and higher accuracy when registering a Chinese brain to the Chinese brain atlas compared to 
the brain atlas derived from a Caucasian population13. Functionally, Zhang et al., found that the language-related 
brain region was more strongly connected with the motor area and frontal region in Chinese compared to 
Caucasians9. Thus, there is a need to construct ethnic-specific brain structural and functional atlases.

Diffusion-weighted imaging (DWI) has been widely explored to understand the microstructure of the 
brain white matter based on the diffusion property of water molecules14. Diffusion tensor imaging (DTI) is the 
well-used model to quantify water diffusion15. Mori et al. constructed a DTI white matter atlas where projection 
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and association white matter fibers are characterized in stereotaxic coordinates16. However, since DTI describes 
the axonal orientation of each voxel by a three-dimensional ellipsoid tensor, it has limited capability to resolve 
the complex architecture of crossing fibers17. To address the issue of multiple intravoxel fiber orientations, more 
complex diffusion imaging teachniques, such as high angular resolution diffusion imaging (HARDI)18, diffusion 
spectrum imaging (DSI)19 and q-ball imaging (QBI)20, have been developed to recover complex fiber archi-
tecture via an orientation distribution function (ODF), where the ODF is the angular profile of the diffusion 
probability density function of water molecules that characterizes white matter fiber orientations. Bloy et al. 
constructed the HARDI atlas for adolescents and employed an automated clustering algorithm to parcellate the 
white matter into regions with higher homogeneity of white matter fibers than those derived from conventional 
DTI21. Nevertheless, up to date, a Chinese-population-based brain structural atlas capable of modeling complex 
intravoxel fiber orientations is still missing. Also, there is a lack of brain atlases that integrate comprehensive 
white matter fibers and functional organization.

This study aimed to construct a multi-modal brain atlas for a Chinese aging population (age: 22 to 79 years), 
which consists of a structural T1 atlas showing the brain morphology, a HARDI atlas delineating the complex 
fiber architecture, and a rs-fMRI atlas reflecting brain intrinsic functional organization. We employed large 
deformation diffeomorphic metric mapping (LDDMM)22 and unbiased diffeomorphic atlas generation23–25 to 
simultaneously generate the structural T1 and HARDI atlases. Using spectral clustering, we generated 20 brain 
functional networks from rs-fMRI data. Further, we demonstrated the use of the atlas to explore the coherent 
markers among the brain morphology, functional networks, and white matter tracts for aging and gender using 
joint independent component analysis (ICA).

Methods
Subjects. This study was approved by the National University of Singapore Institutional Review Board and all 
participants provided written informed consent prior to participation.

Two hundred and fourteen healthy Chinese subjects aged 22 to 79 years old were recruited and screened 
for this study26–29. Chinese ethnicity was defined when both parents and grandparents are Chinese. Subjects 
with the following conditions were excluded: (1) major illnesses/surgery (heart, brain, kidney, lung surgery); 
(2) neurological or psychiatric disorders; (3) learning disability or attention deficit; (4) head injury with loss of 
consciousness; (5) non-removable metal objects on/in the body such as cardiac pacemaker; (6) diabetes or obe-
sity; (7) Mini-Mental State Examination (MMSE) score less than 24. Additionally, this study included subjects 
with three brain image modalities, including T1-weighted MRI, resting-state fMRI (rs-fMRI), and high angular 
resolution diffusion image (HARDI) with small head motion30. As a result, this study included 180 subjects from 
22 to 79 years old (77 males, 103 females). Figure 1 illustrates the age and sex distribution of subjects included 
in this study.

MRI acquisition and preprocessing. All subjects were scanned using a 3 T Siemens Magnetom Trio 
Tim scanner with a 32-channel head coil at the Clinical Imaging Research Centre of the National University 
of Singapore. The image protocols included: (i) high-resolution isotropic T1-weighted Magnetization Prepared 
Rapid Gradient Recalled Echo (MPRAGE; 192 slices, 1 mm thickness, sagittal acquisition, field of view 
256 × 256 mm2, matrix = 256 × 256, repetition time = 2300 ms, echo time = 1.90 ms, inversion time = 900 ms, flip 
angle = 9°); (ii) isotropic axial resting-state functional MRI (rs-fMRI) imaging protocol (single-shot echo-planar 
imaging; 48 slices with 3 mm slice thickness, no inter-slice gaps, matrix = 64 × 64, field of view = 192 × 192 mm2, 
repetition time = 2300 ms, echo time = 25 ms, flip angle = 90°, scanning time = 8 min); (iii) isotropic high angular 
resolution diffusion imaging (HARDI; 48 slices of 3 mm thickness, with no inter-slice gaps, matrix: 96 × 96, field 
of view: 256 × 256 mm2, repetition time: 6800 ms, echo time: 85 ms, flip angle: 90°, 91 diffusion weighted images 
(DWIs) with b = 1150 s/mm2, 11 baseline images without diffusion weighting); (iv) isotropic T2-weighted imag-
ing protocol (spin echo sequence; 48 slices with 3 mm slice thickness, no inter-slice gaps, matrix: 96 × 96, field of 
view: 256 × 256 mm2, repetition time: 2600 ms, echo time: 99 ms, flip angle: 150°). During the rs-fMRI scan, the 
subjects were asked to close their eyes.

