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Abstract: The search for new ways to obtain analogues of the well-known Methylene Blue dye is
an important synthetic task. Herein, we proposed and developed an approach to the synthesis of
3-N′-arylaminophenothiazines and asymmetrical 3,7-di(N′-arylamino)phenothiazines. This approach
included the optimization of synthetic strategy by quantification analysis of the positive charge
distribution in the cation of 3-N′-arylaminophenothiazine derivative. The obtained experimental
data are confirmed by DFT studies. Two synthetic routes for asymmetrical phenothiazine diary-
lamino derivatives were suggested and verified. The developed convenient and versatile synthetic
approach makes it easy to obtain aromatic Methylene Blue isostructural analogues with various
substituents. As a result, a series of novel 3-N′-arylaminophenothiazines and asymmetrical 3,7-di(N′-
arylamino)phenothiazines containing ester, tert-butoxycarbonyl, sulfonic acid, hydroxyl and amine
groups were obtained in high yields.

Keywords: Methylene Blue; phenothiazine; synthesis; reactivity; DFT

1. Introduction

Phenothiazines are a class of heterocyclic compounds, bright representatives of which
are Methylene Blue (MB) and its derivatives. Phenothiazine dyes are promising candidates
for therapeutic agents against local bacterial infections [1,2], tuberculosis [3], trypanoso-
miasis [4], malaria [5], yeast infections [6,7], and cancer [8–10]. Despite many years of
research on phenothiazine derivatives, the search for new ways of their functionalization is
still an urgent task for organic chemists [11–20]. Most examples of phenothiazine modi-
fication in the literature are 3,7-substituted phenothiazine derivatives. This is explained
by the fact that the 3 and 7 positions of phenothiazine are the most reactive [21], due
to the electron-donating effect of the nitrogen atom in the 10 position. A wide series of
phenothiazine derivatives with unique physical and physicochemical characteristics (redox
activity, conjugation with the nitrogen atom, extended charge delocalization, formation of
stable cationic radicals, and dications) can be obtained via the formation of new C–C and
N–C bonds in the 3 and 7 positions.

There are some examples of the synthesis of symmetrical 3,7-bis(N′-arylamino)
phenothiazines containing identical aromatic substituents in the 3 and 7 positions [22].
Synthetic protocols for 3,7-bis(N′-arylamino)phenothiazines 2–9 with ester, carboxylic acid,
sulfonic acid, amide, and amine groups were previously developed in our scientific group
(Scheme 1) [23–26]. Supramolecular colorimetric [27] and electrochemical sensors [28]
based on synthesized 3,7-bis(N′-arylamino)phenothiazines’ derivatives have been devel-
oped. Earlier it was shown that the introduction of aniline derivatives into the 3 and
7 positions of phenothiazine increases the intensity of absorption in the near infrared re-
gion [29]. The results obtained are relevant for the design of solar cell materials, as well as
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for medicine, since the near infrared radiation has a high penetrating power in tissues [30].
The unique electrochemical behavior of these derivatives, and the possibility of “tuning”
intermolecular interactions and interactions with biologically important objects, were also
demonstrated by the functionalization of the aromatic fragments [24,25].
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However, many biological and optical applications, as well as the precise supramolecu-
lar tuning of non-covalent interactions, require the development of the design of asymmetric
disubstituted arylaminophenothiazines as aromatic MB isostructural analogues. Such a
synthetic task has not been completely solved and is relevant, since its solution may open
prospects for the development of new materials and drugs. This study is devoted to the syn-
thesis of a series of 3-N′-arylamino derivatives of phenothiazine, the investigation of their
reactivity, and the development of a universal synthetic approach to obtain asymmetric
3,7-di(N′-arylamino)phenothiazines.

2. Results and Discussion

The stated synthetic problem can be divided into several stages. Initially, the de-
velopment of a route is planned for the synthesis of monosubstituted in the 3 position
phenothiazine derivatives containing fragments of substituted anilines. The next step is the
study of the reactivity of the obtained 3-N′-arylaminophenothiazines with aniline and its
derivatives, in order to optimize the synthesis conditions and develop a versatile synthetic
route to obtain differently substituted phenothiazine derivatives as MB isostructural ana-
logues. We also plan to find the optimal methodology for obtaining these compounds by
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counter syntheses. The use of quantum chemical calculations allowed us to confirm our
assumptions about the reactivity of 3-N′-arylaminophenothiazines.

2.1. Synthesis of 3-N′-Arylaminophenothiazines

The first stage of this work was the development of a synthetic procedure of 3-N′-
arylaminophenothiazines as precursors for obtaining diarylamino derivatives of phenoth-
iazines, containing different substituents in the 3 and 7 positions. It should be noted that
only a few examples of 3-N′-arylamino derivatives of phenothiazine are presented in the
literature [31], and the structural diversity of 3-amino derivatives of phenothiazine is lim-
ited to individual examples of 3-N′-alkylamino derivatives [32–40]. The synthesis of the
3-substituted compounds remains poorly understood, probably due to the close reactivity
of the starting phenothiazin-5-ium tetraiodide 1 and 3-substituted phenothiazin-5-ium in
reactions with amines, which leads to low yields of 3-amino derivatives of phenothiazin-5-
ium.

At first, the interaction of the phenothiazin-5-ium tetraiodide 1 with a series of aniline
derivatives was studied, to determine the optimal synthetic conditions (Scheme 2). The sol-
vent (methanol or water) was chosen according to the conditions of homogeneous reaction.
Methanol was used as a solvent to obtain compounds 10–14 and 16, by analogy with the
literature data for 3-N′-alkylaminophenothiazine synthesis [32–40]. Water was used as a sol-
vent in the synthesis of the compound 15. Varying the ratios of the compound 1 and aniline
derivatives revealed that the most efficient ratio is 1:1. An increase in the amount of ary-
lamine leads to the formation of by-products, namely 3,7-bis(N′-arylamino)phenothiazines.
The temperature effect on the yield of target compounds was also studied in the range
from 0 to 60 ◦C. A mixture of the compound 1, the target 3-arylamino derivative, and the
by-product 3,7-bis(N′-arylamino)phenothiazine derivative was already formed at room
temperature. Thus, the optimal conditions for synthesis of 3-N′-arylaminophenothiazines
were a reaction mixture temperature of 0 ◦C and the slow dropping of the arylamine
to a suspension of phenothiazin-5-ium tetraiodide 1. When one fragment of an aniline
derivative was added to the compound 1 under these conditions, the monosubstituted
product precipitated. However, the amount of the obtained precipitate was small (yield
15–63%), so further optimization was carried out to isolate the target 3-substituted products
10–16. The solvent was evaporated off, and the residue was reprecipitated three times
from a mixture of methanol-diethyl ether (1:9) at 0 ◦C. Thus, it was possible to achieve
yields of 78–93% for the compounds 10–16. Therefore, a route was developed to obtain
3-substituted phenothiazine derivatives containing fragments of aniline and its derivatives.
It consists in the use of polar solvents (methanol, water), low temperatures (0 ◦C), the ratio
of the starting compound 1 to the aniline derivative as 1:1, and isolation and purification
by reprecipitation from a mixture of methanol-diethyl ether (1:9).

As mentioned before, most phenothiazine derivatives are lipophilic. However, phe-
nothiazines with high solubility in water and polar solvents are helpful for many tasks
of supramolecular chemistry and materials science. So, the next stage of the work was
the hydrolysis of the compound 14 with an acetanilide fragment to obtain a 3-substituted
phenothiazine containing one primary amine group in its structure. Previously, the ex-
perimental conditions for successful hydrolysis for 3,7-bis(N′-arylamino) derivatives of
phenothiazine were developed in our scientific group [25]. Therefore, the hydrolysis of the
compound 14 was carried out in propan-2-ol in the presence of concentrated hydrochloric
acid at the solvent boiling point. The compound 17 was obtained as hydrochloride in
89% yield (Scheme 2).
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Scheme 2. The synthesis of 3-N′-arylaminophenothiazines 10–17.

The structure and the composition of the obtained compounds 10–17 were con-
firmed by 1H, 13C NMR, IR spectroscopy, mass spectrometry, and elemental analysis
(Figures S1–S68). HR ESI mass spectra of the compounds 10–17 have shown the pres-
ence of a single signal corresponding to the molecular ion peak of the target compounds
(Figures S53–S60).

