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The immune system is one of the three main consumers of energy in the human body; brain,

muscle, and the immune system use similar amounts (approximately 500 kcal/day) [1]. Rapid

bursts of cellular proliferative, biosynthetic, and secretory activities by leukocytes require con-

siderable metabolic resources that are especially important during periods of infection and

inflammation [2, 3]. Because immune cells have negligible intracellular nutrient stores and

rely on aerobic glycolysis for activation and proliferation, they are particularly dependent on

the uptake of metabolic substrates [2–6]. Indeed, glucose uptake is the primary limiting factor

in T-cell activation [5, 6]. T-cell activation and proliferation are decreased in low-glucose states

along with reduced production of cytokine effectors of the immune response, including inter-

feron γ (IFN-γ) [6–8]. Susceptibility to infections by individuals with metabolic diseases fur-

ther underscores the significant impact of metabolic disruption on the functions of innate and

adaptive immunity [9, 10].

Pathogens that are well adapted to their hosts have developed an extraordinarily wide range

of mechanisms to modulate host immunity in order to facilitate and prolong infection and

transmission. Several of these mechanisms are relatively well characterized and appear to act

directly on host target tissues. Traditionally, the effects that many pathogens have on host

metabolism have been assumed to be downstream consequences of pathogenesis. However,

increasing evidence suggests that these pathogen-induced metabolic disturbances may instead

reflect aspects of the pathogens’ modulation of the immune response to enhance and/or pro-

long the period of infection and transmissibility (Fig 1). Here, we examine three diverse but

highly prevalent global pathogens that disrupt host metabolism during infection and may

thereby alter the host immune response: Trypanosoma cruzi, Plasmodium falciparum, and Bor-
detella pertussis, responsible for Chagas disease, malaria, and whooping cough, respectively.

Considering how metabolic changes that pathogens induce in the host can affect the immune

response may reveal commonalities that can contribute to understanding, controlling, and

treating a wide range of diseases.

T. cruzi

T. cruzi disrupts host glucose homeostasis within 30 days post infection (DPI) [11, 12]. Para-

sites are detected as early as 15 DPI within insulin-secreting pancreatic beta cells. T. cruzi’s
actions in the pancreas are quite selective. Pancreatic islet architecture is significantly dis-

rupted such that beta cells are preferentially targeted by the parasite, and other islet cell types

such as glucagon-secreting alpha cells are spared [12].
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Acute and subacute T. cruzi infection produce a complex pattern of changes in host insulin

secretion characterized by hypoinsulinemia with accompanying hyperglycemia [13]. During

acute infection, T. cruzi impairs hepatic gluconeogenesis and induces a strong inflammatory

response within the host capable of triggering a systemic “cytokine storm.” This buildup of

cytokines leads to decreased feeding by the host and increased glucose uptake by the parasites

[14]. In chronic infection, there is impaired insulin secretion from pancreatic beta cells sec-

ondary to the ability of T. cruzi to modify insulin granule fusion, resulting in failure to properly

release insulin rather than a defect in hormone production [11, 12]. Additionally, other con-

tributors to hypoinsulinemia during infection include pathogen-induced autonomic disrup-

tion of the parasympathetic innervation of the pancreas through denervation [15, 16]. Because

pancreatic secretion of insulin relies on parasympathetic neuronal inputs [17], parasympa-

thetic denervation may contribute to the diminished insulin secretion in Chagas disease [13].

Infection also elevates glucagon levels, which further disrupts glucose homeostasis and leads to

host hyperglycemia [13]. However, given that most of the above studies were conducted in ani-

mal models, it remains unclear whether T. cruzi-induced metabolic phenomena are also evi-

dent in humans. Clinical studies demonstrating both hyperglycemia and hypoinsulinemia in

patients with Chagas disease have been inconclusive or variable [18]. Nevertheless, an exami-

nation of subgroups of Chagas patients reveals significant abnormalities in glucose metabo-

lism, including hypoinsulinemia, hyperglycemia, and glucose intolerance [18–20]. This

suggests that some patients may be especially vulnerable to the metabolic consequences of T.

cruzi infection. Future work is needed to clarify the factors responsible for such selective clini-

cal vulnerability to metabolic disruption in Chagas patients and the specific mechanisms

employed by T. cruzi to target these affected patients.

