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The proposed theory defines a relative index
of epidemic lethality that compares any two
configurations in different observation periods,
preferably one in the acute and the other in a mild
epidemic phase. Raw mortality data represent the
input, with no need to recognize the cause of death.
Data are categorized according to the victims’ age,
which must be renormalized because older people
have a greater probability of developing a level of
physical decay (human damage), favouring critical
pathologies and co-morbidities. The probabilistic
dependence of human damage on renormalized age
is related to a death criterion considering a virus
spread by contagion and our capacity to cure the
disease. Remarkably, this is reminiscent of the Weibull
theory of the strength of brittle structures containing
a population of crack-like defects, in the correlation
between the statistical distribution of cracks and the
risk of fracture at a prescribed stress level. Age-of-
death scaling laws are predicted in accordance with
data collected in Italian regions and provinces during
the first wave of COVID-19, taken as representative
examples to validate the theory. For the prevention
of spread and the management of the epidemic, the
various parameters of the theory shall be informed on
other existing epidemiological models.
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1. Introduction
Mathematical models have been used for almost a hundred years in epidemiology. In their
celebrated seminal work Kermack & McKendrick [1] proposed the susceptible–infectious–
recovered (SIR) model, detailing how a virus is transmitted from an infected person to a healthy
one [2,3]. By introducing the probability that an individual is still infected after a certain time
and that a susceptible is contacted by an infected at that stage and becomes infected, integral–
differential equations can describe the kinetics of the epidemic, that is, the variation over time in
the number S of the susceptible to infection, of the infected I and of the removed R, a compartment
that includes the recovered, the immune and the dead as a result of the disease. This rationale has
been developed, modified and widely adopted [4–10], also within a probabilistic framework [11],
but the basis of the theory remains essentially the original one.

The recent COVID-19 emergency has demonstrated the importance of the SIR model, and its
developments, in evaluating the severity of an epidemic through parameters such as the basic
reproduction index R0. Epidemic curves for infected people allow the spread of the epidemic to
be followed and the model can evaluate and predict the effects of actions such as social distancing,
use of masks and lockdown. However, a major problem consists in determining the exact number
of infected people, because not the whole population can be tested and the number of removed
is difficult to assess. The various agencies, both public and private, have provided strongly
contrasting numbers, at least in Italy. Therefore, any method to evaluate the strength of the
epidemic founded on the analysis of epidemic curves, such as the epidemic growth rate [12] or the
reproduction number [13], may suffer from uncertainty in the input data. Estimating the growth
rate from the epidemic curve can also be objectively difficult, particularly for fast-spreading
epidemics for which the estimation may be subject to over-fitting because of the limited number
of available data points, which also limits the choice of models for the epidemic curve [14].

Other methods directly analyse mortality data. Sorting out the deaths attributable to the
epidemic from those due to other causes is, in principle, simpler than determining the infected of
the entire population, given the fewer cases to consider. Despite this, the experience of COVID-19
in Italy has confirmed a difficulty: the official number of deaths attributed to the epidemic in its
acute phase is about half the increase in deaths with respect to previous years. According to some
experts [13,15], the excess mortality rates with respect to pre-epidemic conditions of previous
years, regardless of causes of death, should be considered the most reliable (and least assumption
laden) records of the effect of the epidemic, rather than the number of infected, or the number of
dead specifically from the virus, which are difficult to determine.

Epidemics such as that from COVID-19 are generally associated with disproportionate
mortality among the world’s population [16]. It has often been proposed that, as an index of
the strength of the epidemic, the differential mortality rate [17] should be considered. This is
usually expressed as the ratio between the number of deaths in the acute epidemic condition and
the number in previous years [18–20]. Here, we aim to demonstrate that the age of the victims
also needs to be considered. The paramount role of the demographic structure in the prediction
of the expected number of deaths has been confirmed by recent studies [21], as the division by
age is more important than the structure of families [22] in the analysis of the social contacts
that influence the spread of a virus [23]: social distancing and other policies to slow transmission
should always consider the age composition of local and national contexts. We propose a new
way to quantify the strength of an epidemic starting from a particular statistical treatment of
measurable mortality data in a certain territory, within a given period of observation, which
considers the age of the victims.

The fight against epidemics requires a multi-disciplinary approach involving integrated cycles
of prevention, response and recovery to support epidemiology [24]. Remarkably, the proposed
theory has conceptual affinities with consolidated models in the mechanics of materials, to which
it may be useful to refer. In 1939 Weibull [25] proposed a theory of the strength of a structure
made of a brittle material based on the idea that it contains inherent flaws of random spatial
distribution, shape and size. The risk of fracture at a prescribed stress level is therefore determined
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by the probability that a large-enough defect exists which will propagate catastrophically at that
level of stress. The flaw shape is typically assumed to be a flat slit (crack) of size δ. If σ denotes
the stress normal to the crack plane, the toughness criterion of linear elastic fracture mechanics
(LEFM) dictates that the crack will grow catastrophically (in mode I) when the so-called stress
intensity factor KI = Yσδ1/2, where Y is a constant determined by the geometries of the structure
and the crack, reaches the characteristic material’s fracture toughness KIc [26]. The Weibull model
conceptualizes the structure as a chain composed of equally stressed links, and the resistance
of the chain to fracture is limited by the strength of the weakest link. The expected strength is
therefore a decreasing function of structural size (size effect [27]), because as the length of the
chain increases there is a concomitant increased probability of the presence of a weak link.

The statistical approach and the balance laws underlying this theory of structural strength
may also suggest a new statistical theory for the strength of the epidemic, where ‘strength’
now indicates a quantitative measure of lethality with respect to the ‘weakness’ of individuals.
Towards this end, it is of paramount importance to define what is the counterpart, for the
human body, of the size of the stressed structure (the length of the chain), now associated with
the probability of developing a certain level of ‘physical damage’, which induces the potential
presence of pathologies and co-morbities critical for the viral infection. We suggest making this
correlation, which should be informed by existing epidemiological models, with the age of the
individuals. This, however, needs to be renormalized in order to take into account that older
people have a higher probability than younger people of having a ‘damaged’ body and, hence, to
die as a result of the virus. Such a renormalization, which depends upon genetics, quality of life
and efficiency of the health system, can be calibrated starting from mortality data, categorized by
age at death, on the basis of calibration criteria naturally derived from the theoretical framework.