The unambiguous identification of structures by 1H NMR spectroscopy of compounds
containing triiodide anions can be difficult due to the formation of polyiodides: an exchange
process such as [I]− + I2 = [I3]− can occur in a deuterated solvent [41,42]. Therefore, the
characterization of the structures of these compounds by 1H NMR spectroscopy was carried
out in comparison with the 1H NMR spectra of the leuco forms of these compounds. As
shown in the literature, in order to characterize the structures of phenothiazine derivatives
containing iodide anion, the anion is replaced by another one, most often the chloride
anion [35]. However, this approach is not applicable here due to the low solubility of
3-N′-arylamino derivatives of phenothiazine in water and alcohols. So, 1H NMR spectra of
the leuco forms of the compounds 10–17 were recorded in a deuterated solvent, with the
addition of hydrazine hydrate as a reducing agent (reduction was carried out in- -situ).

The 1H NMR spectrum of the compound 11 shows characteristic signal of methoxy
fragment as a singlet, with a chemical shift of 3.80 ppm (Figure 1). The signals of aromatic
protons in the form of broadened multiplets are in the region of 7.44–8.32 ppm. In the
1H NMR spectrum of the leuco form of the compound 11, the aromatic proton signals
are upshifted (6.50–7.70 ppm) and have the best resolution, which makes it possible to
unambiguously identify the structure of the product.
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2.2. Synthesis of 3,7-di(N′-Arylamino)phenothiazines Containing Different Substituents in the 3
and 7 Positions

The next stage of this work was the study of the reactivity of 3-N′-arylamino derivatives
of phenothiazine in reactions with aromatic amines, to determine the optimal synthetic route
for diarylamino derivatives of phenothiazine containing different substituents in the 3 and
7 positions. Synthetic routes for asymmetrical phenothiazine diarylamino derivatives can
be divided into two main groups: (Route 1) reactions of the 3-(phenylamino)phenothiazin-5-
ium triiodide 16 with a series of arylamines; and (Route 2) reactions of the 3-substituted
derivatives 10–12 and 14 with aniline (Scheme 3). The reactions were carried out in a
mixture of methylene chloride/methanol (v/v = 1:1), similar to the approaches to the
synthesis of phenothiazin-5-ium derivatives described in the literature [33].
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Due to the two synthetic routes to obtain the diarylamino derivatives of phenothiazine,
it is reasonable to carry out “counter” syntheses in order to determine the optimal strategy
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for obtaining the compounds 18, 20, 22, 23 (Scheme 4). It was shown that the compounds
22 and 23 were obtained only by Route 2, i.e., the reaction of the compounds 11 and 12
with aniline. In the reaction of methyl-2-aminobenzoate or N-phenylglycine ethyl ester
with the compound 16, the replacement of the solvent with methylene chloride, a mixture
of methylene chloride and methanol, and an increase in temperature also did not lead to
the formation of the target products 22 and 23. The electron-withdrawing effect of the ester
group in methyl-2-aminobenzoate and ethyl-4-aminobenzoate was observed. Therefore, the
low reactivity of methyl-2-aminobenzoate can be explained by the steric effect of the closely
located ester fragment. N-Phenylglycine ethyl ester is a reagent containing a secondary
amino group, and the low reactivity of N-phenylglycine is due to steric hindrance and an
electric inductive effect of ester group.
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Scheme 4. The synthesis of 3,7-di(N′-arylamino)phenothiazines 18–25. Reagents: (i) aniline;
(ii) N-phenylglycine ethyl ester; (iii) ethyl-4-aminobenzoate; (iv) sodium 4-aminobenzenesulfate;
(v) tert-butyl-(4-aminophenyl)carbamate; (vi) 4-aminoacetanilide; (vii) methyl-2-aminobenzoate;
(viii) (a) LiOH, THF/H2O, 80 ◦C, (b) HCl (conc.); (ix) HCl (conc.), propan-2ol.
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The initial procedure for isolating the compounds (washing the precipitate with
methanol) led to low yields (37–69%). The main loss was in partial solubility of the target
compounds in methanol. To increase the yield of the target diarylamino derivatives of
phenothiazine, a procedure was used that is similar to compounds 10–16, namely, three-fold
reprecipitation from a mixture of methanol-diethyl ether (1:9) at room temperature. This
procedure helped to increase the yields of target compounds 18–23 to 70–88%. It should be
noted that Route 1 was characterized by higher yields than Route 2.

Hydrolysis reactions of the compounds 18 and 20 have been studied to obtain asym-
metric carboxyl and amine phenothiazine derivatives. The compound 18 was hydrolyzed in
a THF-water mixture in the presence of lithium hydroxide at 80 ◦C, followed by treatment
with concentrated hydrochloric acid to remove base residues and convert the compound
into a salt form. The compound 24 was obtained in 70% yield (Scheme 4). There are no
signals of ethoxy protons in the 1H NMR spectrum of the compound 24 (Figure S18). The
compound 20 was hydrolyzed in propan-2-ol in the presence of concentrated hydrochlo-
ric acid at the solvent boiling point. The compound 25 was obtained in 84% yield as
hydrochloride (Scheme 4).

It should be noted that the chemical shifts of the signals of protons and carbons of the
obtained derivatives are close to those of 3,7-bis(N′-arylamino) derivatives of phenothiazine
2–9 [23–26]. Thus, chemical shifts and spin–spin interaction constants of the proton signals
of the benzocaine fragment are close in the 1H NMR spectra of the leuco forms of the
compound 18 and the compound 4 (Figure 2).
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Summarizing, phenothiazin-5-ium and aromatic substituent fragments in the 3 and
7 positions in the 1H NMR spectra of the compounds’ 10–15 salt and leuco forms can be
easily identified, due to the similarity of their structures with the previously obtained
3,7-bis(N′-arylamino)phenothiazine derivatives 2–9.

Thus, two synthetic routes for asymmetrical phenothiazine diarylamino derivatives
were suggested and verified, i.e., (Route 1) reactions of the 3-(phenylamino)phenothiazin-5-
ium triiodide 16 with a series of arylamines, and (Route 2) reactions of the 3-derivatives
10–12 and 14 with aniline (Scheme 3). The developed, convenient and versatile synthetic
approach makes it easy to obtain aromatic MB isostructural analogues with various sub-
stituents. Although synthetic Route 1 was characterized by higher yields, it had limita-
tions. It should be noted that the target compounds 22 and 23 cannot be obtained by
synthetic Route 1 when using sterically loaded arylamines (methyl-2-aminobenzoate or
N-phenylglycine ethyl ester). However, this can be associated not only with steric effects,
but also with the reactivity of the 3-(phenylamino)phenothiazin-5-ium triiodide 16.

2.3. Quantum-Mechanical Calculations

The next stage of this work was the use of quantum chemical methods (DFT and
Hirshfeld charge analysis) to explain the reactivity of phenothiazine derivatives. Geometry
optimization for cations of the compounds 1 and 10–16 by DFT calculations at the B3LYP/6-
311++G(d,p) level of theory found two minima on the potential energy surface respective
to conformers A and B for all of the compounds under consideration (Figure 4). The
conformation A was slightly advantageous for all cations of the compounds 1 and 10–16,
and the discussions are given for this conformation.
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The reactions studied in this work are the interaction of phenothiazine tetraiodide
with nucleophilic agents. Therefore, one can estimate the electron density distribution by
calculating the values of the Hirshfeld positive charges [43] of the atoms in the molecule to
assess the reactivity. The more significant positive charge on the carbon atom will promote
the nucleophilic attack. The calculated charges of atoms in the unsubstituted phenothiazine
cation are presented in Figure 5. The positive charge prevails on the sulfur atom and on the
carbons corresponding to the 3 and 7 positions. The data obtained are consistent with the
literature [44], as well as with experimental data.
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The positive charge is redistributed throughout the molecule when an arylamine
substituent is introduced into the 3 position of phenothiazine. The charges were calcu-
lated for the compounds 10–16 to study the effect of substituents (Table 1). The charge
distribution in the phenothiazine fragment of the compound 16 cation is also shown in
Figure 5. It should be noted that the carbon at the 7 position has the most positive charge
among hydrogen-bonded carbons. It keeps availability for nucleophilic attack when the
next N-aryl substituent is introduced.

Table 1. Hirshfeld charges for sulfur and carbons at the 3 and 7 positions in the cations of the
compounds 1 and 10–16.