P. falciparum

P. falciparum induces hyperinsulinemia and hypoglycemia during infection [21–24]. These

metabolic sequelae are associated with more severe morbidity and increased mortality in

malaria [25, 26]. However, the mechanisms for malaria-induced hypoglycemia remain poorly

understood.

Diminished hepatic gluconeogenesis coupled with increased metabolic demands arising

from infection have been proposed as important contributors to host hypoglycemia [27, 28].

Intriguingly, P. falciparum appears to act directly on pancreatic beta cells to cause insulin

hypersecretion and, ultimately, hypoglycemia. Treatment of cultured pancreatic beta cells with

Fig 1. Model of pathogen interactions between host metabolism and immune response. We propose a generalizable model demonstrating the

means by which pathogens manipulate host metabolism to facilitate infection. Diverse pathogens, including P. falciparum and B. pertussis, decrease host

blood glucose levels. This results in an impaired host immune response that consequently exacerbates and/or prolongs infection by providing the pathogen

with improved opportunities to increase load and/or persistence and enhance transmission to other hosts.

https://doi.org/10.1371/journal.ppat.1006669.g001
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plasma from patients with malaria-induced hypoglycemia resulted in a significant increase in

insulin secretion [21]. Significantly, these metabolic effects were attenuated in diabetic animals

whose pancreatic beta cells were depleted via the beta cell toxin streptozotocin [23, 24], further

implicating P. falciparum’s effects on these beta cells in metabolic disruption. Overall, these

studies suggest that P. falciparum secretes factors and activates the host immune system to

increase pancreatic beta cell insulin secretion, which contributes to hypoglycemia.

B. pertussis

B. pertussis’ expression of virulence factors plays a large role in pertussis illness. While these

factors promote bacterial adhesion and invasion locally, they also act more globally as immu-

nomodulators that subvert host innate and adaptive immunity [29–31]. Consequently, even

though B. pertussis is best known for its actions on the respiratory tract, this pathogen also acts

at several other host sites, including spleen and blood; both sites play direct roles in mobilizing

the host immune response during different phases of infection [31]. Significantly, B. pertussis
also has a profound effect on host metabolism.

As early as the 1930s, clinical reports described hyperinsulinemia and resultant long-lasting

hypoglycemic states during B. pertussis infection [32]. Furthermore, B. pertussis-induced

hyperinsulinemia and hypoglycemia were shown to significantly increase susceptibility to

inflammatory and anaphylactoid reactions [33, 34]. Beginning in the 1960s, mouse models

recapitulated B. pertussis-induced hypoglycemia and hyperinsulinemia [32, 35, 36]. Moreover,

in vivo studies demonstrated that selective destruction of beta cells using the drug alloxan

attenuated this B. pertussis-induced hyperinsulinemia and hypoglycemia [32]. These data thus

suggest that, as with P. falciparum, beta cells within the pancreatic islet are specifically targeted

to stimulate hyperinsulinemia during infection.

It was discovered that these metabolic effects were primarily caused by a virulence factor

secreted by B. pertussis originally named islet-activating protein (IAP). Though subsequently

renamed pertussis toxin (PTX), this toxin was initially isolated and studied based on its direct

actions on pancreatic beta cells to stimulate insulin secretion [37, 38]. PTX was later found in

the circulating serum of B. pertussis-infected animals, providing a route for its systemic actions

[39].

A crucial clue in elucidating the mechanisms by which B. pertussis and other pathogens

exert metabolic effects within the host may lie in the actions of secreted virulence factors such

as PTX and adenylate cyclase toxin (ACT). Secretion of these factors is part of a common strat-

egy used by pathogens to facilitate infection and pathogenesis. Mycobacterium tuberculosis,
Bacillus anthracis, Salmonella enterica, and Listeria monocytogenes rely on multiple, complex

secretion mechanisms for adhesion, evasion of host defenses, and virulence, among a plethora

of other functions [40, 41], but the potential impact on metabolism is somewhat more complex

and has been less well considered. Understanding how B. pertussis-secreted factors disrupt

metabolism to affect pathogenesis and immunity may, therefore, shed light more generally on

this common virulence strategy and provide an example relevant to other diseases.