The probability of developing a certain level of physical damage specific to the patient is
statistically defined as a function of the patient’s renormalized age. A criterion of death is thus
proposed, which relates mathematical variables representing the lethal force of the epidemic,
its level of spread and our capacity of treating the disease (efficiency of intensive care services,
medications, treatments, diagnostic tests, vaccines), as a function of the physical damage of the
body. From the theoretical modelling of the probability of death, the strength of the epidemic can
be measured. The evaluation can only be comparative, in the sense that any two configurations,
defined by the respective mortality, are compared in terms of the strength of the epidemic of
one state with respect to the other, through an index that, for this reason, is referred to as the
relative index of epidemic. This index may be calculated from data collected in a certain week
or month of a year of acute epidemic, and in the corresponding period of previous years,
characterized by milder or less lethal epidemics. The accurate estimate of this index over time
and place is useful to follow the spread of the virus, to recognize the emergence of autonomous
outbreaks and, even more importantly, to define the timing of appropriate countermeasures such
as lockdown (prevention of spread) and to decide when, where and how to lessen the adopted
countermeasures (management of the epidemic).

An application is proposed for the Italian COVID-19 case, considered as a good example to
validate a theory that is, indeed, very general. Italy was the first country in the Western world in
which COVID-19 spread, so much so that the Italian government was first called upon to provide
measures for the control of outbreaks, at both the local and national level, in order to avoid the
collapse of the health system, which nevertheless occurred in some territories. Furthermore, the
various Italian regions differ in age structure, life expectancy and quality of the environment.
Therefore, the Italian case represents a laboratory in which to test the proposed theory in various
scenarios. The relative index of epidemic has been calculated by comparing weekly and monthly
mortality tables during the first wave of COVID-19 (January–June 2020) with corresponding
periods of previous years. Considering territories of different sizes (regions and provinces), we
estimate the epidemic flow over time, the emergence of autonomous outbreaks and the effect of
the imposed lockdown.

The theoretical framework is presented in §2a, referring to §3a for the mathematical
calculations. The epidemiology of COVID-19 in Italy provides the scenario discussed in §2b,
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for which the details on the analysed mortality data are indicated in §3b. The potential of the
proposed approach is discussed in §4, by comparing its results with those obtainable by analysing
the simple differential mortality. Through the parameters of the model it is possible to evaluate
how the epidemic has spread and to predict its development as a consequence of control actions
and improved treatments. However, the way in which the parameters of the theory should be
related to the many variables that detail the kinetics of the epidemic is currently an open issue.

2. Results

(a) The theoretical framework
We start from the assumption that the life of a person is represented by a chain composed of
life-segments that represent the rings in the chain analogy. The number of rings is successively
increased to reflect the ageing process, as rings represent the monads associated with human
degradation. One may consider that a life-segment is a solar year of age, or submultiple, but
this view is too simplistic. ‘It is mathematically demonstrable that the concept of time is closely
related to age: time passes faster for old people’. This quote, by the American writer Alvin
Toffler (1928–2016), introduces the idea that the usual lifetime unit, e.g. the solar year, cannot
indicate the reference scale to measure the ageing process throughout the whole of human life.
If a life-segment represents the nominal unit associated with one spot where potential damage
may develop with equal probability, the number of life-segments contained in one solar year of age
should be higher for an older individual than for a younger one.

Let �An denote the reference nominal life-segment. The real age Ar, expressed as the number
of solar (real) time-segments �Ar, is rescaled to the nominal age An, equal to the number of
�An, through a renormalization group, expressed by An = F(Ar). Elaborating the data on mortality
recorded in Italy, we are led to consider a function F(Ar) of the form

An = F(Ar) = Ar + 〈Ar − 45〉γ1+ + 〈Ar − 70〉γ2+ , γ1, γ2 > 0, (2.1)

where Ar and An are expressed in the number of solar and nominal years, respectively, and 〈·〉+
denotes the positive part function.1 Hence, there are two step-changes in life, the first at 45 and
the second at 70 solar years of age, beyond which, roughly speaking, ‘each year counts more’.

The form of the renormalization law (2.1) has been derived from direct calibration. While
postponing the detailed explanation to the end of this section, we anticipate that the proposed
theory predicts a precise distribution of mortality rates according to the nominal age of the
individuals, which rescales according to the force of the epidemic and its degree of spread.
Analysing the mortality tables, the renormalization law has been calibrated by requiring its
compliance with the distribution predicted by the theory; the observed rescaling consequent to
the epidemic provides a confirmation of its soundness. The function (2.1) was found within the
class of functions that prescribe an exponential step-change at two chronological ages, whose
parameters have been determined by the best fit with the data. In general, the renormalization
An = F(Ar) may depend on, among other factors, race, genetic heritage, environmental factors,
quality of life and gender (male or female). For example, analysing the data from Italy it has been
evidenced that, for the same chronological age, the nominal age is lower in the territories on the
sea than in the industrial hinterland. Although a generalization is possible, the renormalization
laws that will be considered in the following have been evaluated from the analysis of mortality
data within each analysed Italian region, considered as a homogeneous ensemble—a subset of the
national territory.

With advancing age, deterioration of the organism increases and therefore the probability
of developing critical pathologies increases as well. Body decay due to ageing, which may be
referred to as human damage by analogy with the term in mechanics, is defined by a state variable
and depends, in probabilistic terms, on the nominal age of the individual. The probability of death

1This takes as the input any real number and outputs the same number if this is non-negative and 0 otherwise.
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therefore derives from the probability of developing a level of human damage that is critical
to the severity of the epidemic, according to a yield criterion. Referring to §3a for the detailed
calculations, here the basic results of the theory are summarized and discussed.

Suppose that the level of human damage is measured by one variable δ. The value of δ shall
increase with age, and the term of comparison is defined by the number of nominal life-segments.
The higher the number, the higher the probability of developing critical pathologies that may lead
to death. However, there are differences among individuals, so that the dependence of δ upon
(nominal) age needs to be considered in statistical terms. Given a sample consisting of a number
of individuals, each one experiences a different level of damage, so the percentage of individuals
that have the same level of damage defines the probability of finding that level of damage in one
individual.