Compounds
Hirshfeld Charges

S C(3) C(7)

1 0.247 0.028 0.028

10 0.186 0.104 0.009

11 0.179 0.101 0.006

12 0.179 0.105 0.006

13 0.194 0.104 0.013

14 0.179 0.100 0.007

15 0.192 0.105 0.011

16 0.184 0.104 0.008

It may be concluded based on calculated values that the positive charge on the seventh
carbon atom of the phenothiazine-5 molecule increases in a row of substituents from a posi-
tive mesomeric effect to a negative one, i.e., methyl-2-aminobenzoate < 4-aminoacetanilide
< ethyl-4-aminobenzoate < 3-aminobenzenesulfonic acid < 4-nitroaniline.

Monosubstituted phenothiazine derivatives 10–15 are structural analogues of the
compound 16, so the structure of this compound is discussed as an example. The sum
of angles around the nitrogen atom N2 is 359.97◦, and the atom has a planar trigonal
environment that promotes the conjugation of the phenothiazinium cation aromatic system
with a nitrogen lone pair. Nitrogen N2 deviates from the plane of the phenothiazine
fragment by only 0.007 Å. The angle between the planes of the phenothiazine fragment
and the aniline plane is 56.74◦. It indicates the presence of a partial conjugation throughout
the phenothiazine fragment and the arylamine substituent.

The cation of the compound 11 is characterized by the formation of an intramolecular
hydrogen bond between the ester oxygen atom and the NH fragment. It leads to an
additional spatial orientation of the arylamine fragment. Consequently, a smaller angle
between the planes of aromatic rings up to 38.40◦ contributed to more efficient conjugation
(Figure 6). Nitrogen atom N2 is tertiary in the compound 12. It can be concluded that
there is minimal conjugation between aromatic systems due to the complete release of
the arylamine fragment from the plane of the phenothiazine system (angle is 86.19◦). The
absence of such conjugation leads to a minimal delocalization of the positive charge into
the substituent fragment.

The presence of a delocalized π-system is confirmed by analyzing the shape of the
frontier orbitals of cations of the compounds 1 and 10–16 (Figure 7). The HOMO orbital is
delocalized throughout the phenothiazinium molecule, including the N-aryl substituent.
The delocalization of the LUMO orbital responsible for the positive charge in the cation
into the aniline part also occurs. The exception is the compound 12. Both frontier orbitals
in the cation of the compound 12 do not appreciably delocalize into the N-aryl fragment.
Thus, substituents in the arylamine fragment at the 3 position of phenothiazine (donor or
acceptor groups) can affect the further reactivity at the 7 position, due to the redistribution
of the electron density of the heterocyclic system.
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Quantum-mechanical calculations are consistent with experimental data, i.e., further
reactivity of monosubstitution products of substituted anilines with phenothiazin-5-ium
tetraiodide can be predicted by evaluating the positive charge at the seventh carbon atom
of the phenothiazin-5-ium fragment. Thus, it can be concluded that the substituents in the
aromatic fragment of the 3-aminoaryl derivative of phenothiazin-5-ium affect its reactivity.

2.4. Study of Photophysical Properties

To study the photophysical properties of the obtained compounds, the UV-Vis spectra
of a series of phenothiazines (the compounds 10, 11, 12, 16, 22, and 23) were recorded in
THF (Figure 8, Figures S69 and S70). The choice of these compounds was due to their
structures, i.e., the compounds 10, 11, 12, and 16 were products of the monosubstitution
of the phenothiazine molecule by various aniline derivatives, while the compounds 22
and 23 were their structural disubstituted derivatives. The obtained compounds have a
strong absorption in the visible region 450–570 nm with high extinction coefficients (up
to ε ≈ 5 × 105 M–1 × cm–1). It should be noted that the disubstituted derivatives have
significantly greater absorption. This absorption determines the deep color inherent in the
synthesized compounds.
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Figure 8. UV-Vis spectra (THF, 1 × 10−5 M) and calculated TD-DFT(M06-HF/6-311++G(d,p) UV-Vis
spectra of the compounds 16 and 22.

The UV-Vis spectra calculated at the M06-HF/6-311++G(d,p) level well reproduce
experimental ones. According to the TD-DFT, the orbitals involved in the main low-
energy electronic π→ π* transitions are HOMO and LUMO for monosubstituted as well as
disubstituted phenothiazines. The selected linear response vertical excitation energies and
oscillator strengths calculated for 16 and 22 are presented in Table 2.

Table 2. Selected linear response vertical excitation energies and oscillator strengths calculated
(TD-DFT M06-HF/6-311++G(d,p)/IEFPCM) for 16 and 22 in THF.

Dye λ (nm) Energy (eV) Oscillator
Strength (au) Configuration * % λexp (nm)

16 534.8 2.318 0.4389
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Table 2. Cont.

Dye λ (nm) Energy (eV) Oscillator
Strength (au) Configuration * % λexp (nm)

450.5 2.752 0.3170
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3.1. Instruments and Methods 
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the standard procedures. The 1H and 13C NMR spectra were recorded on a Bruker Avance 
400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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the standard procedures. The 1H and 13C NMR spectra were recorded on a Bruker Avance 
400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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the standard procedures. The 1H and 13C NMR spectra were recorded on a Bruker Avance 
400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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the standard procedures. The 1H and 13C NMR spectra were recorded on a Bruker Avance 
400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for 3–5% so-
lutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual solvent peaks 
were used as an internal standard. Elemental analysis was performed on the PerkinElmer 
2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra 
were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green, 
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment 
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range 
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole 
time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd., 
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization 
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS” 
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution 
of more than 30,000 full-width half-maximum. Samples with the analyte concentration of 
5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol 
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using 
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany). 
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3. Materials and Methods
3.1. Instruments and Methods

All reagents and solvents were used directly as purchased, or purified according
to the standard procedures. The 1H and 13C NMR spectra were recorded on a Bruker
Avance 400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-atoms) for
3–5% solutions in DMSO-d6 and DMSO-d6 with vol. 2% of N2H4·H2O. The residual
solvent peaks were used as an internal standard. Elemental analysis was performed on the
PerkinElmer 2400 Series II instruments (Perkin Elmer, Waltham, MA, USA). The FTIR ATR
spectra were recorded on the Spectrum 400 FT-IR spectrometer (PerkinElmer, Seer Green,
Lantrisant, UK) with a Diamond KRS-5 attenuated total internal reflectance attachment
(resolution 0.5 cm−1, accumulation of 64 scans, recording time 16 s in the wavelength range
400–4000 cm−1). High-resolution mass spectra (HRMS) were obtained on a quadrupole
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time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass spectrometer (AB SCIEX PTE. Ltd.,
Singapore) using a turbo-ion spray source (nebulizer gas nitrogen, a positive ionization
polarity, needle voltage 5500 V). Recording of the spectra was performed in “TOF MS”
mode with collision energy 10 eV, declustering potentially 100 eV, and with a resolution
of more than 30,000 full-width half-maximum. Samples with the analyte concentration
of 5 µmol/L were prepared by dissolving the test compounds in the mixture of methanol
(HPLC-UV Grade, LabScan, Bangkok, Thailand). Melting points were determined using
the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany).

Phenothiazin-5-ium tetraiodide (1) was synthesized by literature [32]. Dp. 170 ◦C
(lit. 170 ◦C). 1H NMR (acetone-d6, δ, ppm, J/Hz): 8.19–8.05 (m, 2H), 8.04–7.82 (m, 2H),
7.81–7.59 (m, 4H).

3,7-Bis(phenylamino)phenothiazin-5-ium iodide (2) was synthesized by the previ-
ously shown procedure [23].

3,7-Bis((4-sulfophenyl)amino)phenothiazin-5-ium iodide (3), 3,7-bis((4-acetamidoph
enyl)amino)phenothiazin-5-ium iodide (5) (3,7-bis((4-aminophenyl)amino)phenothiazin-
5-ium chloride dihydrochloride (8) were synthesized by the previously shown proce-
dure [24].

3,7-Bis((4-(ethoxycarbonyl)phenyl)amino)phenothiazin-5-ium iodide (4) and 3,7-
bis((4-carboxyphenyl)amino)phenothiazin-5-ium chloride (7) were synthesized by the
previously shown procedure [25].

3,7-Bis((2-(methoxycarbonyl)phenyl)amino)phenothiazin-5-ium iodide (6) and 3,7-
bis((2-(carboxyl)phenyl)amino)phenothiazin-5-ium chloride (9) were synthesized by the
previously shown procedure [26].