PTX

PTX is one of the most important virulence factors associated with B. pertussis pathogenesis

[42]. PTX targets G-protein–coupled receptors (GPCRs) and inactivates alpha subunits of the

heterotrimeric Gαi/o (Gi/o) protein family immediately downstream of these receptors by

adenosine diphosphate (ADP) ribosylation [37]. GPCRs expressed in pancreatic beta cells,

including α2 adrenergic and dopamine D2 receptors, play important roles in modulating insu-

lin secretion. Because these GPCRs are Gi/o coupled, they are directly susceptible to PTX
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action. Under normal circumstances, GPCR stimulation results in an autocrine negative feed-

back circuit in which subsequent insulin release is diminished [43, 44]. The mechanism for

this negative feedback is based on Gi/o’s ability to reduce levels of a key mediator of insulin

secretion, cyclic AMP (cAMP). Gi/o inhibits adenylate cyclase, the enzyme responsible for

cAMP synthesis, which thus prevents activation of the cAMP-dependent protein kinase A

(PKA), a powerful stimulator of insulin secretion (Fig 2) [43]. This PTX-sensitive, Gi/o-medi-

ated signaling mechanism prevents oversecretion of insulin during glucose stimulation and is

important for maintaining metabolic homeostasis [44, 45]. Thus, PTX’s inhibitory actions on

GPCR and Gi/o signaling provide a mechanism for the toxin’s stimulation of insulin release

[37].

In addition to stimulating insulin secretion, PTX acts on other aspects of host metabolism,

including glucose transport. Acute PTX treatment diminishes insulin-stimulated glucose

transport activity in key tissue targets of insulin action—myocytes and adipocytes—via the

inhibition of Gi/o-mediated signaling independently of its effects on cAMP biosynthesis [46–

48]. PTX also reduces insulin receptor affinity to insulin, further potentiating the toxin’s inhib-

itory effects on insulin-stimulated glucose transport [49]. Moreover, prolonged PTX action

produces hypoglycemia by changing glucose transporter (GLUT) expression [50]. PTX

increases the expression of GLUT-4 in muscle, resulting in increased transport of blood glu-

cose into muscle, and lowers overall circulating glucose [50].

ACT action

In concert with PTX secretion, B. pertussis produces the toxin ACT, which is responsible for

several aspects of B. pertussis’s virulence, including the impairment of T-cell activation and

chemotaxis to undermine the host adaptive immune response [51, 52]. ACT is a bifunctional

Fig 2. Model for PTX- and ACT-induced hyperinsulinemia. Following infection, B. pertussis produces PTX, which acts not only within the

respiratory tract but also directly on insulin-secreting pancreatic beta cells. Within these cells, PTX inhibits Gαi/o signaling that ordinarily inhibits

adenylate cyclase, the enzyme responsible for cAMP synthesis. This leads to increases in cAMP and activates PKA, a key stimulator of insulin

release. In parallel, B. pertussis also secretes ACT, which directly increases cAMP levels to also produce hyperinsulinemia and subsequent

hypoglycemia in the host. ACT, adenylate cyclase toxin; PKA, protein kinase A; PTX, pertussis toxin.

https://doi.org/10.1371/journal.ppat.1006669.g002
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protein composed of an amino terminal adenylate cyclase domain and a repeat in toxin (RTX)

domain that forms pores in membranes to facilitate the toxin’s entry into host cells [51]. Nota-

bly, the adenylate cyclase domain of ACT bypasses endogenous host adenylate cyclase by

exhibiting its own very high catalytic activity [51]. This renders the toxin capable of rapidly

generating superphysiological increases in intracellular cAMP levels within seconds of entry

into host cells [53]. Therefore, analogous to PTX action in pancreatic beta cells, it is possible

that ACT also acts on beta cells to increase cAMP, activate PKA, and thus significantly elevate

insulin secretion.

Effects of host immune response on metabolism during infection

In addition to direct actions of pathogen-secreted toxins on host tissues to induce hypoglyce-

mia, pathogens may also manipulate the immune response to disrupt host metabolism. For

example, infection can trigger host immune cell production of cytokines, including interleu-

kin-1 (IL-1). IL-1 activates the sympathetic nervous system and causes a drop in blood glucose

[54]. Other cytokines, including IL-10, have been implicated in P. falciparum-induced hypo-

glycemia [55]. Likewise, Plasmodium spp. elicit the production of host immunomodulators

such as tumor necrosis factor α (TNFα) during infection [56, 57], which also produces hypo-

glycemia [58]. Consequently, given the significant correlation between TNFα levels and hypo-

glycemia in severe malaria and cerebral malaria, it has been suggested that TNFα be used as a

potential prognostic indicator for disease severity [59]. Given TNFα’s role as a proinflamma-

tory cytokine, this hypoglycemia may result either through direct or indirect cytokine actions

on host metabolic and immune functions or, more likely, some combination of both [60].