A probability function can be defined with reference to the single life-segment, so that the
effect of ageing derives from increasing the number of segments. We postulate the existence of
a statistical law à la Pareto, as per (3.1) in §3a, expressed by the probability density function
p�A(δ) = Cδ−α , where C> 0 and α > 1 are constants, of developing the level of damage δ with
reference to one segment of nominal life. There is certainly a minimum level δmin of physiological
damage, otherwise it would be theoretically possible to live forever. Therefore, the normalization
considered in detail in §3a yields, C = (α − 1)/(δmin)−α+1.

Originally applied to describing the distribution of wealth in a society, Pareto statistics are
commonly applied in the description of social, scientific, geophysical, actuarial and many other
observable phenomena. Reasoning as in §3a, one obtains that the probability of finding in �An

a level of damage greater than or equal to δ decreases with δ and reads P≥
�An

(δ) = (δmin/δ)α−1 for
δ ≥ δmin. In more general terms, the function P≥

�An
(δ) shall be monotonically decreasing, equal to

1 at δ = δmin and tending to zero as δ→ +∞. Also, it shall be invariant for scale transformations,
i.e. it is a function of δ/δmin. The assumed power-law dependence is the simplest that can be
considered and intrinsically enjoys the property of self-similarity, which has wide applications
in the description of physical phenomena [28]. More complicated statistical distributions could
be considered from the mathematical modelling of human physiology, but the purpose here is to
define the theory in the simplest case.

Likewise, increasing the number of life-segments increases the probability of damage. The
statistical calculations in §3a provide the probability of developing δ in the whole nominal life An,
composed of An/�An lifetime segments, in the form

P≥
An

(δ) = 1 − exp

[
− An

�An

(
δ

δmin

)1−α]
. (2.2)

This expression is dimensionally consistent.
We further postulate that the ‘force’ of the epidemic is measured by another variable σ , which

accounts for the fact that some form of epidemics may be more lethal than others. In the simplest
case, we assume the LEFM-like [26] death criterion

Yσ
(

δ

δmin

)1/β
− KIc = 0 ⇒ δ

δmin
=

(
KIc

Yσ

)β
. (2.3)

This is a balance law where the level of the epidemic, measured by the product Yσ , where Y is a
coefficient, is multiplied by the number (δ/δmin)β and compared with a limit value KIc, carrying
the same dimensions of Yσ , which represents the ‘human toughness’, i.e. the ability of the human
body to react to infections.

The variable Y measures the ‘level of spread of the epidemic’, since the risk of death is not
only associated with the force of the epidemic but also with the possibility of being infected. With
reference to the SIR model [1], Y could be associated with the ratio between the number of infected
I and the number of susceptible S. Consequently, it is a function of time and depends upon the
actions [29] that could be taken to control the epidemic (social distancing, reduced mobility, use
of masks, lockdown). The variation of Y in time could be assessed through the equations of
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the SIR model describing the kinetics of the epidemic spread, taking into account the possible
interventions [12].

The quantity Yσ is multiplied by the number (δ/δmin)1/β , which considers the effects of human
damage. Observe that, since δ/δmin ≥ 1, by increasing β the effect of human damage becomes
milder. This means that β synthetically takes into account our capacity to cure the disease, in
terms of availability of beds in intensive care services, medications, treatments, oxygen, diagnostic
tests, etc. How all these factors affect the value of β can be decided by evaluating their effects on
mortality rates for patients who have the same level of human damage δ/δmin, associated with
factors specific to the patient (e.g. co-morbidity). Again, the power law is the simplest dependence
that can be assumed while respecting dimensional invariance, but determining the expression of
β as a function of the capacity of the health system certainly requires a sophisticated analysis of
available data, which is not done here.

Determining the specific expression for the various variables in the death criterion (2.3)
requires a deep understanding of the biological mechanisms that cause severe infections, which
for COVID-19 certainly involve a cytokine storm, enhancement of antibody dependence, immune
history and T-cell immunity. However, the presented theory is general and not limited to a
particular type of epidemic. Our interest here is to evaluate the consequences of this theory from
mathematical deductions, without entering into specific details that go beyond the competence
of the authors. From a mathematical point of view, it is important to observe that Yσ/KIc ≤ 1
since δ/δmin > 1. In particular, the situation in which Yσ/KIc = 1 is the limit situation in which the
physiological level of damage δmin is sufficient to cause death. Under this condition, everybody
dies from the epidemic! Hence, under ordinary conditions it is expected that Yσ/KIc 	 1.

Substituting in (2.2), the probability of death as a function of σ and the real age Ar is

PD(Ar, σ ) = 1 − exp
[
−F(Ar)
�An

(
Yσ
KIc

)m]
, (2.4)

which is again dimensionally consistent. This is a two-parameter Weibull distribution with shape-
parameter m = (α − 1)β and scale-parameter KIc/Y. The nominal age An = F(Ar) determines the
‘size effect’ consequent to the fact that the higher the number of life-segments of the individual,
the higher the risk of death.

In the mechanics of brittle materials [30], the counterparts of δ and σ are the size of the existing
cracks and the stress level, respectively, whereas Y is the shape factor for the crack [31,32]. The
death criterion recalls the criterion for catastrophic crack propagation in LEFM [26], for which
β = 2 and KIc is the material fracture toughness. The nominal life represents the size of the material
body, which affects the probability of failure since the higher it is, the higher the probability of
finding a crack of critical size with respect to the applied stress, according to classical LEFM.

In order to quantify the severity of the epidemic state, note that (2.4) may be re-written as

ln ln
[

1
1 − PD(Ar, σ )

]
= ln

[
F(Ar)
�An

]
+ (α − 1)β ln

[
Yσ
KIc

]
, (2.5)

which represents a straight line Z = X + Q in the plane Z = ln ln{[1 − PD(Ar, σ )]−1} − X =
ln[F(Ar)/�An]. This plane is somewhat the counterpart, in this theory, to the Weibull plane [25],
which is commonly used to interpret the strength of brittle material on a statistical basis and,
because of this, will be referred to as the epidemic Weibull plane.

It is remarkable that an immediate verification of the validity of the proposed theory consists
in verifying that the measured mortality rates, ordered by nominal age, are actually aligned,
with unit slope, in the epidemic Weibull plane, regardless of the parameters α, β, Y, σ , KIc.
Conversely, the fact that the experimental points must be aligned in the Weibull plane provides
the criterion for determining the normalization law An = F[Ar]. The procedure consists in finding
the renormalization law that provides the best fit to the experimental points in one particular state
of the epidemic and, then, verifying that the same normalization provides a reasonable alignment
in other states as well. It will be shown in the following sections that the renormalization
(2.1), determined by analysing data before 2020, satisfies this condition for the analysed regions
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and provinces in Italy in various stages of the evolution of the COVID-19 epidemic. The same
normalization holds in the 2020 conditions of acute epidemics: this confirms the theory.