3.2. General Procedure for the Synthesis of the Compounds 10–16

A solution of the corresponding arylamine (0.414 mmol) in 10 mL of methanol or
water was added to a suspension of 0.30 g (0.414 mmol) phenothiazin-5-ium tetraiodide
(1) in 20 mL of methanol (for synthesis of 10–14, 16) or water (15), and the mixture was
intensively stirred for 48 h at 0 ◦C. The solvent was evaporated off, and the residue was
reprecipitated three times from a mixture of methanol-diethyl ether (1:9) at 0 ◦C.

3.2.1. 3-((4-(Ethoxycarbonyl)phenyl)amino)phenothiazin-5-ium triiodide (10)

Ethyl-4-aminobenzoate was used as an arylamine. Yield 0.271 g (87%), Mp: 183 ◦C.
1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.35 (t, 3H, 3JHH = 7.1 Hz, COOCH2CH3), 4.36 (q, 2H,
3JHH = 7.0 Hz, COOCH2CH3), 7.58–7.74 (m, 2H, H(2′), H(6′)), 7.83 (d, 1H, 3JHH = 8.5 Hz,
H(8)), 7.87–8.10 (m, 3H, H(4), H(6), H(2)), 8.15 (d, 2H, 3JHH = 8.0 Hz, H(3′), H(5′)), 8.18–8.56
(m, 3H, H(1), H(9), H(7)). 13C NMR (DMSO-d6, δ, ppm): 14.7 (CH3), 61.2 (CH2), 115.6, 116.0,
120.3, 123.9, 129.0, 129.6, 130.2, 131.6, 132.3, 133.2, 136.9, 138.7, 144.0, 148.2, 165.3 (C(O)O).
FTIR ATR (ν/cm−1): 1717 (C(O)O), 1588 (C-N), 1479 (C = S+), 1367, 1119 (C-N). HRMS
(ESI): calculated [M–I3

−]+ m/z = 361.1005, found [M–I3
−]+ m/z = 361.1010. El. Anal. found

(%): C, 34.07; H, 2.33; I, 51.21; N, 3.82; S, 4.26. C21H17I3N2O2S. Calculated (%): C, 33.99; H,
2.31; I, 51.30; N, 3.77; S, 4.32.

3.2.2. 3-((2-(Methoxycarbonyl)phenyl)amino)phenothiazin-5-ium triiodide (11)

Methyl-2-aminobenzoate was used as an arylamine. Yield 0.249 g (82%), Mp: 170 ◦C.
1H NMR (DMSO-d6, δ, ppm, J/Hz): 3.80 (s, 3H, COOCH3), 7.44–7.71 (m, 3H, H(4′), H(4),
H(6)), 7.72–7.97 (m, 4H, H(5′), H(6′), H(2), H(8)), 8.02–8.32 (m, 4H, H(1), H(9), H(7), H(3′)).
1H NMR (DMSO-d6 + 2% N2H4·H2O, δ, ppm, J/Hz): 3.64 (s, 3H, COOCH3), 6.50–6.57
(m, 3H, H(4′), H(6), H(8)), 6.59 (dd, 1H, 3JHH = 7.4 Hz, 4JHH = 0.9 Hz, H(6′)), 6.65 (d,
1H, 4JHH = 2.0 Hz, H(4)), 6.70 (dd, 1H, 3JHH = 8.5 Hz, 4JHH = 1.9 Hz, H(2)), 6.74 (d, 2H,
3JHH = 8.1 Hz, H(1), H(9)), 6.82 (t, 1H, 3JHH = 7.6 Hz, H(7)), 7.17 (t, 1H, 3JHH = 7.8 Hz, H(5′)),
7.66 (d, 1H, 3JHH = 8.0 Hz, H(3′)), 8.68 (s, 1H, NH), 8.84 (s, 1H, NH). 13C NMR (DMSO-d6,
δ, ppm): 53.1 (CH3), 107.7, 126.8, 128.4, 129.9, 131.1, 132.2, 134.6, 136.9, 142.2, 153.3, 165.9
(C(O)O). FTIR ATR (ν/cm−1): 1704 (C(O)O), 1579 (C-N), 1479 (C = S+), 1399, 1120 (C-N).
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HRMS (ESI): calculated [M–I3
−]+ m/z = 347.0849, found [M–I3

−]+ m/z = 347.0854. El. Anal.
found (%): C, 32.98; H, 2.14; I, 52.32; N, 3.83; S, 4.44. C20H15I3N2O2S. Calculated (%): C,
32.99; H, 2.08; I, 52.29; N, 3.85; S, 4.40.

3.2.3. 3-((2-Ethoxy-2-oxoethyl)(phenyl)amino)phenothiazin-5-ium triiodide (12)

N-Phenylglycine ethyl ester was used as an arylamine. Yield 0.246 g (78%), Mp:
146 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.24 (t, 3H, 3JHH = 7.1 Hz, CH3), 4.24 (q, 2H,
3JHH = 7.1 Hz, COOCH2), 5.26 (s, 2H, NCH2COO), 7.22–7.42 (m, 1H, H(2)), 7.52 (d, 2H,
3JHH = 6.6 Hz, H(2′), H(6′)), 7.59–7.66 (m, 1H, H(4′)), 7.69 (t, 2H, 3JHH = 7.3 Hz, H(3′), H(5′)),
7.90–8.58 (m, 6H, H(1), H(9), H(6), H(4), H(7), H(8)). 1H NMR (DMSO-d6 + 2% N2H4·H2O,
δ, ppm, J/Hz): 1.17 (t, 3H, 3JHH = 7.1 Hz, CH3), 4.10 (q, 2H, 3JHH = 7.1 Hz, COOCH2), 4.41
(s, 2H, NCH2COO), 6.65 (d, 2H, 3JHH = 8.1 Hz, H(1), H(9)), 6.69 (d, 2H, 3JHH = 8.1 Hz, H(2′),
H(6′)), 6.72–6.79 (m, 3H, H(4), H(4′), H(7)), 6.84 (d, 1H, 3JHH = 8.5 Hz, H(2)), 6.91 (d, 1H,
3JHH = 7.6 Hz, H(6)), 7.00 (t, 1H, 3JHH = 7.6 Hz, H(8)), 7.15 (t, 2H, 3JHH = 7.8 Hz, H(3′),
H(5′)), 8.61 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm): 14.7 (CH3), 50.1, 61.1, 116.1, 122.0,
123.7, 126.2, 129.0, 129.4, 129.6, 130.2, 131.6, 133.4, 136.8, 143.3, 145.1, 146.7, 169.1 (C(O)O).
FTIR ATR (ν/cm−1): 1742 (C(O)O), 1585 (C-N), 1459 (C = S+), 1370, 1122 (C-N). HRMS
(ESI): calculated [M–I3

−]+ m/z = 375.1162, found [M–I3
−]+ m/z = 375.1167. El. Anal. found

(%): C, 34.89; H, 2.54; I, 50.43; N, 3.77; S, 4.16. C22H19I3N2O2S. Calculated (%): C, 34.94; H,
2.53; I, 50.35; N, 3.7; S, 4.24.

3.2.4. 3-((4-Nitrophenyl)amino)phenothiazin-5-ium triiodide (13)

4-Nitroaniline was used as an arylamine. Yield 0.279 g (93%), Dp: 126 ◦C. 1H NMR
(DMSO-d6 + 2% N2H4·H2O, δ, ppm, J/Hz): 6.66–6.79 (m, 3H, H(1), H(2), H(6)), 6.81 (s,
1H, H(4)), 6.84–6.95 (m, 4H, H(9), H(7), H(2′), H(6′)), 7.00 (t, 1H, 3JHH = 7.0 Hz, H(8)),
8.04 (d, 2H, 3JHH = 8.5 Hz, H(3′), H(5′)), 8.65 (s, 1H, NH), 9.07 (s, 1H, NH). 13C NMR
(DMSO-d6, δ, ppm): 116.3, 123.9, 126.0, 129.0, 129.6, 130.2, 131.6, 133.2, 136.9, 138.7, 141.1,
144.0, 155.2. FTIR ATR (ν/cm−1): 1591 (NO2), 1542, 1472 (C = S+), 1361, 1144 (C-N). HRMS
(ESI): calculated [M–I3

−]+ m/z = 334.0645, found [M–I3
−]+ m/z = 334.0650. El. Anal. found

(%): C, 30.25; H, 1.63; I, 53.26; N, 5.84; S, 4.49. C18H12I3N3O2S. Calculated (%): C, 30.23; H,
1.69; I, 53.24; N, 5.88; S, 4.48.