Future work is clearly needed to disentangle the mechanisms of TNFα’s metabolic effects dur-

ing infection.

Like P. falciparum, B. pertussis infection increases host IL-1 production as well as raises lev-

els of IL-17, which is also associated with hypoglycemia [30, 61]. Moreover, ACT action has

been implicated in boosting host IL-10 production; IL-10 not only fosters hypoglycemia but

also impedes the development of host adaptive immunity [62]. Unlike P. falciparum, however,

B. pertussis toxins PTX and ACT inhibit TNFα production through their stimulation of cAMP

synthesis in monocyte-derived dendritic cells [63].

Clinical implications

Despite numerous differences between B. pertussis and P. falciparum, they share the ability to

cause profound disturbances in host metabolism during infection. Because hypoglycemia is

often associated as a marker for disease severity, we propose that P. falciparum and B. pertussis
induction of hypoglycemia serve as model systems to answer fundamental questions concern-

ing how pathogen manipulation of metabolism can affect infection, pathogenesis, and the host

immune response.

These experimental systems can address several important questions relevant to these and

other diseases, such as the following:

1. Do pathogen-induced hyperinsulinemia and hypoglycemia modify the host immune

response to enhance and/or prolong pathogenesis and infection?

2. Does correction of hypoglycemia during infection impact pathogen growth, persistence,

and pathogenesis?

3. Do secreted toxins such as ACT and PTX act directly on insulin-secreting pancreatic beta

cells to cause hyperinsulinemia? If so, what are the individual and collective contributions

of the toxins and G-protein–mediated signaling to these metabolic disruptions?
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Host immune cells depend on circulating blood glucose to supply adequate substrates for

their metabolic requirements, particularly for their rapid activation and expansion during

infection. Therefore, we propose that pathogen-induced hypoglycemia deprives the immune

system of the energy required to mount an effective inflammatory and/or adaptive immune

response. In contrast, unlike host lymphocytes, B. pertussis is largely resistant to the hypoglyce-

mic state it induces because it is incapable of utilizing glucose as its main carbon source for

generating energy owing to an incomplete citric acid cycle [64]. On the other hand, P. falcipa-
rum relies on glycolysis and the tricarboxylic acid cycle, making it likely more sensitive to

changes in host blood glucose levels than B. pertussis [65].

An important implication of our reasoning is the prediction that correcting hypoglycemia

will limit the duration and/or severity of infection. Such an approach may, therefore, constitute

a new avenue of therapeutic interventions for the metabolic sequelae of infection. To date,

therapeutic interventions to correct pathogen-induced metabolic disturbances have not been

directly tested clinically. Nevertheless, there is encouraging evidence in animal models of dia-

betes that diabetic hyperglycemia can moderate sequelae of P. falciparum infection. Parasite-

mia during malaria was significantly lower in moderately diabetic animals compared with

normal mice [23]. These findings suggested that raising blood glucose to counteract P. falcipar-
um’s attempts to induce host hypoglycemia may limit pathogenesis. Indeed, some have argued

that metabolic diseases such as diabetes may confer a selective advantage in some populations,

in part because altered metabolic signaling pathways that are targeted by pathogens may pro-

tect the host from aspects of infectious disease [23, 66]. In contrast, in the setting of diabetic

hyperglycemia, T. cruzi infection parasitemia and mortality were significantly increased [67],

suggesting that, for this pathogen, diabetic hyperglycemia further erodes the capacity of the

immune system to control infection. Taken together, these data support both the concept that

the disruption of glucose homeostasis by pathogens impairs the host’s capability to effectively

control infection and the prospect of simple clinical interventions that can modulate these

effects.

Conclusions and future directions

The manipulation of the host’s metabolic state may not only affect the immune response to the

respective causative pathogen but also to additional opportunistic infections, further com-

pounding morbidity and mortality associated with infection. On the other hand, treating the

metabolic manifestations of infection, including hyperinsulinemia and hypoglycemia, may

potentially blunt or ameliorate the disease course of these pathogens and could be imple-

mented relatively quickly, safely, and inexpensively to make a difference in the lives of many

affected people globally.
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