The height of the interpolation line in the epidemic Weibull plane, which is measured by the
value of its intercept Q with the ordinate axis, provides a measure of the distributions of the
deaths by renormalized age, as a consequence of the epidemic. The higher the line, the higher
the death rate among older people compared with younger people, and vice versa. Indeed, the
strength of the proposed model is that it is not limited to taking into account the raw number of
deaths, but measures the shift in mortality rates between categories defined by the nominal age of the dead.
In fact, the probability function (2.2) assigns to older people a higher probability of developing
critical pathologies as a result of physiological damage; on the other hand, the death criterion
(2.3) provides a close correlation between the level of human damage, measured by the quantity
δ/δmin, and the force of the epidemic σ and its diffusion level Y. Because of this, older people are
more likely to die of infection than younger people; hence, the analysis of age-sorted death rates
can indicate the severity level of the epidemic. In other words, this theory detects any increase in
deaths in older people compared with younger people, rather than a uniform increase in deaths
that leaves the relative rates unchanged in the various age groups, and associates this specific
event with the effects of an epidemic.

The height of the line (2.5) in the epidemic Weibull plane is defined by the quantity

Q = (α − 1)β ln
[

Yσ
KIc

]
, (2.6)

where, we recall, α > 1, β > 0, Yσ/KIc < 1. Hence, in general Q< 0. The parameter α that affects
the renormalization of human age, as well as KIc, which is a measure of human toughness, is in
general independent of the level of epidemics. As the values of σ and/or Y increase, so that the
ratio Yσ/KIc approaches the unit value, Q tends to become null, i.e. the intercept with the ordinate
axis of the interpolation line approaches the origin from below. Likewise, an increase in β, which
measures our capability of treating the disease, provides the lowering of this line. The condition
Q = 0 is associated with the extreme limit where Yσ/KIc = 1, where the whole population dies
from the epidemic because, from (2.3), the minimum level of damage δ = δmin is sufficient to
cause death.

For the above, an effective measure of the level of epidemics could be obtained by
measuring the inverse of the absolute value of Q, i.e. −1/Q. However, the various parameters
that characterize one configuration must be compared with those corresponding to another
configuration in order to obtain a quantitative estimate, which can only be obtained in relative
terms. Let β0, Y0, σ0 represent the parameters of a configuration, chosen as the reference state,
labelled as ‘0’, and indicate with β1, Y1, σ1 the parameters for another state, say ‘1’, which shall
be compared with ‘0’. Recall that α and KIc are generally the same for both configurations, since
they depend on the population and are not affected by the epidemic level. From the analysis of
the mortality data, it is possible to determine the best-fit line in the epidemic Weibull plane for
configurations ‘0’ and ‘1’ and, correspondingly, the intercept on the ordinate axis identified by Q0
and Q1, respectively. A relative measure of the strength of the epidemics is thus provided by the
epidemic ratio r, defined as

r = −1/Q1

−1/Q0
= Q0

Q1
= β0

β1

ln [(Y0σ0)/KIc]
ln [(Y1σ1)/KIc]

= β0

β1

ln [KIc/(Y0σ0)]
ln [KIc/(Y1σ1)]

. (2.7)

It is clear that when r> 1 the level of epidemic in configuration ‘1’ is higher than in configuration
‘0’, because the interpolation line for ‘0’ is higher than for ‘1’. For β0 = β1, this condition is met
when Y1σ1 >Y0σ0. On the other hand, for Y1σ1 = Y0σ0, one has that r< 1 (r> 1) when β1 >β0
(β1 <β0): the capacity of curing diseases can greatly alter the effects of the epidemic.

The value of the ratio of epidemics r is in general a number close to 1. From a practical point of
view, what is important is to evaluate the difference of r from the unit and this can be done with
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the relative index of epidemic Ie, defined as

Ie = 100(r − 1) = 100
Q0 − Q1

Q1
, (2.8)

where the factor 100 has been introduced to render the numbers easier to read. According to this
rationale, Ie > 0 (Ie < 0) indicates that the ‘strength’ of the epidemic is higher (lower) in situation
‘1’ than in situation ‘0’.

In order to illustrate the potential of the theory, statistically representative samples of the
Italian population under conditions of contagion from COVID-19 (configurations ‘1’) will be
compared with an ‘ordinary’ condition of comparison (configuration ‘0’). For convenience, we
will refer to ‘1’ and ‘0’ as the ‘epidemic’ and ‘pre-epidemic’ configurations, respectively, with
the aim of emphasizing that a stronger source of infection, in particular COVID-19, characterizes
configurations ‘1’ with respect to ‘0’. It should be remarked, however, that the ‘0’ state is by no
means free from infections, although they should be driven by milder forms of epidemic, such
as seasonal influenza. The evaluation of the level of epidemic must necessarily be comparative,
since the variables β, Y and σ represent dimensional quantities, the value of which can only be
determined with respect to suitable units of measurement. Thus, the ratios Y1/Y0, σ1/σ0, β1/β0
denote the value of the variables in configuration ‘1’ when the value in configuration ‘0’ is chosen
as the unit of measure. Of course, the choice of the configuration of comparison ‘0’ is quite
arbitrary. In the following, various types of configurations ‘1’, corresponding to critical weeks
or months in the period January–June 2020, will be compared with the ‘0’ configurations for the
same weeks or months of the previous years, prior to the spread of COVID-19.

(b) Application to the COVID-19 epidemic in Italy
In Italy, two Chinese tourists were recorded as being positive for COVID-19 on 30 January 2020,
while the contagion officially started on 21–22 February. The Italian government imposed a
national quarantine on 9 March, when Italy had 9172 confirmed cases; however, 10 municipalities
in the province of Lodi and one in Padova had already been quarantined since 24 February
as a preventive measure. Italians were forced to stay home: movements were only allowed for
‘urgent, verifiable work situations and emergencies or health reasons’; schools and universities
were closed; civil and religious ceremonies and any other event were suspended; public and
private companies were encouraged to put their employees on leave; restaurants and bars were
closed and people had to maintain at least 1 m of interpersonal distance and wear masks. The
gradual release of the lockdown started on 4 May, with the reopening of manufacturing activities,
bars, restaurants, barbers, beauty parlours and shops on 18 May. Travel between Italian regions
and to and from a few foreign countries was gradually allowed from 3 June.

