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Abstract: The aim of this investigation was to evaluate the biological properties of cotton–zinc com-
posites. A coating of zinc (Zn) on a cotton fabric was successfully obtained by a DC magnetron
sputtering system using a metallic Zn target (99.9%). The new composite was characterized using
scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), UV/Vis transmit-
tance, and atomic absorption spectrometry with flame excitation (FAAS). The composite was tested
for microbial activity against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative
(Escherichia coli) bacteria and antifungal activity against Aspergillus niger and Chaetomium globosum
fungal mold species as model microorganisms. Cytotoxicity screening of the tested modified material
was carried out on BALB/3T3 clone mouse fibroblasts. The SEM/EDS and FAAS tests showed good
uniformity of zinc content on a large surface of the composite. The conducted research showed
the possibility of using the magnetron sputtering technique as a zero-waste method for producing
antimicrobial textile composites.

Keywords: antimicrobial activity; coating; composite; cotton; cytotoxicity; magnetron sputtering; zinc

1. Introduction

Cotton is a popular fabric based on cellulose [1,2]—the most widespread biopolymer
on Earth [3–5]. Consequently, the physicochemical properties of a cotton fabric follow
from the cellulose polymer and depend on its chain length, topology, and surface con-
dition [6–10]. One of the many applications of cellulose is as medical textiles, mainly
wound dressings with various functions and purposes. However, the hydrophilic nature
of cotton and its products, due to their large specific surface area and hydrophilicity, pro-
vide an excellent environment for the development of pathogenic microorganisms [11–13].
Therefore, antibacterial pre-functionalization of cotton intended for medical use is a stan-
dard finishing step, usually based on equipping the cotton matrix with organic/inorganic
antimicrobials [12,14–16].

The wide group of these antimicrobial agents can be divided into organic (antibi-
otics, e.g., [17], quaternary ammonium salts [18–20], light-activated singlet oxygen gener-
ators [21,22], N-halamines [23]), and inorganic factors (halogens as well as heavy metals
and their salts) [12,16]. Among various inorganic bactericides of medical importance, zinc
is gaining more and more attention (over 5600 documents on the antibacterial activity of
zinc and compounds and over 3000 on zinc oxide abstracted by Scopus) [24,25]. Zinc is
indispensable in many biological processes [26], toxic to microorganisms, and nontoxic to
higher organisms [27]. This chemical element is a cheap and effective antibacterial inorganic
compound [14,28], due to its low cost and easy preparation [29–38], as well as antimicrobial
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efficacy [29,39–44]. The chemistry of zinc is dominated by the oxidation state of (+2). Metal-
lic zinc is a strong reducing agent (standard reduction potential E0 = −0.76 V), reacting
readily with acids, alkalis, and other nonmetals. The metal surface reacts with atmospheric
components, thus eventually creating a protective passivating layer of basic zinc carbonate,
xZn(OH)2/ZnOxyZnCO3 [45,46]. TEM studies of Zn nanoparticles (ZnNPs) showed that
ZnNPs consist of a zinc core and a few nanometer thick ZnO shell [47]. Bulk oxidation of
zinc in air takes place at temperatures above 450 ◦C [48]. The standard molar enthalpies
of ZnO formation (∆fH◦ solid (298.15 K·(kJ·mol−1)) were found to be dependent on the
sample morphology, varying from −350.46 for bulk ZnO [49] to −336.57 and −343.56 for
various ZnO nanoparticles [50,51]. The properties and applications of ZnO were reviewed
by Ellmer and Klein [52]. Both Zn and ZnO are common target materials for magnetron
sputtering-coated fabrics [53]. Strong acids, such as hydrochloric acid, remove the passivat-
ing layer, and the subsequent reaction with acid releases hydrogen gas. The predominant
species in aqueous solution is the octahedral complex (Zn(H2O)6)2+ [45]. The bactericidal
mechanism of metal/metal oxide nanocomposites (Zn is always coated with ZnO as a result
of surface passivation) consists of the production of reactive oxygen species (superoxide
anions, hydrogen peroxide anions, and hydrogen peroxide) that interact with the bacterial
cell wall causing damage to the cell membrane and then leakage of internal cellular com-
ponents, leading to the death of bacteria [54–57]. Alternatively, ZnO-NCs in contact with
bacteria release Zn2+ ions [29,58] which penetrate the cell membrane, destroying its normal
structure and function, and consequently causing the death of bacterial organisms [59,60].
The bactericidal inactivation by ZnO performed under dark/light conditions is attributed
to the bactericidal effect of Zn2+ ions under dark conditions or to the combined effects of
Zn2+ ions and photocatalytically mediated electron injection under light conditions [61].
Due to the antibacterial properties of zinc oxide, several cotton–zinc oxide composites
(COT–ZnO) have been proposed for medical applications [62–73]. Representative examples
of antibacterial cotton using zinc salts are shown in Table 1.

Table 1. Representative composite cotton/zinc salts/MNPS.

No Preparation Antibacterial Activity Ref.

2.1
COT–ZnO

(Zn2+(NaOH)→Zn(OH)2→ZnO)
ZnO deposition by ‘pad–dry–cure’ method.

COT–ZnO showed excellent antibacterial activity against Kp
and Sa, e.g., COT–ZnO (1.6%) exhibited 99.9%rv after

24 h exposure.
Application onto cotton fabrics to impart antibacterial and UV

protection function.

[62]

2.2
COT–ZnO

(Zn2+(NH3
xH2O)→Zn(OH)2→ZnO)

ZnO deposition by ultrasound irradiation.

COT–ZnO showed excellent antibacterial activity against Kp
and Sa, e.g., COT–ZnO (0.8%) exhibited 99.9%rv after

2 h exposure.
Potential application as coated bandages.