Fig. 1 Age and sex distribution of subjects in this study.
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The T1-weighted images were corrected for intensity inhomogeneity and were then skull-stripped using 
FreeSurfer (version 5.3.0)31. A post-processing quality check was conducted by one well-trained researcher 
based on the instruction given at https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData.

The rs-fMRI data were preprocessed with slice timing, motion correction, skull stripping, band-pass filtering 
(0.01–0.08 Hz) and grand mean scaling of the data (to whole brain modal value of 100). Framewise displacement 
(head motion characteristics) was computed, and subjects with rs-fMRI data of framewise displacement (FD) 
greater than 0.5 mm were excluded from this study30. Figure 2 shows the mean framewise displacement distri-
bution of rs-fMRI data among subjects. All the subjects in this study had the mean FD smaller than 0.2 mm. 
Among them, 90% had the mean FD smaller than 0.1 mm. Hence, head motion is regressed out from rs-fMRI 
using six parameters, and subsequently, this study regressed out CSF and white matter signals from rs-fMRI 
signal. Temporal band-pass filtering (0.01–0.08 Hz) was applied.

DWIs of each subject were first corrected for motion and eddy current distortions using mutual informa-
tion for searching affine transformation to the image without diffusion weighting in FSL32. Within-subject, 
we followed the procedure detailed in Huang et al.33 to correct geometric distortion of the DWIs due to 
b0-susceptibility differences over the brain. Briefly, the T2-weighted image was considered as the anatomical 
reference. The deformation that carried the baseline image without diffusion weighting to the T2-weighted 
image characterized the geometric distortion of the DWI. For this, intra-subject registration was first performed 
using FLIRT32,34 to remove linear transformation (rotation and translation) between the diffusion weighted 
images and T2-weighted image. Then, large deformation diffeomorphic metric mapping (LDDMM)22 sought 
the optimal nonlinear transformation that deformed the baseline image without the diffusion weighting to the 
T2-weighted image. This diffeomorphic transformation was then applied to every diffusion weighted image in 
order to correct the nonlinear geometric distortion. The diffusion gradients were reoriented using the method 
proposed in Dhollander et al.35. Finally, we estimated the orientation distribution functions (ODFs) using the 
approach considering the solid angle constraint based on HARDI proposed in Aganj et al.36. The ODF is the 
angular profile of the diffusion probability density function of water molecules that characterizes white matter 
fiber orientations.

Structural atlas generation using t1-weighted and diffusion weighted images. This study 
employed large deformation diffeomorphic metric mapping (LDDMM)22,37 to simultaneously generate 
multi-modal structural brain atlases, including structural T1-weighted MRI and HARDI. We adopted the unbi-
ased diffeomorphic atlas generation procedure given in literature23–25. In particular, we formulated this atlas gen-
eration as
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where Iatlas, Ψatlas denote the structural T1-weighted atlas and the HARDI atlas represented by ODFs. φi,t and vi,t 
are diffeomorphic transformation and its velocity at time, t, that transform the estimated atlas to the ith subject 
space22. At t = 1, φi, 1 transforms the T1-weighted and ODF atlases to the T1-weighted and ODF images of the ith 
subject, respectively. vi t V,

2  is the regularization term to constraint the smoothness of the velocity field in a 
Hilbert space, V. ||Iatlas∙φi, 1-Ii||2 quantifies the intensity difference between the transformed T1-weighted atlas and 
the T1-weighted image of the ith subject. Ψφ φΨ ⋅ Ψ ⋅∣∣ ∣∣log
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 is defined as Fisher-Rao metric in the statistical 
manifold of ODFs. The mathematical definition of this Fisher-Rao metric was detailed in Du et al.25. It quantifies 
the angle between the transformed atlas ODF, Ψatlas∙φi, 1, and the ith subject ODF, Ψi.