3.2.5. 3-((4-Acetamidophenyl)amino)phenothiazin-5-ium triiodide (14)

N-(4-aminophenyl)acetamide was used as an arylamine. Yield 0.249 g (83%), Mp:
195 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 2.10 (s, 3H, CH3), 7.55 (d, 2H, 3JHH = 8.0 Hz,
H(2′), H(6′)), 7.72–7.93 (m, 5H, H(5′), H(3′), H(2), H(7), H(8)), 7.96 (s, 1H, H(4)), 8.12–8.23
(m, 2H, H(9), H(6)), 8.27 (d, 3JHH = 6.6 Hz, 1H, H(1)), 10.31 (s, 1H, NH). 13C NMR
(DMSO-d6, δ, ppm): 23.8, 116.0, 120.4, 122.3, 125.9, 127.0, 127.6, 130.2, 131.6, 134.2, 135.9,
138.7, 140.4, 149.0, 169.4. FTIR ATR (ν/cm−1): 2923 (NH), 1674 (C = O), 1587 (C-N),
1501 (C-C), 1390, 1120 (C-N). HRMS (ESI): calculated [M–I3

−]+ m/z = 346.1009, found
[M–I3

−]+ m/z = 346.1014. El. Anal. found (%): C, 32.94; H, 2.24; I, 52.37; N, 5.79; S, 4.38.
C20H16I3N3OS. Calculated (%): C, 33.04; H, 2.22; I, 52.36; N, 5.78; S, 4.41.

3.2.6. 3-((3-Sulfophenyl)amino)phenothiazin-5-ium chloride (15)

The sodium 3-aminobenzene-1-sulfate was used as the arylamine. The resulting
precipitate was treated with concentrated hydrochloric acid (20 mL). Yield 0.281 g (91%),
Mp: 160 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 7.58–7.66 (m, 2H, H(8), H(2)), 7.69–7.78
(m, 2H, H(5′), H(7)), 7.83 (d, 1H, 3JHH = 8.4 Hz, H(4′)), 7.87–7.99 (m, 3H, H(4), H(6′), H(2′)),
8.21–8.29 (m, 2H, H(9), H(6)), 8.33 (d, 1H, 3JHH = 6.3 Hz, H(1)), 11.10 (s, 1H, NH). 13C NMR
(DMSO-d6, δ, ppm): 116.0, 122.3, 123.9, 124.2, 125.6, 127.6, 129.0, 129.6, 130.2, 131.6, 133.2,
136.9, 138.7, 142.4, 143.9, 144.0. FTIR ATR (ν/cm−1): 1558 (C-N), 1359 (C = S+), 1230 (C-N),
1131 (SO3), 1117 (SO3), 1027 (C-S-C), 995, 841, 680 (C-S). HRMS (ESI): calculated [M–Cl−]+

m/z = 369.0362, found [M–Cl−]+ m/z = 369.0367. El. Anal. found (%): C, 53.39; H, 3.32; Cl,



Molecules 2022, 27, 3024 16 of 22

8.71; N, 6.90; S, 15.76. C18H13ClN2O3S2 Calculated (%): C, 53.40; H, 3.24; Cl, 8.76; N, 6.92;
S, 15.84.

3.2.7. 3-(Phenylamino)phenothiazin-5-ium triiodide (16)

Aniline was used as an arylamine. Yield 0.249 g (90%), Mp: 160 ◦C. 1H NMR (DMSO-
d6, δ, ppm, J/Hz): 7.42–7.58 (m, 3H, H(7), H(8), H(2)), 7.60–7.68 (m, 2H, H(6′), H(2′)),
7.81 (d, 1H, 3JHH = 9.3 Hz, H(6)), 7.84–7.95 (m, 3H, H(4′), H(3′), H(5′)), 8.06–8.36 (m, 3H,
H(1), H(9), H(4)), 11.06 (s, 1H, NH). 1H NMR (DMSO-d6 + 2% N2H4·H2O, δ, ppm, J/Hz):
6.60–6.64 (m, 1H, H(9)), 6.64–6.67 (m, 2H, H(2), H(1)), 6.67–6.76 (m, 3H, H(4′), H(6′), H(2′)),
6.83–6.90 (m, 3H, H(4), H(6), H(8)), 7.00 (td, 1H, 3JHH = 7.9 Hz, 4JHH = 1.3 Hz, H(7)), 7.13 (t,
2H, 3JHH = 7.9 Hz, H(3′), H(5′)), 7.98 (s, 1H, NH), 8.65 (s, 1H, NH). 13C NMR (DMSO-d6, δ,
ppm): 116.0, 118.9, 118.9, 121.6, 123.9, 129.0, 129.3, 129.6, 130.2, 131.6, 133.2, 136.9, 138.7,
143.2, 144.0. FTIR ATR (ν/cm−1): 1586 (C-N), 1486 (C = S+), 1375 (C = S+), 1121 (C-N).
HRMS (ESI): calculated [M–I3

−]+ m/z = 289.0794, found [M–I3
−]+ m/z = 289.0797. El. Anal.

found (%): C, 32.23; H, 1.86; I, 56.8; N, 4.27; S, 4.84. C18H13I3N2S. Calculated (%): C, 32.26;
H, 1.96; I, 56.82; N, 4.18; S, 4.78.

3.3. Procedure for the Synthesis of 3-((4-ammoniophenyl)amino)phenothiazin-5-ium chloride (17)

In a round-bottom flask equipped with a magnetic stirrer and a reflux condenser with
a calcium chloride tube, 10 mL of concentrated hydrochloric acid solution was added to
a solution of the compound 14 (0.218 g, 0.3 mmol) in 10 mL of propan-2-ol. The reaction
mixture was refluxed for 40 h, after which the propan-2-ol was evaporated in a rotary
evaporator. The precipitate formed was filtered off, washed with aqueous 10% ammonia
solution (2 × 15 mL), diethyl ether (2 × 15 mL), concentrated hydrochloric acid solution
(2 × 30 mL), water (2 × 30 mL).

3-((4-Ammoniophenyl)amino)phenothiazin-5-ium chloride (17)

Yield 0.101 g (89%), Mp: 175 ◦C. 1H NMR (DMSO-d6 + 2% N2H4·H2O, δ, ppm,
J/Hz): 6.41 (d, 1H, 4JHH = 1.6 Hz, H(4)), 6.47–6.56 (m, 3H, H(1), H(3′), H(5′)), 6.65 (d,
1H, 3JHH = 8.3 Hz, H(2)), 6.69 (d, 1H, 3JHH = 7.5 Hz, H(9)), 6.72 (d, 2H, 3JHH = 8.3 Hz,
H(2′), H(6′)), 6.87 (d, 1H, 3JHH = 7.5 Hz, H(6)), 6.94 (t, 1H, 3JHH = 7.1 Hz, H(8)), 7.01 (t, 1H,
3JHH = 7.1 Hz, H(7)), 7.21 (br.s, 2H, NH2), 8.32 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm):
116.0, 116.1, 120.4, 123.9, 129.0, 129.6, 130.2, 131.6, 133.2, 136.1, 136.9, 138.7, 143.1, 144.0.
FTIR ATR (ν/cm−1): 3209 (NH3

+), 1587 (C-N), 1487 (C = S+), 1370, 1121 (C-N). HRMS (ESI):
calculated [M–HCl–Cl−]+ m/z = 304.0903, found [M–HCl–Cl−]+ m/z = 304.0908. El. Anal.
found (%): C, 57.47; H, 4.08; Cl, 18.86; N, 11.15; S, 8.44. C18H14Cl3N3S. Calculated (%): C,
57.45; H, 4.02; Cl, 18.84; N, 11.17; S, 8.52.

3.4. General Procedure for the Synthesis of the Compounds 18–23

Route 1: A solution of the corresponding amine (0.9 mmol) in 10 mL of methanol
or water was added to a suspension of 0.2 g (0.3 mmol) of the compound 16 in 20 mL
of a mixture of methanol and methylene chloride (1:1 v/v), and the mixture was inten-
sively stirred for 48 h at room temperature. The solvent was evaporated off, and the
residue was reprecipitated three times from a mixture of methanol-diethyl ether (1:9) at
room temperature.