[63]

2.3
COT–CTS (0.3%)–ZnO (0.2–2 mM) ZnO

one-step sonochemical deposition on
COT/CTS

Enhanced antimicrobial effect (Sa (98.5% rv) and Ec (99.9%rv))
after 1 h incubation and high washing stability enable

recommending this antibacterial textile for uses in a hospital
environment to prevent the spread of nosocomial infection

[64]

2.4
COT–ZnO (0.8%)

(COT + ZnO NPs (1 mM)+ C-ase (2%)),
ZnO sonochemical coating.

The antibacterial efficiency of COT–ZnO (Ec 67% and
Sa 100% after 1 h incubation) resisted the intensive laundry

regimes used in hospitals.
[65]

2.5 COT–ZnO
In situ nanoscale synthesis of ZnO on the surface of cotton

fabrics (COT + ZnCl2 + NaOH→COT–ZnO) led to high
antibacterial activity against Ec and Ec.

[66]

2.6 COT–ZnO;
COT–PVP–ZnO

The antibacterial efficiency of COT–ZnO after 2 h incubation:
COT–ZnO (5 mg/L)—Ec, 81%rv and Sa, 57%rv;

COT–PVP–ZnO (5 mg/L)—Ec, 80%rv and Sa, 71%rv;
COT–PVP–ZnO (20 mg/L)—Ec, 100%rv and Sa, 100%rv.

Potential application as wound cloths, surgical cloths,
sportswear and kidswear.

[67]
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Table 1. Cont.

No Preparation Antibacterial Activity Ref.

2.7 COT–R–N+Me3–ZnO/ZnO Nano-ZnO films deposited on cotton fabrics (10–16 layers)
exhibited excellent antimicrobial activity against Sa. [68]

2.8

COT–ZnO;
COT–BTCA–SiO2–ZnO;

COT–APTES–BTCA–SiO2–ZnO;
COT–VTES–SiO2–ZnO;

The antibacterial efficiency of hybrids varied for Ec from 96%rv
to 99%rv and for Sa from 55%rv to 90%rv; after 20 washing
cycles, it varied for Ec from 57%rv to 91%rv and for Sa from

55%rv to 90%rv. Multi-application potential.

[69]

2.9 COT–ZnO
(Zn2+(HMTETA, H2O)→ZnO)

The antibacterial efficiency of hybrids after 24 h exposure varied
for Ec from 91%rv to 97%rv and for Sa from 95%rv to 98%rv. [70]

2.10
COT–ZnO

(Zn2+(MMA, EtOEtOH)→ZnO)
ZnO coating by a spin coater.

The antibacterial activities of the ZnO-coated fabric were
investigated (zone inhibition diameter) against Kp, St (36 mm),
Ec (19 mm), Bs (17 mm), and St (20 mm) using 48 h exposure

time. Comparable with ampicillin and/or gentamycin.

[71]

2.11

COT–ZnO
(Zn2+(H2O, NH4Cl, NH3)→ZnO)

ZnO synthesized on the surface of COT via
a simple wet chemical route.

Antibacterial tests against Sa and Kp (the
presence of a significant inhibition zone of at least 1 mm around
the fabric) revealed good bacteriostatic activity. However, the
negligible reduction in the number of bacteria proved the lack

of bactericidal activity.

[72]

2.12

COT–ZnO (1%)
(Zn2+ (H2O, At))

ZnO resuspended in water (20 ppm) was
coated on cotton.

The treatment of the cotton fabrics with ZnO-NPs was carried
out at a safe dose (20 ppm). At this dose, ZnO-NP-loaded

samples exhibited reasonable antibacterial activity against Sa,
Bs, Ec, and Pa.

[73]

Bacteria and fungi: At—Aspergillus terreus AF-1; Bs—Bacillus subtilis; Ca—Candida albicans (fungi); Ec—
Escherichia coli; Kp—Klebsiella pneumoniae; Pa—Pseudomonas aeruginosa; Sa—Staphylococcus aureus;
St—Salmonella typhimurium; %rv—percentage reduction in viability of bacteria/fungi. Reagents: APTES—
(3-aminopropyl) triethoxysilane; BTCA—butyltetracarboxylic acid; VTES—vinyltriethoxysilane; HMTETA—
hexamethyltriethylene tetramine; MMA—monomethyl amine, EtOEtOH—ethoxyethanol. Fibers/textiles: COT—
cotton, CTS—chitosan.

The modification of textiles by means of magnetron sputtering does not require
the use of any chemicals, can be achieved in one process cycle in a single industrial
installation, and does not involve the emission of toxic substances to the environment or the
production of pollutants [53,74–80]. Therefore, this method can be considered eco-friendly
and zero-waste.

Zinc magnetron sputtering is one of the techniques frequently used in modern science
and technology (11,739 documents on zinc sputtering abstracted by Scopus [81]), as well
as in relation to sputtering of zinc on polymers (283 documents on polymer zinc sputter-
ing [82]). Thus, zinc oxide (ZnO) films have been deposited on polyethylene terephtha-
late (PET) [83–91], polyethylene naphthalate (PEN) [79,83,92,93], polytetrafluoroethylene
(PTFE) [94–97], and poly(acrylic acid) [98], as well as on the surface of polypropylene (PP)
fibers [99], polystyrene [100], and poly(ether ether ketone) (PEEK) films [101].

Only a few studies have been devoted to other zinc compounds such as zinc sulfide
(ZnS) deposited on polyethylene terephthalate (PET) [102] and gallium-doped zinc oxide
(GZO) deposited on a transparent flexible substrate based on cellulose derivatives [103].
Only in two studies was metallic zinc used for surface functionalization of polymer
nanofibers, namely, for polyamide [104], and for polyethylene (PE) and polytetrafluo-
roethylene (PTFE) [105].