To solve Eq. (1), single-subject structural and HARDI ODF images were used as an initial atlas. Structural 
MRI and HARDI ODF of the initial atlas were simultaneously aligned to those of individual subjects via 
LDDMM transformations22,37. The structural T1-weighted atlas was obtained by averaging the deformed images 
of individuals. The HARDI atlas was computed by averaging the deformed ODF of individuals based on mean 
of ODFs in the ODF statistical manifold25. We repeated this process for three iterations to obtain the final 

Fig. 2 Mean framewise displacement (FD) distribution. Mean FD were smaller than 0.2 mm for all subjects, 
among which 90% had mean FD smaller than 0.1 mm.
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structural T1-weighted image and HARDI ODF atlases as the intensity change of the atlases obtained from the 
second and third iterations was less than 5%. Last, we mapped manually labelled white matter parcels from the 
JHU-MNI-SS atlas38 into the HARDI atlas via diffeomorphic transformation obtained using LDDMM, resulting 
in 94 deep white matter parcels (see the annotation in Supplementary Table S1).

In this study, we employed ODF to represent the direction of white matter fibers and scalar image, general-
ized fractional anisotropy (GFA), to quantify how the shape of ODF is deviated from a unit sphere.

Functional atlas parcellation. In this study, the functional parcellation for the cortical and subcortical 
regions was constructed based on the rs-fMRI data of all subjects in the above structural atlas space. Individual 
rs-fMRI data were aligned to our structural T1-weighted atlas created above via LDDMM between the respective 
T1-weighted images. Given that spectral approaches are robust well-proven methods for parcellating the brain, 
as they are especially suitable for solving general problems, and tend to provide partitions with more balanced 
sizes compared to other clustering methods, such as hierarchical clustering39,40, we employed spectral clustering 
to construct the functional parcellation from rs-fMRI data41. First, the gray matter mask was constructed by 
subtracting the white matter mask from the structural atlas, where the white matter mask contained 94 white 
matter parcels. Second, a voxel-pairwise similarity matrix was computed via Pearson’s correlation between the 
time course of any two voxels in the gray matter mask for individual subjects. Negative functional connectivities 
were retained and proceeded with the same computational procedure as for positive connectivities. A group 
similarity matrix was averaged across individual functional connectivity matrices and was then standardized to 
be maximum of one and minimum of zero. Third, spectral clustering was applied on the group average similarity 
matrix. Silhouette index that indicates the balance between intra-cluster compactness and inter-cluster separation 
was used to determine the number of clusters42. A higher value of the Silhouette index indicates a better clustering 
result. We shall call a functional cluster as a functional network in the rest of the paper.

To evaluate the reproducibility of the functional parcellation, we repeated the spectral clustering analysis via 
leave-one-out cross-validation. We then computed the overlap ratios between the new and original functional 
networks for each repetition43. Moreover, we compared our parcellation with that generated by hierarchical clus-
tering using Ward’s algorithm44. Our study chose Wald’s hierarchical clustering method since it is a well-proved 
hierarchical clustering algorithm in terms of its robustness to generate the functional parcellation. Previous 
studies showed that Wald’s method is superior to several brain functional parcellation methods, such as geomet-
ric clustering and k-means clustering45. Our study computed the overlap ratio between our parcellation and that 
generated from Wald’s hierarchical clustering method.

Data Records
Structural MRI and hardi brain atlases. Figure 3 illustrates the structural T1-weighted atlas (panel a) and 
HARDI GFA (panel b). The GFA, similar to FA, characterizes the overall shape of the white matter fiber distri-
bution relative to a unit sphere. The larger GFA value (1 as max value) indicates more complex fiber orientation, 
while GFA of zero indicates that the ODF is in a spherical shape. Figure 3c shows the ODF in the midbrain, cor-
pus callosum, superior longitudinal fasciculus (SLF). The first two show synchronized fiber orientation and the 
last one shows cross fibers in the SLF.

Resting-state functional brain atlas. The spectral cluster algorithm identified 22 functional networks 
from the rs-fMRI data. Figure 5a illustrates Silhouette index, suggesting the maximal value of Silhouette index 

Fig. 3 Structural atlas. Panels (a,b) respectively illustrate the structural T1-weighted atlas and HARDI GFA 
atlas. Panel (c) enlarges the white matter region in the dashed box and illustrates the ODF representing the 
orientation of white matter fibers.
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reached when the brain was classified into the 22 functional networks. Through the visual inspection, we dis-
carded 2 functional networks that were mainly located at the white matter and cerebrospinal fluid (CSF) regions, 
resulting in the final 20 functional networks. Figure 4 illustrates the 20 functional networks in the axial view of 
the brain and Fig. 6 provides the three views of each network. Supplementary Table S2 lists the descriptive infor-
mation of the 20 functional networks.