According to the Italian Ministry of Health, deaths increased from 29 on 29 February to 34 767
at the end of June. Using published data, we start by analysing 16 Italian regions, which are
considered as homogeneous boxes. Northern Italy was reputed to be the most infected zone;
in southern Italy the infection was mild; central Italy was in between. The remaining regions
(Basilicata, Molise, Calabria, Sardegna) are not analysed here because the mortality from COVID-
19 has been almost zero in these regions, at least so far. The period of observation was chosen to be
the six-month period corresponding to the first wave of COVID-19: the results are obtained by
processing the data for the deaths that occurred in a time interval, which varies according to the
type of analysis, that is included in the period January–June 2020 and in an analogous interval in
previous years.

We have calculated the relative index of epidemic Ie, defined in (2.8), on a regional basis. Setting a
single month as the period of observation, from January to June, the renormalization An = F(Ar) in
pre-COVID-19 conditions, which represents the configuration of comparison (configuration ‘0’),
is calibrated from the statistical analysis of the number of dead, sorted by age, in the considered
month during the years 2015 to 2019, and calculating the average. These data are published online
by the Italian National Institute of Statistics (ISTAT) at https://www.istat.it/it/archivio for many

https://www.istat.it/it/archivio
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Figure 1. Region of Lombardia. Graphical regressions in the epidemic Weibull plane Y = ln ln{[1 − PD(Ar , σ )]−1} − X =
ln[F(Ar)/�An], with�An = 1 year, of the probability of death PD(Ar , σ ) as a function of the renormalized age An = F(Ar).
Comparison of the measured points (dots) and their linear interpolation in the epidemic Weibull plane according to the theory.
(a) Conditions before COVID-19 in March (average of years 2015–2019); (b) epidemic period of March 2020. The numbers above
the dots indicate the solar years of age they refer to. Points corresponding to 5, 15, 25, 35 solar years of age are strongly sensitive
to small variations in the number of deaths, which may derive from non-epidemic causes not considered by the theory. (Online
version in colour.)

Italian municipalities, which have been grouped by region of origin. The total population at the
beginning of March is available online at http://demo.istat.it, together with the demographic
structure for each solar year. The population and number of dead were categorized by age by
considering nine sets for Ar = {0–10, 10–20, . . . , 80–90,>90} solar years of age. Within the ith set,
the probability of death is nD

i , i.e. the ratio between the number of dead and the peer population.
Then, the average probability of death in the period 2015–2019 is calculated for each ith set. To
pass from a histogram to points on a graph, we consider the age at the centre of each interval
(5, 15, . . . , 85) and 100 for ages greater than 90 solar years. The distribution of (2.4) provides the
theoretical scaling between the probabilities of death at any two real ages Ar,1 and Ar,2, to be
compared with measured data. In all the considered regions, the assumed form of renormalization
of (2.1) proved accurate. Equating the measured and expected probabilities at one point Ar,2,
chosen to be Ar,2 = 45 because, here, Ar,2 = An,2, we calibrate γ1 and γ2 of (2.1). The results of the
calibration are detailed in §3b, with specific reference to the region of Lombardia.

Passing to the periods of observation in 2020, which represent configuration ‘1’, at https://
www.istat.it/it/archivio one finds the number of deaths sorted by age. Since only the population,
but not the demographic structure, is recorded at http://demo.istat.it, we assume that this is
equal to that for the year 2019. The theoretical model predicts that the parameters γ1 and γ2 do
not vary, since the effects of the epidemic are gathered in the product Yσ of (2.4). The fitting with
the experimental points confirms this finding, with very good approximation. This represents an
experimental validation of the theory.

In order to calculate the index Ie we use the graphical construction in the epidemic Weibull plane.
Figure 1a,b shows the measured points and the best-fit line in Lombardia in March 2015–2019
(configuration ‘0’) and March 2020 (configuration ‘1’), respectively. The comparison demonstrates
that the model excellently predicts the deaths in the middle and older age groups. The poor
approximation on the left-hand-side tail can be attributed to the fact that the number of dead
is quite limited for younger people, so that even a small variation can provide a noteworthy
deviation from the linear trend. It should be recalled that deaths at a young age often occur from
non-epidemic causes, such as road accidents, drugs and homicides, which cannot be covered by
our theory. The fact that the datum for the 0–9 age group is higher than that for the 10–19 and
20–29 age groups is presumably due to deaths in the first years of life, not associated with the
natural degradation of the human body (human damage) and the consequent potential ability to
develop a pathology.

http://demo.istat.it
https://www.istat.it/it/archivio
https://www.istat.it/it/archivio
http://demo.istat.it
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Figure 2. (a) Geographic location of the various Italian regions under investigation; (b,c) values of the relative index of epidemic
Ie from January 2020 to June 2020 in the northern (b) and central and southern (c) regions of Italy. Pre-COVID-19 conditions for
comparison refer to the average mortality in the same weeks of previous years (2015–2019). (Online version in colour.)

For the 16 considered regions, the values of the measured probability of death PD(45, 1), the
calibrated coefficients γ1 and γ2 and the calculated quantities Q0 and Q1 are recorded in table
2 in the electronic supplementary material. The relative index of epidemic Ie has been calculated
from (2.8) and the results for the months from January to June are shown as the histograms in
figure 2b,c.

The mortality rates collected in the period January–June 2020 allow the analysis of the
whole COVID-19 first wave in Italy. The peak of the epidemic in most regions was reached
in March and in April in a few regions (Valle d’Aosta, Piemonte, Liguria). The most infected
region was Lombardia followed, with significantly lower numbers, by Emilia Romagna. The
epidemic was milder in central Italy, except Marche, where Ie in March and April was much
higher than in Toscana and Umbria. South of Lazio the infection was very limited. This is
probably because here the epidemic developed later than in the north, so that the lockdown
countermeasures, simultaneously imposed on the whole national territory, were more effective.
It is quite remarkable that in Lazio, Campania and Sicilia the index Ie never reached positive
values and that it was negative for all the considered regions in January, and for most of them
in February. Indeed, it should be recalled that, before the spread of COVID-19, the year 2020 was
characterized by an unusually low mortality. Recall that Ie only provides a comparative measure:
the theory shows that configuration ‘1’ was characterized by a severity of epidemic lower than
configuration ‘0’ in that period of observation. Furthermore, it is interesting to notice that in June,
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and for many regions in May, Ie becomes even more negative than in January–February 2020. This
may be attributed to the fact that the long national lockdown limited the strength of the epidemic
also with respect to sources other than COVID-19.