As part of our research program dedicated to biologically active functionalized phos-
phonates [106,107] and biofunctionalization of textile materials [108–114], we present the
preparation and physicochemical and biological properties of the COT–Zn polymer hybrid.
The aim of this work was to modify the surface of cotton fabric with zinc using the DC (di-
rect current) magnetron sputtering method to produce a new antimicrobial, multifunctional
composite material.
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2. Materials and Methods
2.1. Materials
2.1.1. Composite Components

• Medical fabric with a plain weave; qualitative composition: cotton (100% w/w); weight:
200 g/m2 (Andropol S.A., Andrychów, Poland);

• Zinc sputtering target with 99.9% purity with a rectangular size (798 × 122 × 6 mm)
(Testbourne Ltd., Basingstoke, UK).

2.1.2. Bacterial and Fungal Strains

The following bacterial strains and fungal strains were purchased from Microbiologics
(St. Cloud, MN, USA):

• Escherichia coli (ATCC 25,922, Microbiologics, St. Cloud, MN, USA);
• Staphylococcus aureus (ATCC 6538, Microbiologics, St. Cloud, MN, USA);
• Aspergillus niger (ATCC 6275, Microbiologics, St. Cloud, MN, USA);
• Chaetomium globosum (ATCC 6205, Microbiologics, St. Cloud, MN, USA).

2.1.3. Cell Culture

BALB/3T3 clone A31 cell line cat. no. CCL-163 (mouse fibroblasts) was purchased
from the American Type Culture Collection/the Global Bioresource Center (ATCC, Manassas,
VA, USA).

2.2. Methods
2.2.1. Magnetron Sputtering

The medical cotton fabric (COT) was modified using a DC (Direct Current) magnetron
sputtering system produced by P.P.H. Jolex s.c. (Czestochowa, Poland) and a zinc target.
The distance between the target and the substrate was 15 cm. The deposition of coatings
was carried out in the atmosphere of argon. The following parameters were used for
the modification: discharge power 700 W, with the resulting power density 0.72 W/cm2

and working pressure 2.0 × 10−3 mbar. In order to differentiate the zinc content (Zn(0) +
Zn(2+)) in the composites COT–Zn, three different deposition variants were used, i.e., 5 min
one-sided (sample name: COT–Zn-5(1 s)), 10 min one-sided (COT–Zn-10(1 s)), and 10 min
two-sided (COT–Zn-10(2 s)).

2.2.2. SEM/EDS—Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy

The microscopic structure was examined using a HITACHI S-4700 scanning electron
microscope (Tokyo, Japan) equipped with a Thermo NORAN EDS X-ray microanalyzer
(Waltham, MA, USA). The topography analysis of the tested samples was carried out in low
vacuum at a beam energy of 10 kV and magnifications of 400×, 1600×, and 3000×. The
study was conducted under low vacuum in the presence of steam. Water vapor dissipates
excess charge, making it possible to image nonconductive materials without coating the
surface with gold.

2.2.3. Atomic Absorption Spectrometry with Flame Excitation—FAAS

Zinc content in the composite samples was determined using the Thermo Scientific
Thermo Solar M6 atomic absorption spectrometer (Waltham, MA, USA) equipped with
a 100 mm titanium burner, coded lamps with a single-element hollow cathode, and a
D2 deuterium lamp for background correction. The sample was prepared using a single-
module Magnum II microwave mineralizer from Ertec (Wroclaw, Poland).

The total zinc content of the sample M (mg/kg) was calculated according to the
following formula [115]:

M =
Ci ×V

m

[
mg
kg

]
, (1)
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where C is the Zn concentration in the tested solution (mg/L), m is the mass of the mineral-
ized sample (g), and V is the volume of the sample solution (mL).

2.2.4. Biological Experiments
Antibacterial Activity

The antibacterial activity of COT–Zn composites was tested by the agar (Mueller
Hinton medium) diffusion method (PN-EN ISO 20,645:2006), on colonies of Gram-negative
(E. coli; ATCC 25,922) and Gram-positive (S. aureus; ATCC 6538) bacteria [116]. The test
was initiated by pouring each agar into sterilized Petri dishes and allowing it to solidify.
The surfaces of agar media were inoculated with the overnight broth cultures of bacteria
(ATCC 25,922: 1.5 × 108 CFU/mL, ATCC 6538: 2.5 × 108 CFU/mL). Samples of sterile
COT–Zn discs and a control, unmodified sample (10 mm) were placed on the inoculated
agar and incubated at 38 ◦C for 24 h. The diameter of a clear zone around the sample was
measured as an indication of inhibition of the microbial species. All tests were carried out
in duplicate.

Antifungal Activity

The antifungal activity of the COT–Zn composites was tested according to PN–EN
14,119:2005 against A. niger (ATCC 6275) and C. globosum (ATCC 6205) [117]. Specimens
of the tested material were placed on agar plates; the samples of sterile modified COT–
Zn discs (20 mm) and the control, unmodified sample were placed on inoculated agar
(pH:6.2) and incubated at 30 ◦C for 14 days. The agar was inoculated with the selected
fungus (ATCC 6275: CFU/mL = 3.5 × 106, ATCC 6205: CFU/mL = 3.0 × 106). The level of
antifungal activity was assessed by examining the extent of fungal growth: in the contact
zone between the agar and the specimen, on the surface of specimens, and, if present, the
extent of the inhibition zone around the specimen. All tests were carried out in duplicate.