Cerebellar and subcortical networks. The cerebellum was partitioned into two functional networks, including 
the left and right cerebellum, while the subcortical network included the basal ganglia and thalamus as well as 
the middle cingulate. The first row in Fig. 6 illustrates the two cerebellar networks and one subcortical network.

Primary sensory networks. The 20 functional networks included three primary sensory networks, namely, the 
sensory motor network located at the motor cortex, the primary visual network located at cuneus, and the lateral 
occipital network (the second row in Fig. 6).

DMN and salience. The default mode region was fractionated into three functional networks (the fourth row in 
Fig. 6). The precuneus, post cingulate, and angular gyrus made up the posterior default mode network (DMN). 
The medial frontal, anterior cingulate, and caudate were further clustered into the left and right anterior DMNs.

Similarly, the insula, putamen, and thalamus were fractionated into two unilateral functional networks, 
namely, the left and right salience (the first two panels on the third row in Fig. 6).

Fig. 5 Model selection and reproducibility of brain functional parcellation. Silhouette index indicates that 
the gray matter region can be clustered into 22 functional networks (a). leave-one-out cross-validation results 
showed the average overlap ratio between the reproduced results and our 20 meaningful functional networks 
derived from the full dataset across 20 meaningful functional networks was 80.3% (b). The average overlap ratio 
between the parcellation results from Ward’s algorithm and 20 meaningful networks from our main analysis 
was 65.5% (c).

Fig. 4 Resting-state functional atlas. This atlas consists of 20 functional networks that are illustrated in the axial 
view of the brain.
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Temporal networks. The temporal lobe was partitioned into four functional networks. The middle temporal 
network was located at the middle temporal region (the first panel on the sixth row in Fig. 6), and the temporal 
network covered the temporal pole, hippocampus, parahippocampus, and amygdala (the first panel on the fifth 
row in Fig. 6). Both networks displayed bilateral patterns. The inferior and middle temporal regions were further 
partitioned into two unilateral functional networks, namely, the left and the right temporal functional networks 
(the fifth row in Fig. 6).

Frontoparietal networks. The frontoparietal cortex was clustered into five functional networks. The orbitofron-
tal network clearly delineated the orbitofrontal cortex. The attention network was located at the inferior parietal 
cortex and displayed a bilateral pattern. The executive control network showed a dispersed bilateral pattern in 
the parietal, temporal, and occipital cortex, but diminished the left counterpart in the superior frontal cortex. 
The superior frontal cortex together with the anterior cingulate and basal ganglia was further clustered into the 
left and right frontal networks (the last row in Fig. 6).

Integrated structural and functional atlas. Figure 7 illustrates the integrated structural and functional 
atlas, where the gray matter was parcellated into 20 functional networks and the white matter was segmented into 
94 white matter tracts. The atlas and all the image data used in this paper are available at NITRC https://www.
nitrc.org/projects/adultatlas46.

Fig. 6 The 20 functional brain networks.
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technical Validation
Figure 8 demonstrates our structural atlases including the T1-weighted atlas (panel a) and the HARDI GFA atlas 
(panel b) in comparison with well-established adult atlases created based on different ethnic subjects. Visually, 
our T1-weighted atlas (panel a, (i)) offered better contrast than the MNI152 atlas (panel a, (ii)). The patterns of 
sulci and gyri in our T1-weighted atlas were largely agreed with those in the MNI152 atlas (panel a, (ii)) and 
those in the IIT T1 atlas47 (panel a, (iii)). On the other hand, the anatomical details of the white matter are clearer 
in our HARDI GFA atlas (panel b, (i)) than those in the FMRIB58 FA atlas (FMRIB, Oxford, UK) (panel b, (ii)). 
Major white matter tracts, including the corpus callosum, corona radiata, internal capsule, external capsule, 
superior and inferior longitudinal fasciculus, and small features, including the anterior commissure and super-
ficial white matters, in the IIT FA atlas48 (panel b, (iii)) were observed in our HARDI GFA atlas as well (panel b, 
(i)).