Route 2: A solution of aniline 0.083 g (0.9 mmol) in methanol was added to a suspen-
sion of 0.3 mmol of 3-substituted phenothiazine derivative (the compounds 10–12 and 14)
in 20 mL of methanol, and the mixture was intensively stirred for 48 h at room temperature.
The solvent was evaporated off, and the residue was reprecipitated three times from a
mixture of methanol-diethyl ether (1:9) at room temperature.
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3.4.1. 3-((4-(Ethoxycarbonyl)phenyl)amino)-7-(phenylamino)phenothiazin-5-ium
iodide (18)

Obtained by Route 1. Ethyl-4-aminobenzoate was used as an arylamine. Yield 0.151 g
(88%). Obtained by Route 2. Yield 0.137 g (80%). Mp: 197 ◦C. 1H NMR (DMSO-d6, δ, ppm,
J/Hz): 1.33 (t, 3H, 3JHH = 7.1 Hz, COOCH2CH3), 4.33 (q, 2H, 3JHH = 7.0 Hz, COOCH2CH3),
6.62–6.74 (m, 1H, H(8)), 8.12–8.20 (m, 2H, H(3”), H(5”)), 7.09 (t, 1H, 3JHH = 7.3 Hz, H(4”)),
7.33–7.65 (m, 7H, H(1), H(9), H(2), H(6”), H(2′), H(6′), H(2”)), 7.80 (s, 1H, H(4)), 7.68 (s,
1H, H(6)), 8.06 (d, 2H, 3JHH = 8.5 Hz, H(5′), H(3′)). 1H NMR (DMSO-d6 + 2% N2H4·H2O,
δ, ppm, J/Hz): 1.27 (t, 3H, 3JHH = 7.1 Hz, COOCH2CH3), 4.22 (q, 2H, 3JHH = 7.1 Hz,
COOCH2CH3), 6.64 (d, 1H, 3JHH = 8.5 Hz, H(8)), 6.66–6.74 (m, 3H, H(2), H(6), H(4”)),
6.76 (d, 1H, 4JHH = 2.1 Hz, H(4)), 6.78 (d, 1H, 3JHH = 8.5 Hz, H(1)), 6.83–6.87 (m, 3H, H(2′),
H(6′), H(9)), 6.89 (d, 2H, 3JHH = 8.0 Hz, H(2”), H(6”)), 7.16 (t, 2H, 3JHH = 7.8 Hz, H(3”),
H(5”)), 7.74 (d, 2H, 3JHH = 8.7 Hz, H(3′), H(5′)), 7.84 (s, 1H, NH), 8.41 (s, 1H, NH), 8.47
(s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm): 60.1 (CH3), 113.1, 115.0, 115.2, 115.4, 116.8,
117.0, 118.5, 118.9, 119.5, 121.0, 129.4, 131.3, 149.9, 166.0 (C(O)O). FTIR ATR (ν/cm−1):
1712 (C(O)O), 1586 (C-N), 1479 (C = S+), 1386, 1122 (C-N). HRMS (ESI): calculated [M–I−]+

m/z = 452.1427, found [M–I−]+ m/z = 452.1431. El. Anal. found (%): C, 55.92; H, 3.88; I,
21.92; N, 7.37; S, 5.44. C27H22IN3O2S. Calculated (%): C, 55.97; H, 3.83; I, 21.9; N, 7.25;
S, 5.53.

3.4.2. 3-(Phenylamino)-7-((4-sulfophenyl)amino)phenothiazin-5-ium chloride (19)

Obtained by Route 1. The sodium 4-aminobenzenesulfate was used as the arylamine.
The resulting precipitate was treated with concentrated hydrochloric acid (20 mL). Yield
0.137 g (88%), Mp: 160 ◦C. 1H NMR (DMSO-d6 + 2% N2H4·H2O, δ, ppm, J/Hz): 6.60–6.82
(m, 9H, H(2′), H(6′), H(9), H(1), H(4), H(2), H(6), H(4”), H(8)), 6.86 (d, 2H, 3JHH = 7.9 Hz,
H(2”), H(6”)), 7.14 (t, 2H, 3JHH = 7.7 Hz, H(3”), H(5”)), 7.41 (d, 2H, 3JHH = 8.5 Hz, H(3′),
H(5′)), 8.01 (s, 1H, NH), 8.25 (s, 1H, NH), 8.55 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm):
116.0, 118.9, 119.7, 121.6, 123.9, 127.8, 129.3, 133.2, 136.2, 138.7, 140.7, 143.2, 144.0. FTIR
ATR (ν/cm−1): 1579 (C-N), 1340 (C = S+), 1225 (C-N), 1155 (SO3), 1117 (SO3), 1029 (C-
S-C), 1005, 794, 687 (C-S). HRMS (ESI): calculated [M–Cl−]+ m/z = 460.0784, found [M–
Cl−]+ m/z = 460.0789. El. Anal. found (%): C, 58.02; H, 3.73; Cl, 7.23; N, 8.48; S, 12.81.
C24H18ClN3O3S2. Calculated (%): C, 58.12; H, 3.66; Cl, 7.15; N, 8.47; S, 12.93.

3.4.3. 3-((4-Acetamidophenyl)amino)-7-(phenylamino)phenothiazin-5-ium iodide (20)

Obtained by Route 1. N-(4-aminophenyl)acetamide was used as an arylamine. Yield 0.134 g
(79%). Obtained by Route 2. Yield 0.118 g (70%). Mp: 206 ◦C. 1H NMR (DMSO-d6 + 2% N2H4·H2O,
δ, ppm, J/Hz): 1.98 (s, 3H, CH3), 6.58–6.72 (m, 6H, H(9), H(4), H(2), H(6), H(8), H(4”)), 6.75
(dd, 1H, 3JHH = 8.4 Hz, 4JHH = 2.4 Hz, H(1)), 6.82–6.89 (m, 4H, H(2”), H(6”), H(2′), H(6′)),
7.14 (t, 2H, 3JHH = 7.9 Hz, H(3”), H(5”)), 7.35 (d, 2H, 3JHH = 8.8 Hz, H(3′), H(5′)), 7.78 (s,
1H, NH), 7.88 (s, 1H, NH), 8.33 (s, 1H, NH), 9.91 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm):
24.5, 120.4, 123.1, 123.9, 126.8, 129.4, 129.8, 130.3, 132.5, 136.8, 137.5, 138.1, 138.4, 138.8,
151.6, 152.0, 168.9. FTIR ATR (ν/cm−1): 3028 (NH), 1669 (C = O), 1595 (C-N), 1509 (C-C),
1372 (C = S+), 1134 (C-N). HRMS (ESI): calculated [M–I−]+ m/z = 437.1431, found [M–I−]+

m/z = 437.1436. El. Anal. found (%): C, 55.28; H, 3.73; I, 22.53; N, 9.85; S, 5.7. C26H21IN4OS.
Calculated (%): C, 55.33; H, 3.75; I, 22.48; N, 9.93; S, 5.68.

3.4.4. 3-((4-((Tert-butoxycarbonyl)amino)phenyl)amino)-7-(phenylamino)phenothiazin-
5-ium iodide (21)

Obtained by Route 1. tert-Butyl-(4-aminophenyl)carbamate was used as an arylamine.
Yield 0.152 g (81%), Mp: 196 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 1.47 (s, 9H, CH3),
7.19–7.25 (m, 3H, H(9), H(6′), H(2′)), 7.31–7.39 (m, 2H, H(8), H(2)), 7.46 (t, 2H, 3JHH = 8.9 Hz,
H(3”), H(5”)), 7.49–7.58 (m, 6H, H(3′), H(5′), H(4), H(6), H(6”), H(2”)), 7.58–7.64 (m, 1H,
H(1)), 8.01–8.10 (m, 1H, H(4”)), 9.61 (s, 1H, NHBOC), 10.92 (s, 1H, NH), 11.10 (s, 1H,
NH). 13C NMR (DMSO-d6, δ, ppm): 79.8, 119.3, 119.5, 123.2, 123.8, 124.1, 124.2, 125.9,
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126.8, 130.3, 131.6, 136.8, 137.6, 138.1, 138.9, 139.7, 153.1. FTIR ATR (ν/cm−1): 2980 (CH3),
1700 (C(O)O), 1589 (C-N), 1477(C-N), 1407 (CH3), 1369, 1127 (C-N). HRMS (ESI): calculated
[M–I]+ m/z = 495.1849, found [M–I]+ m/z = 495.1854. El. Anal. found (%): C, 55.87; H, 4.37;
I, 20.45; N, 8.98; S, 5.14. C29H27IN4O2S. Calculated (%): C, 55.95; H, 4.37; I, 20.39; N, 9.00;
S, 5.15.