2.2.5. Cytotoxicity
Cell Culture

Cells (mouse fibroblasts: BALB/3T3 clone A31 cell line cat. no. CCL-163) were grown
in T-25 culture flasks in a humidified CO2 incubator (37 ◦C, 5% CO2) and maintained in
a culture medium (cDMEM), i.e., DMEM medium (Biowest, Riverside, CA, USA) with
10% fetal bovine serum (Gibco, Waltham, MA, USA), 100 U/mL penicillin, 100 µg/mL
streptomycin (Biowest, Riverside, CA, USA), 4 mM L-glutamine (Biowest, Riverside, CA,
USA), and 20 mM HEPES (Sigma-Aldrich, Saint Louis, MO, USA). Cells were examined
daily using an Olympus IX70 inverted microscope (Tokyo, Japan) and were routinely
passaged twice a week when reaching 60–70% confluency. Next, they were detached using
0.25% trypsin-EDTA solution (BI, Kibbutz Beit-Haemek, Israel) (5 min, 37 ◦C) and seeded
in 96-well plates (3.5 × 103 cells/well). Then, the cells were allowed to adhere for 22–24 h
in the CO2 incubator.

Extract Preparation and Cell Treatment

Extracts of test materials (COT and COT–Zn composites) were prepared according to
EN ISO 10993-12-2012 [118] using the exposure medium, i.e., cDMEM with a lower (5%)
concentration of FBS, in order to avoid the masking of toxicity by the protective effect of the
serum. Test materials were autoclaved (120 ◦C, 20 min) and left at 70 ◦C for 5 h to dry. Next,
the materials were immersed in the exposure medium using the extraction ratio of 0.1 g of
the material to 1 mL of the exposure medium, i.e., the predetermined additional volume of
the exposure medium needed for the maximum soaking of the test material. Extraction
was performed in shaken vials that were incubated at 37 ◦C for 24 h. The pH values of
extracts (ca. 8) were adjusted to 7.4 using 1 N HCl (POCH, Gliwice, Polska). Extracts, the
preparations, and sample abbreviations are summarized in Table 2.
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Table 2. Extract abbreviations.

Extracts
Abbreviations

Starting Materials Exposure Medium (NC) /a

COT COT–Zn /b E-COT (100%) E-COT–Zn (100%) Extraction /c Dilution

E-COT (100%) 0.1 g 1.n1 mL
E-COT (50%) 0.5 mL 0.5 mL

E-COT–Zn (100%) 0.1 g 1.n2 mL
E-COT–Zn (50%) 0.5 mL 0.5 mL
E-COT–Zn (25%) 0.25 mL 0.75 mL

a/ cDMEM with a lower (5%) concentration of FBS; b/ COT–Zn-10 (1 s) was used for cytotoxicity assays;
c/ 1 mL of the exposure medium + the predetermined additional volume of the exposure medium needed for the
maximum soaking of the test material (ni).

Cells were exposed to the extracts at selected concentrations (100% and 50% for un-
modified cotton; 100%, 50%, and 25% for modified cotton) for 24 h, i.e., after 24 h adherence
of cells, the supernatant above the cells was aspirated and replaced with 100 µL of an appro-
priately concentrated extract or control solution (negative control, NC—exposure medium
treated in the same way as extracts; positive control—SDS (Sigma-Aldrich, Saint Louis,
MO, USA) in the concentration range 0–150 µg/mL). During the experiment cells were
examined with the Olympus IX70 (Tokyo, Japan) inverted microscope. Each sample was
tested in triplicate per experiment, and three independent experiments were performed.

The Neutral Red Uptake (NRU) Assay

After the 24 h incubation of BALB/3T3 clone A31 cells with the extracts, the medium
was gently aspirated, and the wells were washed with 150 µL of Dulbecco’s phosphate-
buffered saline (PBS) with Ca2+ and Mg2+ ions (BI, Kibbutz Beit-Haemek, Israel). Then,
100 µL of NR (Sigma-Aldrich, Saint Louis, MO, USA) solution (50 µg/mL, prepared in
culture medium) was added to each well, and the plates were incubated further for 3 h
(37 ◦C; 5% CO2). Afterward, the NR solution was removed, the wells were washed with
150 µL of PBS, and 150 µL of desorbing solution [1% glacial acetic acid (POCH, Gliwice,
Polska), 50% ethanol (POCH, Gliwice, Polska), and 49% deionized water] was added to
each well. Absorbance was read at 540 nm using a Multiskan™ GO spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Results were expressed as the percentage
cell survival (OD of exposed vs. OD of control unexposed cells).

3. Results and Discussion
3.1. SEM/EDS—Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy

The analysis of changes in the morphological structure of fibers in cotton fabric under
zinc modification was carried out using scanning electron microscopy. Figure 1 shows SEM
images of the samples before and after magnetron sputtering, at magnifications of 400×,
1600×, and 3000×.

According to the image analysis, it can be noted that the fibers in cotton fabric were
characterized by a rather smooth surface with characteristic parallel ridges and grooves.
The fibers in cotton fabric with a magnetron-sputtered zinc layer were characterized by a
rougher surface with visible ridges and grooves in the fibers. The zinc coating exhibited a
regular distribution of the applied modifier particles.

In order to confirm and verify the uniformity of the zinc coating of the fibers, an
energy-dispersive X-ray spectroscopy (EDS) study was performed, which provided a
chemical analysis of the tested fabric and its elemental composition. The EDS surface
analysis (Figure 2) in the form of individual “mapping” and the quantitative spot analysis
showed the content of characteristic elements in the cotton fiber surface.

The study indicated a uniform distribution of zinc on the surface-modified fibers. The
black areas visible in the images were the spaces between the fibers in the yarn (three-
dimensional structure). Due to the dense and uniform zinc coating of the fibers, carbon
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became less visible, which was confirmed by the quantitative analysis of the content of
elements on the fiber surface (Table 3) and EDS punctate analysis diagram (Figure 2).

Table 3. Quantitative content of elements in individual samples based on the EDS test.

Sample
Quantitative Content of Elements (wt.%)

C O Zn

COT 40.04 59.96 -
COT–Zn-10 (1 s) 3.20 17.70 79.73
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unclear, since the zinc atom is reactive, and cellulose possesses reactive hydroxyl functions.
It is well documented that zinc reacts with alcohols with the temporary formation of
zinc alcoholate intermediates, which, in an aqueous environment, rearrange into zinc
oxide [119–122].