Figure 5b shows the reproducibility of functional parcellation through leave-one-out cross-validation. 
Among the 20 functional networks derived from the full dataset, the average overlap ratio between the repro-
duced results and those from our main analysis was 80.3%. The cerebellum and primary sensory networks, 
including the primary visual, lateral occipital, and sensory motor, demonstrated high consistency among repro-
duced results with an average overlap ratio greater than 90%. On the other hand, the subcortical network and 
association networks, including the attention, executive control, salience networks, default mode networks, and 
temporal networks, were relatively variable compared to the primary sensory networks.

Figure 5c shows the overlap ratio of functional parcels using spectral clustering and those using Ward’s algo-
rithm. The average overlap ratio between the parcellation scheme from Ward’s algorithm and that from our 
main analysis over all 20 meaningful functional networks was 65.5%. Similar to reproducibility results from 
leave-one-out cross-validation, the cerebellum and primary sensory networks from Ward’s algorithm were 
highly consistent with those derived from our main analysis, while higher-ordered functional networks from 
Ward’s algorithm, in general, showed a lower overlap ratio with those derived from our main analysis. Notably, 

Fig. 7 Integrated structural and functional brain atlas. The colored outline delineates the 20 functional 
networks, where the color scheme is consistent with those in Fig. 2. The color map in the white matter shows the 
white matter parcellation.

Fig. 8 Comparison of structural atlases. Panel (a) illustrates the structural T1-weighted atlas in comparison 
with MNI152 T1-weighted atlas (ii) and IITmean T1-weighted atlas (iii). Panel (b) illustrates the HARDI GFA 
atlas in comparison with FMRIB58 FA atlas (ii) and IITmean FA atlas (iii).
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three networks in the association cortex, namely, attention network and left and salience networks, were well 
reproduced via Ward’s algorithm.

Usage Notes
We illustrated the use of the integrated structural and functional atlas to examine the synchronized pattern of 
the brain morphology, functional networks, and white matter tracts due to gender and age. For this, we applied 
joint independent component analysis (ICA) to incorporate the structure and functional measures. For func-
tional data, we calculated the network-level functional connectivity matrix based on our 20 functional networks. 
For structural T1-weighted data, we employed cortical thickness to characterize the cortical ribbon. We mapped 
our age-appropriate functional atlas into cortical surfaces and calculated the cortical thickness averaged over 
each functional network. The average GFA value of each white matter tract was computed based on the HARDI 
atlas. As a result, the input matrix for multi-modal fusion consisted of 34 measures of thickness, 94 measures 
from the white matter parcels, and 210 functional connections, including 190 inter-network functional connec-
tions and 20 intra-network functional connections, from the functional atlas for each subject.

We chose 14 IC components based on Akaike information criterion (AIC) and minimum description length 
(MDL) estimation49 (Fig. 9a). Figure 9b illustrates the loadings for each IC. We then investigated the age and 
gender differences of those components based on Pearson’s correlation and t-test, respectively. The top row in 
Fig. 9c illustrates the IC with the largest negative loading. The loading of this component did not show signifi-
cant age-related changes but displayed significant gender difference. This gender-related component consisted 
of the cortical thickness in the left frontal, orbitofrontal, and primary visual networks, the white matter tract 
connecting to the left temporal lobe, and the functional connectivity between the temporal region and atten-
tion network, posterior DMN, and lateral occipital network. This component may reflect the different brain 
recruitment during language tasks between males and females50. The bottom row in Fig. 9c illustrates the IC 
with the largest positive loading that shows a significant age-related increase (scatter plot on the last panel). This 

Fig. 9 Joint independent component analysis on cortical thickness, functional network connectivity, and GFA 
of white matter tracts. Panel (a) shows the AIC and MDL in relation with the number of ICs. According to the 
average loading of those 14 ICs (b), we illustrated the IC with the largest negative loading and its association 
with gender (c, top panel), and the IC with the largest negative loading and its association with age (c, bottom 
panel).
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age-related component consisted of the cortical thickness in the executive control network, functional connec-
tivity between the right cerebellum and sensory motor and subcortical networks, between the subcortical and 
left anterior DMN, and dispersed white matter tracts connecting the subcortico-cerebellar region to the cerebral 
cortex. This component might reflect the age-related changes in the functional connectivity between the sub-
cortical and cortical cortex.

Code availability
The atlas is available at and all the image data used in this paper are available at https://www.nitrc.org/projects/
adultatlas. Code for the atlas generation can be found at https://github.com/bieqa/AdultBrainAtlas.
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