It should be recalled, however, that the epidemic focused on restricted outbreaks within each
region. Hence, we now calculate Ie in smaller representative territories, included in the nine Italian
provinces shown in figure 3a. The calculations are made on a weekly basis from 2 February until
13 June, using the raw mortality data released by ISTAT and available at https://www.istat.it/
it/archivio and http://demo.istat.it for the years 2015–2020. The procedure is the same as that
used for the regions. The extension of the territories investigated and how the data have been
processed are presented in detail in §3b. Values of Ie are plotted against time in figure 3b.

Although the first official contagions were recorded on 21–22 February and taking into account
the incubation time (about two weeks) and the course of the disease, the index in Lodi, the first
infected province, was already high (Ie 
 2.681) in the week 23–29 February. It increased one
week later (Ie 
 7.098), also affecting neighbouring Cremona, Piacenza and Brescia. However,
it grew even more in Bergamo (Ie 
 5.154), although Bergamo does not border Lodi. Even in
Pesaro-Urbino, which is 360 km away from Lodi, Ie quickly reached very high values. Presumably,
independent outbreaks developed here and in Bergamo.

Recall that the Italian government imposed the national lockdown on 9 March, but, on
24 February, 10 municipalities in the province of Lodi and one in Padova had already been
preventively quarantined. This justifies why Ie decreased first in Lodi, after the peak in the
third week of March (Ie 
 13.383), but it continued to increase in Brescia and Cremona, while
in Bergamo the value reached by the index remained almost unchanged between the third and
fourth weeks of March. Furthermore, it is certainly of interest to notice the different slope of
the ascending phase of Ie between the provinces of Lodi and Bergamo. The restrictive measures
imposed on Lodi nearly two weeks earlier than in Bergamo had a noteworthy effect on the growth
rate of Ie. In Bergamo Ie exceeded the Lodi peak, achieving a dramatic value of Ie 
 16.139. Padova
in Veneto was officially considered to be one of the first heavily infected provinces, but this is
not confirmed here, probably because the localized outbreak was promptly quarantined. Indeed
Veneto is one of the less infected regions in the north, as a consequence of the very effective
countermeasure promptly organized by the local authorities. Milano city had been officially
considered highly critical, but the virus developed later there than in the other provinces of
Lombardia, and this is why the national lockdown prevented the index from reaching very high
values.

https://www.istat.it/it/archivio
https://www.istat.it/it/archivio
http://demo.istat.it
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3. Methods

(a) The statistical theory
The starting point for the theory is the renormalization of the real age Ar to the nominal age
An through An = F(Ar), to be considered valid on average within a territory reputed to be
homogeneous. A particular type of renormalization law is that in (2.1).

The level of ‘human damage’ that an individual can develop is supposed to be measured by
the variable δ. The model could be readily generalized by introducing additional parameters and
following the same rationale, but this is postponed to further studies.

A statistical law à la Pareto is postulated, of the type

p�An (δ) = C δ−α , with α > 1. (3.1)

This represents the probability density function for the development of a level of human damage
δ, with reference to the renormalization length scale for human ageing, indicated by the single life-
segment �An. This law should universally hold for every person, irrespective of race, genetics,
quality of environment and life and gender, because the distinction in these terms is accounted
for through the renormalization An = F(Ar).

Since the power-law function diverges for δ→ 0, it is customary to prescribe a normalization
criterion. Hence, we assume that a physiological level of human damage δmin is always present in
each nominal life-segment. This represents the physiological minimal degradation due to ageing:
a person of nominal life An will develop at least a level of damage equal to An/�An · δmin,
otherwise it would be theoretically possible to live forever. We can then write

∫∞

δmin

p�An (δ) dδ =
∫∞

δmin

C δ−α dδ = 1

⇒ C = α − 1
(δmin)−α+1 , (3.2)

so that, for δ ≥ δmin, (3.1) becomes

p�An (δ) = α − 1
δmin

(
δ

δmin

)−α
. (3.3)

The probability of developing a level of damage more severe than or equal to δ ≥ δmin,�t in �An

reads

P≥
�An

(δ) =
∫∞

δ

p�An (δ)dδ =
(

δ

δmin

)1−α
, (3.4)

which can be rearranged in the form

P≥
�An

(δ) =
(

δ

δmin

)1−α
=�An

(
δ/δmin

η

)1−α
, (3.5)

where

η= 1
(�An)1/(α−1)

. (3.6)

Therefore, the probability of developing a damage level lower than δ is P<
�An

(δ) = 1 − P≥
�An

(δ).
We treat the ‘development of damage in one nominal life-segment’ as an event that compounds

statistically with the same event occurring in other life-segments. In the whole nominal life An,
composed of An/�An nominal life-segments, the damage level ≥ δ does not develop if this is
true in all the segments. Hence, the probability P<An

(δ) of finding a damage level less than δ in An
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coincides with the product of the probabilities of having the same property in all the �An, i.e.

P<An
(δ) =

[
1 −�An

(
δ/δmin

η

)1−α]An/�An

. (3.7)

This expression can be simplified under the hypothesis that �An/An 	 1. Taking the limit as
�An/An → 0 and observing that limε→0[1 + a ε]1/ε = exp[a], one can write

P<An
(δ) = exp

[
−An

(
δ/δmin

η

)1−α]
, (3.8)

or, recalling (3.6),

P<An
(δ) = exp

[
− An

�An

(
δ

δmin

)1−α]
. (3.9)

Observe that, in this expression, only the ratios between dimensionally homogeneous quantities
are present. Of course, (3.9) is to be considered as an approximation of (3.7) when An/�An

becomes very large. Hence, one has that P<An
(δ) 
 0 when δ/δmin = 1, and P<An

(δ) → 1 for δ/δmin →
+∞ since α > 1.