The reactions of zinc with alcohols presumably proceeded in accordance with Figure 3.
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Subsequently, zinc atoms of a metallic monolayer deposited on the cellulose surface
reacted during deposition with cellulose, forming corresponding alcoholates (Figure 4),
which could subsequent hydrolyze to cellulose and ZnO.
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The following layers of deposited zinc atoms were attached to the lower zinc layer,
forming appropriate zinc multilayers. The zinc atoms of the upper layer were oxidized
to ZnO, by reaction of zinc atoms with oxygen or water. This mechanism was partly
confirmed by EDS test (Table 3). The results for COT were as follows: C (40.0%), O (60.0%);
the results for COT–Zn-10 (1 s) were as follows: C (3.2%), O (17.7%), Zn (79.7%). This
suggests that carbons of the cellulose skeleton were covered by O–Zn moieties. Cellulose-
derived oxygens were masked by zinc atoms; hence, the oxygen revealed in the EDS test
was presumably derived from the passivated layer, i.e., from ZnO. The ratio of Zn:O ≈ 4.5:1
(Zn1.2O1.1) suggests a nearly quantitative character of passivation. It is worth adding that
the formation of ZnO during sputtering with pure zinc has been described in a few papers
using pure Zn target in an argon–oxygen [123–125] or oxygen atmosphere [126]. Another
example of the formation of a metal–polymer interface during Zn sputtering onto PE, PTFE,
and PI surfaces was described by Pertsin and Volkov [105].

3.2. Atomic Absorption Spectrometry with Flame Excitation—FAAS

The determination of zinc content in COT–Zn composite samples was assessed by the
FAAS method, and the results are presented in Table 4.

Table 4. Results of determination of zinc content in COT–Zn composite samples.

Sample Name Zn Concentration (g/kg)

COT 0.01
COT–Zn-5 (1 s) 9.06

COT–Zn-10 (1 s) 20.19
COT–Zn-10 (2 s) 41.52

The results were measured in triplicate and are presented as mean values with a deviation of approximately±2%.

The zinc content in composite samples strictly depended on the applied sputtering
metallization times. The process of Zn deposition on the cotton sample was practically
linear (COT–Zn-5 (1 s)—9.06 g/kg, COT–Zn-10 (1 s)—20.19 g/kg, COT–Zn-10 (2 s)—
41.52 g/kg), and the distribution of metal in COT–Zn(0) material bulk after modification
was uniform.

3.3. Antimicrobial Properties
3.3.1. Antibacterial Activity

The COT–Zn composites were tested in vitro for antimicrobial activity against Gram-
positive S. aureus and Gram-negative E. coli. Results of the tests are illustrated in Figures 5 and 6.
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of bacterial growth in Petri dishes: (a) COT; (b) COT–Zn-10 (1 s/2 s).

A comparison of these results (ZID) with representative data from the literature is
given in Table 5.

Table 5. Results of antibacterial activity test of zinc compounds and composites.

Sample Conc.

Zone Inhibition Diameters (mm) /a

Ref.Gram-Negative Gram-Positive

Ec Kp Pa Pm Bs Ef Sa Se

ZnSO4 2 mg/mL 17 14 14 15 28 15
[127]ZnSO4 10 mg/mL 23 26 21 23 38 26

ZnO NPs 1 mg/mL 16 19 18 [128]
ZnO NPs 1 mg/mL 18 15 [129]

ZnO (ZOE) 3 [130]
ZnCl2 6 mg/mL - - - - -

[131]Zn(Li)2(W)2 6 mg/mL - - - 10 12
Zn(Li)2(L2)(W)2 6 mg/mL 14 11 14 12 15

ZnO NPs 50 µg/mL 24 16 26 24 22 [132]
COT /b 0.01 mg/g 0 0

This work /cCOT–Zn-5 (1 s) /b 9.0 mg/g 1 0
COT–Zn-10 (1 s) /b 20 mg/g 1 1
COT–Zn-10 (2 s) /b 42 mg/g 1 1

/a Zone inhibition diameter (ZID), rounded to whole numbers (mm); NPs—nanoparticles; L—ligand (L1= ibup
(ibuprofen); L2 = 2′-bipy (2,2′-bipyridine); W = water); ZOE—ZnO–eugenol. /b Concentration of inoculum: E. coli:
CFU/mL = 1.5 × 108, S. aureus: CFU/mL = 2.5 × 108. /c ZID determined according to PN-EN ISO 20,645:2006
standard [116]. Bacteria: Bs—Bacillus subtilis; Ec—E. coli; Ef—Enterococcus faecalis; Kp—Klebsiella pneumoniae;
Pa—Pseudomonas aeruginosa; Pm—Proteus mirabilis; Sa—Staphylococcus aureus; Se—Staphylococcus epidermis.

The literature data related to the antibacterial activity of zinc-based composites cannot
be used as direct comparative data, due to the difference in the applied test methods. The
presented results (Table 5) indicate that, independently of the type of base material used
for modification with Zn and zinc compounds, and irrespective of the applied test method
to evaluate antimicrobial activity, the expected result was achieved. Results of these tests
demonstrate the antimicrobial protection against various bacterial microorganisms of COT–
Zn-10 (1 s/2 s) composites for E. coli and S. aureus (Table 5), expressed by the visible zones
of inhibition of bacterial growth on the Petri dishes (Figures 5b and 6b).

3.3.2. Antifungal Activity

The results of the antifungal activity tests (ZID) in accordance with PN-EN 14119:2005
against colonies of A. niger (ATCC 6275) and C. globosum (ATCC 6205) for the cotton
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sample and COT–Zn composites are illustrated in Figures 7 and 8 and presented in Table 6
(comparison with representative data from the literature).
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Table 6. Results of the antifungal activity test and growth inhibition effects of zinc compounds
and composites.