3.4.5. 3-((2-Ethoxy-2-oxoethyl)(phenyl)amino)-7-(phenylamino)phenothiazin-5-ium
iodide (22)

Obtained by Route 2. Yield 0.133 g (75%), Mp: 187 ◦C. 1H NMR (DMSO-d6, δ, ppm,
J/Hz): 1.21 (t, 3H, 3JHH = 7.0 Hz, CH3), 4.19 (q, 2H, 3JHH = 7.1 Hz, COOCH2), 4.98 (s, 2H,
NCH2COO), 7.16 (d, 1H, 3JHH = 9.0 Hz, H(8)), 7.33–7.68 (m, 13H, H(9), H(2), H(4), H(6),
H(2′), H(6′), H(3′), H(5′), H(2”), H(6”), H(3”), H(5”), H(4”)), 8.05 (d, 1H, 3JHH = 9.5 Hz,
H(1)), 8.09–8.14 (m, 1H, H(4′)). 13C NMR (DMSO-d6, δ, ppm): 55.1, 61.9, 108.0, 120.8,
123.3, 123.6, 127.0, 127.4, 129.2, 130.4, 130.5, 131.1, 138.2, 139.2, 139.6, 168.7 (C(O)O). FTIR
ATR (ν/cm−1): 1737 (C(O)O), 1581 (C-N), 1478 (C = S+), 1378, 1129 (C-N). HRMS (ESI):
calculated [M–I–]+ m/z = 466.1589, found [M–I–]+ m/z = 466.1591. El. Anal. found (%): C,
56.62; H, 4.13; I, 21.28; N, 7.14; S, 5.50. C28H24IN3O2S. Calculated (%): C, 56.67; H, 4.08; I,
21.38; N, 7.08; S, 5.40.

3.4.6. 3-((2-(Methoxycarbonyl)phenyl)amino)-7-(phenylamino)phenothiazin-5-ium
iodide (23)

Obtained by Route 2. Yield 0.129 g (77%), Mp: 204 ◦C. 1H NMR (DMSO-d6, δ, ppm,
J/Hz): 3.80 (s, 3H, COOCH3), 7.37 (t, 1H, 3JHH = 7.0 Hz, H(4”)), 7.45–7.60 (m, 8H, H(2),
H(8), H(6), H(4′), H(2”), H(6”), H(3”), H(5”)), 7.63 (s, 1H, H(4)), 7.68 (d, 1H, 3JHH = 8.0 Hz,
H(6′)), 7.77 (t, 1H, 3JHH = 7.6 Hz, H(5′)), 8.03 (d, 1H, 3JHH = 7.8 Hz, H(3′)), 8.13 (d, 2H,
3JHH = 9.3 Hz, H(1), H(9)), 10.88 (s, 1H, NH), 11.18 (s, 1H, NH). 13C NMR (DMSO-d6, δ,
ppm): 52.9 (CH3), 107.6, 123.5, 124.8, 126.3, 127.6, 130.4, 132.1, 134.6, 137.8, 139.2, 139.4,
152.3, 166.2 (C(O)O). FTIR ATR (ν/cm−1): 1699 (C(O)O), 1584 (C-N), 1461 (C = S+), 1384,
1131 (C-N). HRMS (ESI): calculated [M–I]+ m/z = 438.1271, found [M–I]+ m/z = 438.1276.
El. Anal. found (%): C, 55.13; H, 3.62; I, 22.37; N, 7.64; S, 5.61. C26H20IN3O2S. Calculated
(%): C, 55.23; H, 3.57; I, 22.44; N, 7.43; S, 5.67.

3.5. Procedure for the Synthesis of
3-((4-carboxyphenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (24)

In a round-bottom flask equipped with a magnetic stirrer and a reflux condenser with
a calcium chloride tube, 0.126 g (3 mmol) of lithium hydroxide monohydrate was added
to a solution of 0.173 g (0.3 mmol) of the compound 18 in 10 mL of THF and 2 mL of
water. The reaction mixture was heated for 48 h, after which THF was evaporated on a
rotary evaporator. The precipitate that formed was treated with concentrated hydrochloric
acid, then was filtered off, washed with diethyl ether (2 × 15 mL), 2M hydrochloric acid
(2 × 30 mL).

3-((4-Carboxyphenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (24)

Yield 0.096 g (70%), Mp: 227 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 7.17–7.67 (m,
7H, H(2), H(6”), H(2′), H(6′), H(2”), H(4”), H(8)), 7.89–7.68 (m, 4H, H(4), H(6), H(1), H(9)),
7.96–8.21 (m, 4H, H(3”), H(5”), H(5′), H(3′)), 11.65 (s, 1H, NH), 12.04 (s, 1H, NH). 1H NMR
(DMSO-d6 + 2% N2H4·H2O, δ, ppm, J/Hz): 6.59–6.81 (m, 9H, H(1), H(4), H(2′), H(6′), H(9),
H(2), H(6), H(4”), H(9)), 6.86 (d, 2H, 3JHH = 7.5 Hz, H(2”), H(6”)), 7.13 (t, 2H, 3JHH = 7.1 Hz,
H(3”), H(5”)), 7.64 (d, 2H, 3JHH = 7.3 Hz, H(3′), H(5′)), 7.97 (s, 1H, NH), 8.15 (s, 1H, NH),
8.50 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm): 121.7, 123.5, 127.6, 129.9, 130.4, 131.2,
131.5, 135.0, 137.1, 137.7, 138.4, 138.7, 142.6, 152.6, 167.0 (C(O)O). FTIR ATR (ν/cm−1):
1687 (C(O)O), 1579 (C-N), 1509 (C-C), 1372, 1125 (C-N). HRMS (ESI): calculated [M–Cl−]+

m/z = 424.1114, found [M–Cl−]+ m/z = 424.1119. El. Anal. found (%): C, 65.25; H, 4.02;
Cl, 7.69; N, 9.13; S, 7.01 C25H18ClN3O2S. Calculated (%): C, 65.28; H, 3.94; Cl, 7.71; N, 9.14;
S, 6.97.
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3.6. Procedure for the Synthesis of
3-((4-ammoniophenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (25)

In a round-bottom flask equipped with a magnetic stirrer and a reflux condenser with
a calcium chloride tube, 10 mL of concentrated hydrochloric acid solution was added to
a solution of the compound 20 (0.169 g, 0.3 mmol) in 10 mL of propan-2-ol. The reaction
mixture was refluxed for 40 h, after which the propan-2-ol was evaporated on a rotary
evaporator. The precipitate formed was filtered off, washed with aqueous 10% ammonia
solution (2 × 15 mL), diethyl ether (2 × 15 mL), concentrated hydrochloric acid solution
(2 × 30 mL), water (2 × 30 mL).

3-((4-Ammoniophenyl)amino)-7-(phenylamino)phenothiazin-5-ium chloride (25)

Yield 0.117 g (84%), Mp: 205 ◦C. 1H NMR (DMSO-d6, δ, ppm, J/Hz): 4.81 (s, 3H,
NH3

+), 6.95–7.20 (m, 2H, H(3′), H(5′)), 7.28–7.41 (m, 3H, H(2′), H(6′), H(2)), 7.45 (d, 2H,
3JHH = 7.9 Hz, H(2”), H(6”)), 7.49–7.93 (m, 6H, H(1), H(9), H(4), H(8), H(4”), H(6)), 8.00–8.10 (m,
2H, H(3”), H(5”)), 10.97 (s, 1H, NH), 11.36 (s, 1H, NH). 1H NMR (DMSO-d6 + 2% N2H4·H2O,
δ, ppm, J/Hz): 6.42 (s, 1H, H(4)), 6.47–6.50 (m, 4H, H(2′), H(6′), H(3′), H(5′)), 6.60 (d,
1H, 3JHH = 8.5 Hz, H(2)), 6.63–6.75(m, 5H, H(4”), H(1), H(9), H(8), H(6)), 6.84 (d, 2H,
3JHH = 8.0 Hz, H(2”), H(6”)), 7.13 (t, 2H, 3JHH = 7.8 Hz, H(3”), H(5”)), 7.24 (s, 2H, NH2),
7.88 (s, 1H, NH), 8.21 (s, 1H, NH). 13C NMR (DMSO-d6, δ, ppm): 116.0, 116.1, 118.9,
120.4, 121.6, 123.9, 129.3, 133.2, 136.1, 138.7, 140.7, 143.1, 143.2. FTIR ATR (ν/cm−1):
3198 (NH3

+), 1587 (C-N), 1483 (C = S+), 1381, 1130 (C-N). HRMS (ESI): calculated [M–HCl–
Cl−]+ m/z = 395.1325, found [M–HCl–Cl−]+ m/z = 395.1325. El. Anal. found (%): C, 61.59;
H, 4.31; Cl, 15.08; N, 12.07; S, 6.95. C24H20Cl2N4S. Calculated (%): C, 61.67; H, 4.31; Cl,
15.17; N, 11.99; S, 6.86.