Therefore, the probability P≥
An

(δ) = 1 − P<An
(δ) of finding in An a level of damage ≥ δ turns out

to be that expressed by (2.2).
The force of the epidemic is supposed homogeneous in the considered region and is measured

by one parameter σ . This again is a simplification, but a more detailed characterization can be
obtained by considering σ as a function of space (different values in diverse locations).

The event ‘death’ is determined according to a death criterion represented by a function G(·, ·, ·):
the event occurs when

G (δ/δmin, σ , An)− KIc = 0. (3.10)

Likewise, the ‘safe’ domain is defined by G(δ, σ , An) − KIc < 0. Given An, the critical level of
damage δ/δmin, beyond which death occurs, is associated with the level of epidemic σ through a
function δ/δmin = g(σ , An), implicitly defined by (3.10), such that

G (
g(σ , An), σ , An

) − KIc = 0. (3.11)

It is reasonable to require that g(·, An) is monotone decreasing because, for any An, the higher the
force of the epidemic, the lower the level of human damage leading to death. Moreover, one
expects that when σ → 0 it takes a level of damage δ/δmin → ∞ to cause death, hence the further
condition limσ→0 g(σ , An) = +∞.

Because of these properties, the probability of death PD(An, σ ) in the epidemic σ at the
nominal age An coincides with the probability of developing a level of damage δ/δmin = g(σ , An).
Substituting in (2.2), one obtains

PD(An, σ ) = P≥
An

(g(σ , An))

= 1 − exp

[
− An

�An

(
1

g(σ , An)

)α−1
]

. (3.12)

In the simplest case, dropping the dependence of δ/δmin = g(σ , An) on An, one can consider the
power law of (2.3), which satisfies the required monotonicity and asymptotic properties. This is
defined by the variables Y, σ and the parameter KIc, whose role has been discussed in §2a.

Therefore, (3.12) simplifies into

PD(An, σ ) = 1 − exp
[
− An

�An

(
σ

η0

)m]
, (3.13)

which is a two-parameter Weibull distribution with shape parameter m and scale parameter η0,
independent of σ , given by

m = (α − 1)β, η0 = KIc/Y. (3.14)

In terms of real-life Ar, the renormalization An = F(Ar) provides the expression of (2.4).
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Figure 4. Lombardia, solar year 2018. Percentages according to age of (a) the living population and (b) the deceased people.
(Online version in colour.)

There are affinities with the statistical micro-mechanically motivated models describing the
population of macroscopic strengths of brittle materials. As pursued in [30], the starting point is
a statistical characterization à la Pareto of the size δ of microcracks in a specimen [32]. LEFM [26]
prescribes that cracks propagate when Yσδ1/2 − KIc = 0, where the first term is the stress intensity
factor (SIF), σ is the nominal applied stress, Y = 2.24/

√
π for semicircular thumbnail cracks of

radius δ and KIc is the critical SIF, characteristic of the material. This is why the expression of
(2.3) is an ‘LEFM-like’ death criterion, even if the coefficient β differs from β = 2. In this analogy,
the force of the epidemic σ represents the applied stress and the nominal life An the size of the
material specimen [27].

(b) Analysis of mortality data in Italy
The theory has been applied to the quantitative analysis of the first wave of COVID-19
that affected Italy in the first half of 2020. We analyse 16 regions, considered boxes with
homogeneous mortality, distributions of the population and deaths by age. This assumption
provides an averaged view, within the same region, of the differences in genetic heritage,
quality of environment and life and efficiency of the health system. No differentiations are made
between men and women, although a diverse mortality by gender has been recorded. We start
by evaluating configuration ‘0’ (pre-COVID-19), chosen to be the period 2015–2019. The ISTAT
published mortality data for many Italian municipalities, available online at https://www.istat.
it/it/archivio, sorted by age on a daily basis. An example of the demographic structure and
mortality data furnished by ISTAT is shown in figure 4 with reference to Lombardia in 2018. It
can be seen in figure 4b that the datum for the age group 0–9 is higher than that for the 10–19 and
20–29 age groups, presumably because of deaths in the first year of life. This explains why the
young age on the left-hand side of figure 1a has an increased severity.

The considered municipalities cover most of the population in each region, as indicated in
table 1 in the electronic supplementary material.

For any two solar ages Ar,1 and Ar,2, (2.4) provides the scaling law

F(Ar,1)
F(Ar,2)

= ln[1 − PD(Ar,1, σ )]
ln[1 − PD(Ar,2, σ )]

. (3.15)

We start by calibrating the renormalization law An = F(Ar) of the form (2.1). The choice of
the ages 45 and 70 as the set points of the renormalization resulted from an analysis of the
mortality rates in all 16 considered regions in configuration ‘0’ and from the requirement that
the experimental points be aligned in the epidemic Weibull plane, according to the theory. Since
An = Ar for Ar ≤ 45 solar years, one can fix a point in this range (we fixed Ar,2 = 45 solar years) and
calculate the coefficients γ1 and γ2 by best fitting of the rescaling law of (3.15) with experimental
points. The results for the 16 regions are summarized in table 1 in the electronic supplementary

https://www.istat.it/it/archivio
https://www.istat.it/it/archivio
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provinces and for Milano city, by using the demographic statistics published by ISTAT (http://demo.istat.it/). (Online version in
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material. Notice that, among the various regions, the difference between the values reached by
the parameters γ1 and γ2 is small. The agreement is in general excellent, as demonstrated by the
graphs for Lombardia reported in figure 5. In general, the choice of the set points at 45 and 70 solar
years of age provides good results in all the considered regions. We note that the probabilities of
death associated with ages lower than 40 years are not optimally fitted by the theoretical curve,
but this is due to the fact that they are strongly sensitive to small variations in the number of
dead and that deaths at young ages often occur from non-epidemic causes (road accidents, drugs,
homicides). In particular, the probability of death in the range 0–10 years is always higher than
the theoretical prediction, but this is certainly influenced by the number of deaths at birth, which
represents a special category. In general, our model does not account for deaths due to factors
that are not associated with the natural degradation of the human body (human damage) and the
consequent potential ability to develop a pathology.

The theory assumes that the renormalization function (2.1) is not affected by the level of
epidemic, i.e. the function G in equation (3.10) is independent of Yσ , and hence the parameters
γ1 and γ2 are the same in configurations ‘0’ and ‘1’. A confirmation of this is that in the
epidemic Weibull plane the experimental points are also aligned in configuration ‘1’, according to
equation (2.5). Of interest is the intercept of the interpolation line with the ordinate axis, referred
to as Q in (2.6).