No
Zinc

Compounds/Composites /a Deposition /b
Fungal Average Zone Inhibition Diameters

(ZID: mm) /c,d Ref.

An Afl Afu Ca Cg

1 ZnO 1 mg/mL 8 8 [133]

2

ZnO NPs
1 mg/mL 18 20 [134]

0.4 mg/mL 35 [135]
50 µg/mL 16 19 [132]

ZnO NPs 1 µg/mL 24 28
[136]Zn(OAc)2 1 µg/mL 20 21

ZnO NPs

1 mg/disc 6 8 6
[137]10 mg/disc 8 11 8

0.02 mg/mL 10 5 7 14
[138]0.1 mg/mL 13 10 11 19

/e 0–9
/e,f 0–8 /e [139]
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Table 6. Cont.

No
Zinc

Compounds/Composites /a Deposition /b
Fungal Average Zone Inhibition Diameters

(ZID: mm) /c,d Ref.

An Afl Afu Ca Cg

3 ZnO/CuO (1:1) NPs 0.5 mg/mL 0 0 [140]

4
hAp 5µg 12 13

[141]hAp–Zn (15%) 5µg 12 18
5 Cell/Cts/ZnO 0.25% 9–11 [142]
6 CTS–ZnO film 1 mg/mL 14 4 [143]
7 PS/ZnO-NPs (5%) 19 20 [144]
8 ZnO NPs–eugenol 26 µg/L 24 [145]

9
PLA–ALG–Zn2+ 1.2% 1 1

[146]
PLA–ALG–Zn2+ 4.0% 1 1

10
COT–ZnO /f 10

[147]
COT–ZnO–MnO2(1:1) /f 12

11

COT /b 0.01 mg/g 0 /g,h 0 /g,h

This workCOT–Zn-5 (1 s) /b 9.0 mg/g 0 /g,h 0 /g,h

COT–Zn-10 (1 s) /b 20 mg/g 1 /g,h 1 /g,h

COT–Zn-10 (2 s) /b 42 mg/g 1 /g,h 1 /g,h

/a Zinc compounds and composites; Cell—cellulose; COT—cotton; Cts—chitosan; hAp—hydroxyapatite; PLA—
polylactide; PS—polystyrene; ZnO NPs—zinc oxide nanoparticles. /b Deposited on discs as originally assigned
(ug/mL, mg/mL, mg/disc; % of zinc in the solution or solid sample). /c Fungi: An—Aspergillus niger; Afl—
Aspergillus; Afu—Aspergillus fumigates; Ca—Candida albicans; Cg—Chaetomium globosum. /d Zone inhibition
diameter (ZID), rounded to whole numbers (mm); ZID was determined according to PN-EN ISO 20,645:2006
standard [117]. /e Dependent on the green method applied. /f Dependent on the green method applied. f Cotton
patch (5 × 5 cm2) saturated for 5 min in 10% aqueous solution of ZnO and/or MnO2/ZnO. /g Concentration of
inoculum: A. niger: CFU/mL = 3.5 × 106, C. globusum: CFU/mL = 3.0 × 106. /h Visible growth on sample surface.

As anticipated, the unmodified sample (100% cotton) did not inhibit the growth of
A. niger or C. globosum, as expressed by the strong visible fungal growth covering the entire
surface of the COT samples (Figures 7a and 8a). Antifungal activity and protection against
A. niger and C. globosum were demonstrated by COT–Zn-10 (1 s/2 s) samples modified by
magnetron sputtering metallization. The results revealed visible zones of fungal growth
inhibition in Petri dishes (Figures 7b and 8b), with no fungal growth on the surface of
the composites.

The zinc oxide impact on bacteria or fungi depends on its morphology (particle size
and shape), concentration, exposure time, pH, etc. [148]. This is illustrated by the corre-
sponding ZID values summarized in Tables 5 and 6. Generally, ZnO NPs had ZID values
over 10 mm, revealing the dependence of antimicrobial activity on zinc concentration
(ZID = f(ZnX)). In a few cases, the ZnO NP ZIDs were comparable with the ZIDs of pre-
cursory zinc salts (ZnCl2, ZnSO4, or Zn(OAc)2). Since zinc metal presents lower solubility
than ZnO (1 µg/L vs. 3.6 µg/L) [149] and much lower solubility than ZnO NPs [150–153],
the metallic zinc in COT–Zn composites presented lower solubility in inoculum media
than ZnO NPs and, consequently, a lower ZID. Therefore, the process of releasing an-
timicrobial zinc ions from COT–Zn (COT–Zn→COT–Zn(OH)2→COT + Zn2+) is much
longer, and these composites should preserve their antimicrobial nature/characteristics for
much longer.

3.4. Cytotoxicity

Cytotoxicity assays [154–156] are crucial in biomaterial science with respect to the
therapeutic potential of nanocomposites and nanostructures, as well as the legal and
normative requirements for medical devices and biomaterials [157–164]. These include an
array of methods, mostly fluorescent and colorimetric, providing quantitative estimations of
the number of viable cells in a culture [154,155]. The neutral red uptake (NRU) assay is one
of the most used cytotoxicity tests in biomedical and environmental applications [165] and
is based on the natural tendency of neutral red dye to incorporate to living cell lysozymes.
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As cells begin to die (a loss of cell viability), their ability to bind neutral red diminishes
(decrease in neutral red uptake), corresponding to colorimetric changes.