3.7. The Density Functional Theory (DFT) Calculations

The density functional theory (DFT) calculations were performed using the Gaussian
09 program package [45]. For all calculations, the 6-311++G(d,p) basis set was used. All
geometries were optimized by applying the B3LYP functional both in vacuum and in the
presence of a solvent (IEFPCM solvent effect model). The stationary points on the potential
energy surfaces were located by full geometry optimization with the calculation of force
constants. The absence of imaginary frequencies suggested that the molecules are at the
minimum of potential energy. No symmetry restrictions were applied during the geometry
optimization. Calculations of electronic absorption spectra were performed using TD-DFT.
We calculated the first 50 states on the ground state geometries. The spectral lines were
plotted using a Gaussian broadening of 0.3 eV half-width at half maximum. The functional
was chosen from a benchmark study of different ones-B3LYP, CAM-B3LYP, and M06-HF.
The M06-HF functional showed the best reproducibility for both spectral positions and
intensities of bands in the spectrum.

4. Conclusions

A convenient and versatile approach was developed to the synthesis of 3-N′-
arylaminophenothiazines and asymmetrical 3,7-di(N′-arylamino)phenothiazines as aro-
matic Methylene Blue isostructural analogues. It was shown that the reaction of the
3-(phenylamino)phenothiazin-5-ium triiodide with a series of arylamines (Route 1) was char-
acterized by higher yields. At same time, the reaction of the 3-N′-arylaminophenothiazines
with aniline (Route 2) can be used for synthesis of 3,7-di(N′-arylamino)phenothiazines
with sterically loaded arylamine fragments. Optimization of the synthetic strategy by
DFT studies, i.e., quantification analysis of the positive charge distribution in the cation of
3-N′-arylaminophenothiazine derivative, was carried out. It was found that the conjugation
between aromatic fragments and the mesomeric effect of the substituent affected the further
reactivity of 3-N′-arylaminophenothiazines in reactions with arylamines. A series of novel
3-N′-arylaminophenothiazines and asymmetrical 3,7-di(N′-arylamino)phenothiazines con-
taining ester, tert-butoxycarbonyl, sulfonic acid, hydroxyl, and amine groups were obtained
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in high yields. The results obtained can be applied in the design of new arylamino deriva-
tives of phenothiazine in order to “fine tune” non-covalent interactions to obtain materials
with the desired photophysical and electrical properties for the utilities of modern organic
electronics, sensors, and medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27093024/s1, Figures S1–S68: 1H, 13C NMR, FT-IR,
HRMS spectra of the compounds 10–25; Figure S69: UV-Vis spectra of the compounds 10, 11, 12, 16,
22, and 23 (THF, 1 × 10−5 M), Figure S70. Calculated (TD-DFT M06-HF/6-311++G(d,p)/IEFPCM)
UV-Vis absorption spectra of the compounds 10, 11, 12, 16, 22, and 23 in THF; Table S1: Absolute
energies, minimum frequencies and calculated atomic coordinates for cations 1, 10–16 (DFT B3LYP/6-
311++G(d,p)).
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9. Otręba, M.; Kośmider, L. In Vitro Anticancer Activity of Fluphenazine, Perphenazine and Prochlorperazine. A Review. J. Appl.
Toxicol. 2020, 41, 82–94. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/molecules27093024/s1
https://www.mdpi.com/article/10.3390/molecules27093024/s1
http://doi.org/10.1016/j.ejmech.2020.112341
http://www.ncbi.nlm.nih.gov/pubmed/32505848
http://doi.org/10.3390/ijms21155367
http://www.ncbi.nlm.nih.gov/pubmed/32731616
http://doi.org/10.1016/j.ejmech.2020.112420
http://www.ncbi.nlm.nih.gov/pubmed/32526553
http://doi.org/10.2174/0929867311320210005
http://www.ncbi.nlm.nih.gov/pubmed/23410156
http://doi.org/10.1002/14651858.CD012837
http://doi.org/10.1016/j.pdpdt.2019.05.032
http://doi.org/10.3390/molecules27010276
http://www.ncbi.nlm.nih.gov/pubmed/35011508
http://doi.org/10.1016/j.bcp.2020.114403
http://doi.org/10.1002/jat.4046
http://www.ncbi.nlm.nih.gov/pubmed/32852120


Molecules 2022, 27, 3024 21 of 22

10. Gopi, C.; Dhanaraju, M.D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. Ref. J.
Chem. 2019, 9, 95–126. [CrossRef]

11. Wainwright, M.; McLean, A. Rational Design of Phenothiazinium Derivatives and Photoantimicrobial Drug Discovery. Dyes
Pigment. 2017, 136, 590–600. [CrossRef]

12. May, L.; Müller, T.J.J. Dithieno[1,4]thiazines and Bis[1]benzothieno[1,4]thiazines—Organometallic Synthesis and Functionalization
of Electron Density Enriched Congeners of Phenothiazine. Molecules 2020, 25, 2180. [CrossRef] [PubMed]

13. Rout, Y.; Ekbote, A.; Misra, R. Recent Development on the Synthesis, Properties and Applications of Luminescent Oxidized
Phenothiazine Derivatives. J. Mater. Chem. C 2021, 9, 7508–7531. [CrossRef]

14. Poddar, M.; Gautam, P.; Rout, Y.; Misra, R. Donor–Acceptor Phenothiazine Functionalized BODIPYs. Dyes Pigment. 2017, 146,
368–373. [CrossRef]

15. Li, W.; Shen, C.; Wu, Z.; Wang, Y.; Ma, D.; Wu, Y. Pyridine Functionalized Phenothiazine Derivatives as Low-Cost and Stable
Hole-Transporting Material for Perovskite Solar Cells. Mater. Today Energy 2022, 23, 100903. [CrossRef]

16. Gao, Y.; Sun, T.-Y.; Bai, W.-F.; Bai, C.-G. Design, Synthesis and Evaluation of Novel Phenothiazine Derivatives as Inhibitors of
Breast Cancer Stem Cells. Eur. J. Med. Chem. 2019, 183, 111692. [CrossRef] [PubMed]

17. Rout, Y.; Montanari, C.; Pasciucco, E.; Misra, R.; Carlotti, B. Tuning the Fluorescence and the Intramolecular Charge Transfer
of Phenothiazine Dipolar and Quadrupolar Derivatives by Oxygen Functionalization. J. Am. Chem. Soc. 2021, 143, 9933–9943.
[CrossRef]

18. Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives
as Antioxidant and Anticancer Agents. Molecules 2020, 25, 4566. [CrossRef]

19. Ronco, T.; Aragao, F.M.; Saaby, L.; Christensen, J.B.; Permin, A.; Williams, A.R.; Thamsborg, S.M.; Olsen, R.H. A New Phe-
nothiazine Derivate Is Active against Clostridioides Difficile and Shows Low Cytotoxicity. PLoS ONE 2021, 16, e0258207.
[CrossRef]

20. Buene, A.F.; Almenningen, D.M. Phenothiazine and Phenoxazine Sensitizers for Dye-Sensitized Solar Cells—An Investigative
Review of Two Complete Dye Classes. J. Mater. Chem. C 2021, 9, 11974–11994. [CrossRef]

21. Mercier, M.J.; Dumont, P.A. Influence of the Electron-Donating Properties on the Psychotropic Activity of Phenothiazine
Derivatives. J. Pharm. Pharmacol. 1972, 24, 706–712. [CrossRef] [PubMed]
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