Zinc salts have proven to exert a strong biological effect, i.e., an antimicrobial effect
toward several bacteria [41], as well as a cytotoxic effect toward various mammalian
cell viability [166]. Cytotoxicity studies were used to screen the therapeutic potential
of zinc-containing nanostructures [167–175]. Zn/ZnO coatings are partially soluble in
water [149], releasing Zn2+ ions. These, in turn, induce cytotoxicity by increasing the
excessive intracellular Zn ion concentration [166,176,177]. In order to screen the therapeutic
potential of COT–Zn composites, we investigated their cytotoxic action on Balb/c 3T3
fibroblast cells [178], using the neutral red uptake assay [174,178].

3.5. Cytotoxicity Experiments

Macroscopic observations of the extracts showed no changes in transparency for
unmodified cotton, while the modified cotton had a visibly darker color, brightening
after sedimentation, and leaving a black residue (Figure 9A.). Microscopic analysis of the
exposed cells revealed fibers present in all extract samples and small fragments present
only in the modified cotton extracts (Figure 9B).
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Figure 9. (A). Images showing exposure medium treated in the same way as (NC) extracts (a), un-
modified cotton extract (b), and modified cotton extract (c), (B). Light microscopy images of 
BALB/3T3 clone A31 cells exposed for 24 h to negative control (a,d), 100% unmodified cotton extract 
(b,e), and 100% extract from COT–Zn sample (c,f), before and after incubation with NR, respec-
tively. 

The results of the NRU assay showed no decrease in viability of fibroblasts exposed 
to the unmodified cotton extracts at both tested concentrations. COT–Zn extracts signifi-
cantly reduced cell viability, causing almost 100% cell death, irrespective of the extract 
concentration (Figure 10). Treatment of cells with SDS resulted in a concentration-depend-
ent decrease in cell viability (Figure 11). 

Figure 9. (A). Images showing exposure medium treated in the same way as (NC) extracts (a),
unmodified cotton extract (b), and modified cotton extract (c), (B). Light microscopy images of
BALB/3T3 clone A31 cells exposed for 24 h to negative control (a,d), 100% unmodified cotton extract
(b,e), and 100% extract from COT–Zn sample (c,f), before and after incubation with NR, respectively.

The results of the NRU assay showed no decrease in viability of fibroblasts exposed to
the unmodified cotton extracts at both tested concentrations. COT–Zn extracts significantly
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reduced cell viability, causing almost 100% cell death, irrespective of the extract concen-
tration (Figure 10). Treatment of cells with SDS resulted in a concentration-dependent
decrease in cell viability (Figure 11).
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Figure 10. Effect of 24 h exposure of BALB/3T3 clone A31 cells on unmodified and modified cotton
extracts, determined with the NRU test. Viability is shown as a percentage of the negative control
(NC; exposure medium treated analogously to the extracts).
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Figure 11. Viability of BALB/3T3 clone A31 cells exposed for 24 h to SDS (positive control), assayed
with NRU test. Viability presented as a percentage of the negative control (NC; culture medium with
vehicle, i.e., 2% H2O in culture medium).

Zinc compounds also reveal strong anticancer activity (e.g. [136,179–181]) reflected ad-
ditionally by nearly 2400 document results on Anticancer Zinc [182] and 1–700 documents
results on Anticancer Activity of Zinc abstracted in the Scopus Base [183]. Therefore the
COT-Zn composites with cytotoxic activity against BALB/3T3 clone A31 cells should also
reveal anticancer character. These investigations will be continued.



Materials 2022, 15, 2746 15 of 22

4. Conclusions

In summary, COT–Zn composites with different Zn content were prepared by DC
magnetron sputtering technology using a zinc metal target. The composite samples were
characterized by SEM, EDS, and FAAS. The biological properties of the materials were
verified by cytotoxicity screening and antimicrobial activity tests against colonies of E. coli
and S. aureus bacteria and A. niger and C. globosum fungi. The in vitro determined antimicro-
bial properties of COT–Zn composites revealed the antibacterial and antifungal activities.
In vitro studies showed also that COT–Zn composites containing merely 9 g/kg Zn were
cytotoxic. The ability to adapt clean and zero-waste magnetron sputtering methods to
an industrial scale provides the possibility to obtain sustainable materials for use in a
variety of applications. The prepared fiber composites have great application potential
as an antimicrobial material in the field of biomedical engineering (e.g., rehabilitation,
medical devices); however, due to their cytotoxicity they have limited possibilities of use as
a material interacting with cells of the human body.
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173. Czyżowska, A.; Barbasz, A. Cytotoxicity of zinc oxide nanoparticles to innate and adaptive human immune cells. J. Appl. Toxicol.

2021, 41, 1425–1437. [CrossRef] [PubMed]
174. Mukherjee, S.; Shil, A.; Pal, K.; Pal, S.; Sikdar, M. Comparative evaluation of the antibacterial and cytotoxic activity of green

synthesized and commercially available ZnO nanoparticles. Biomedicine 2021, 41, 565–575. [CrossRef]
175. Alkhudhayri, A.A. A comparative cytotoxic study against breast cancer cells with nanoparticles and rods shaped structures.

J. King Saud Univ. Sci. 2022, 34, 101797. [CrossRef]
176. Gong, Y.; Ji, Y.; Liu, F.; Li, J.; Cao, Y. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial

cells: Interaction with palmitate or lipopolysaccharide. J. Appl. Toxicol. 2017, 37, 895–901. [CrossRef] [PubMed]
177. Yan, D.; Long, J.; Liu, J.; Cao, Y. The toxicity of ZnO nanomaterials to HepG2 cells: The influence of size and shape of particles.

J. Appl. Toxicol. 2019, 39, 231–240. [CrossRef]
178. Liebsch, H.M.; Spielmann, H. Balb/c 3T3 cytotoxicity test. Methods Mol. Biol. 1995, 43, 177–187. [CrossRef]
179. Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and

potential for drug delivery applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [CrossRef]
180. Vakayil, R.; Muruganantham, S.; Kabeerdass, N.; Rajendran, M.; Mahadeopalve, A.; Ramasamy, S.; Alahmadi, T.A.;

Almoallim, H.S.; Manikandan, V.; Mathanmohun, M. Acorus calamus-zinc oxide nanoparticle coated cotton fabrics shows
antimicrobial and cytotoxic activities against skin cancer cells. Process Biochem. 2021, 111, 1–8. [CrossRef]

181. Zhang, Y.; Guo, C.; Liu, L.; Xu, J.; Jiang, H.; Li, D.; Lan, J.; Li, J.; Yang, J.; Tu, Q.; et al. ZnO-based multifunctional nanocomposites
to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death. Theranostics
2020, 10, 11197–11214. [CrossRef]

http://doi.org/10.1038/s41598-020-75070-0
http://doi.org/10.1007/978-1-61779-108-6_1
http://doi.org/10.3389/fmats.2020.582030
http://doi.org/10.1177/0883911506064672
http://doi.org/10.1163/156856207779996931
http://doi.org/10.1002/smll.201501923
http://doi.org/10.3390/pharmaceutics12060499
http://doi.org/10.3390/molecules25092193
http://doi.org/10.1016/j.semcancer.2020.01.011
http://www.ncbi.nlm.nih.gov/pubmed/32014609
http://doi.org/10.1016/j.jddst.2020.102316
http://doi.org/10.3390/polym13162623
http://www.ncbi.nlm.nih.gov/pubmed/34451161
http://doi.org/10.1038/nprot.2008.75
http://www.ncbi.nlm.nih.gov/pubmed/18600217
http://doi.org/10.3390/ijms21176305
http://www.ncbi.nlm.nih.gov/pubmed/32878253
http://doi.org/10.1002/jat.1385
http://doi.org/10.1007/s00204-010-0608-7
http://doi.org/10.2217/nnm.15.44
http://doi.org/10.5772/63437
http://doi.org/10.3390/ma10121427
http://doi.org/10.1007/s00018-018-2973-y
http://www.ncbi.nlm.nih.gov/pubmed/30483817
http://doi.org/10.1002/jat.4133
http://www.ncbi.nlm.nih.gov/pubmed/33368402
http://doi.org/10.51248/.v41i3.1194
http://doi.org/10.1016/j.jksus.2021.101797
http://doi.org/10.1002/jat.3415
http://www.ncbi.nlm.nih.gov/pubmed/27862064
http://doi.org/10.1002/jat.3712
http://doi.org/10.1385/0-89603-282-5:177
http://doi.org/10.1517/17425247.2010.502560
http://doi.org/10.1016/j.procbio.2021.08.024
http://doi.org/10.7150/thno.44920


Materials 2022, 15, 2746 22 of 22

182. Scopus Base: 2 385 document results on Anticancer Zinc. Available online: https://www-1scopus-1com-1000014xv00bf.
han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+++zinc&sid=99008ee26e21b10041dcc27109299b0d&sot=b&
sdt=b&sl=32&s=TITLE-ABS-KEY%28anticancer+++zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960
&yearTo=Present (accessed on 3 March 2022).

183. Scopus Base: 1695 document results on Anticancer Activity of Zinc. Available online: https://www-1scopus-1com-1000014rj027
e.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+activity+of+zinc&sid=346666e547acd8834d6266afbda4
18b8&sot=b&sdt=b&sl=42&s=TITLE-ABS-KEY%28anticancer+activity+of+zinc%29&origin=searchbasic&editSaveSearch=
&yearFrom=Before+1960&yearTo=Present (accessed on 3 March 2022).

https://www-1scopus-1com-1000014xv00bf.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+++zinc&sid=99008ee26e21b10041dcc27109299b0d&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28anticancer+++zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014xv00bf.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+++zinc&sid=99008ee26e21b10041dcc27109299b0d&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28anticancer+++zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014xv00bf.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+++zinc&sid=99008ee26e21b10041dcc27109299b0d&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28anticancer+++zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014xv00bf.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+++zinc&sid=99008ee26e21b10041dcc27109299b0d&sot=b&sdt=b&sl=32&s=TITLE-ABS-KEY%28anticancer+++zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014rj027e.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+activity+of+zinc&sid=346666e547acd8834d6266afbda418b8&sot=b&sdt=b&sl=42&s=TITLE-ABS-KEY%28anticancer+activity+of+zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014rj027e.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+activity+of+zinc&sid=346666e547acd8834d6266afbda418b8&sot=b&sdt=b&sl=42&s=TITLE-ABS-KEY%28anticancer+activity+of+zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014rj027e.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+activity+of+zinc&sid=346666e547acd8834d6266afbda418b8&sot=b&sdt=b&sl=42&s=TITLE-ABS-KEY%28anticancer+activity+of+zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present
https://www-1scopus-1com-1000014rj027e.han.p.lodz.pl/results/results.uri?sort=plf-f&src=s&st1=anticancer+activity+of+zinc&sid=346666e547acd8834d6266afbda418b8&sot=b&sdt=b&sl=42&s=TITLE-ABS-KEY%28anticancer+activity+of+zinc%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&yearTo=Present

	Introduction 
	Materials and Methods 
	Materials 
	Composite Components 
	Bacterial and Fungal Strains 
	Cell Culture 

	Methods 
	Magnetron Sputtering 
	SEM/EDS—Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy 
	Atomic Absorption Spectrometry with Flame Excitation—FAAS 
	Biological Experiments 
	Cytotoxicity 


	Results and Discussion 
	SEM/EDS—Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy 
	Atomic Absorption Spectrometry with Flame Excitation—FAAS 
	Antimicrobial Properties 
	Antibacterial Activity 
	Antifungal Activity 

	Cytotoxicity 
	Cytotoxicity Experiments 

	Conclusions 
	References