The value of Q in configuration ‘0’ (years 2015–2019), referred to as Q0, is obtained graphically
from the line that best fits the measured points. To illustrate, the data for Lombardia in March,
plotted in figure 1a, provide Q0 = −13.877. In configuration ‘1’ (March 2020), with an analogous
graphical construction shown in figure 1b, one finds the value Q1 = −12.949. Hence, the epidemic
ratio, defined in (2.7), is r = Q0/Q1 = 1.072. From the graph in figure 1b it is also possible to
appreciate how the renormalization parameters of (2.1), calibrated for configuration ‘0’, provide
a good fit for configuration ‘1’. Passing to the relative index of epidemic Ie = 100 · (r − 1), as per
equation (2.8), one finds in Lombardia the value Ie = 100 · (1.072 − 1) = 7.2.

The procedure is summarized in the flowchart in figure 6. The calculated Ie in each of the 16
considered regions has been shown in the histograms in figure 2b for the various monthly periods
of observation. The numerical values of Ie, together with the other calculated relevant parameters,
are recorded in table 2 in the electronic supplementary material.

Moving on to the analysis of the provinces, indicated in figure 3a, their population has been
obtained by grouping the municipalities according to their location, considering the mortality
data week by week. As indicated in table 3 in the electronic supplementary material, the samples
cover more than 95% of the population in each province, apart from Padova, where only 82.26% of

http://demo.istat.it/
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the population is considered because data are not available. The city of Milano, which is densely
populated, has been analysed independently from the other municipalities in its province. For
each considered week, the probability of death sorted by age in configuration ‘0’ has been
calculated with reference to the average number of deaths that occurred in the corresponding
weeks in previous years. The numbers of deaths per day, sorted by age, are available at www.
istat.it/it/archivio, while the total population at the beginning of each month is available at
www.demo.istat.it, together with its categorization by age on a yearly basis. Since ISTAT provides
the demographic structures of the provinces only until the year 2019, we have assumed that, in
configuration ‘1’, population by age is the same as in 2019, and the total population has been
estimated according to the demographic trend.

Following the same procedure used for the regions, the results are recorded in table 4 in the
electronic supplementary material for configurations ‘0’ and ‘1’, calculated on a weekly period of
observation. Consistent with the results of the regions, the coefficients γ1, γ2 and Q0 vary only
slightly among the provinces during the observation weeks. With respect to the regions, there
is a difference in the data analysis in the fact that, in configurations ‘0’, we have assumed that
the probability of death PD(Ar,2) at Ar,2 = 45 solar years of age is the same for all provinces and
equal to the probability of death in the whole national territory corresponding to the age range
40–50 years in the third week of March in the period 2015–2019. The reason for this is that the
probabilities of death in the classes corresponding to the younger ages are strongly affected by
small deviations in mortality, especially if the number of inhabitants is small, as in provinces with
respect to the regions. If we had considered as PD(Ar,2) the observed value in the province, there
would have been a significant uncertainty in the evaluations of the index, especially for the less
populated territories. In fact, mortality among the young may be strongly affected by random
sources, such as car accidents, whose effect is greater when the size of the set under consideration
is smaller.2 The national datum appears more reliable for deaths from natural causes.

2For example, one single car accident where five people in their twenties die may strongly alter the death rate in the same
interval of age in a province where the number of inhabitants at that age is small, also taking into account that the number
of deaths in that category is usually much smaller than that for older people. This effect is somehow ‘diluted’ in a larger
population, such as that of a region.

www.istat.it/it/archivio
www.istat.it/it/archivio
www.demo.istat.it
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The values of Q0 and Q1, reported in the same table, have been graphically estimated and the
resulting values of Ie have been plotted against time in figure 3b.

4. Discussion
Most models consider the evolution of epidemics on the basis of the number of infected people
and/or deaths from contagion [33–37]. However, this number can be correctly estimated if and
only if tests are performed on at least a representative sample [38,39], which is not always possible.
Figure 7a shows the age distribution of deaths in Italy attributed to COVID-19 up to 4 May
2020, shortly after the epidemic peak, as provided by the Italian National Institute of Health
(ISS). Comparison with figure 4b, which shows the distribution for the year 2018 in Lombardia,
indicates a surprisingly low mortality rate in people over the age of 90. Most likely, positivity to
COVID-19 had not been tested in all the dead [40]. Moreover, figure 7b records the number
of deaths attributed to COVID-19 in the months of March and April 2020, sorted by region,
as provided by the Civil Protection Department of Italy (http://www.protezionecivile.gov.it/
home). In the northern regions, the number of deaths in March–April 2020 officially attributed
to COVID-19 is 24 130. The total number of deaths in the same regions and in the same months,
derived from mortality tables released by ISTAT (https://www.istat.it/it/archivio), is 90 984 in
2020, while the average number in the years 2015–2019 is 48 985. The difference is 41 999, roughly
twice the official number of deaths from COVID-19. This example raises questions about the
ability of national institutions to identify all deaths attributable to a new virus such as COVID-
19, especially in the acute phase of the epidemic and, therefore, underlines the importance of
monitoring the evolution of an epidemic through objective parameters, such as the raw mortality
tables.

Other criteria have been proposed to estimate the strength of an epidemic. With particular
reference to raw mortality tables, it is customary to consider as a representative indicator the
differential mortality D, defined as the ratio between the number of deaths in the epidemic
condition and those recorded in previous years. We consider D − 1 instead of D, so that the
null value will indicate equality between the pre- and post-COVID-19 conditions, as it is for Ie.
Figure 8a,b reports the value of D − 1 in January–June 2020 in all the considered regions, and
represents the counterpart of the histograms for Ie shown in figure 2b,c. The differential mortality
has been calculated by comparing the number of deaths in the months of 2020 with the average
number in the same months of the years 2015–2019. The numerical values for March 2020 are
recorded in table 5 in the electronic supplementary material. Of course Ie and D − 1 cannot
be directly compared in absolute terms, but their relative values in the various regions can be
appreciated.

https://www.epicentro.iss.it/coronavirus
http://www.protezionecivile.gov.it/home
http://www.protezionecivile.gov.it/home
http://www.protezionecivile.gov.it/home
http://www.protezionecivile.gov.it/home
https://www.istat.it/it/archivio
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The trends of D − 1 and Ie are quite similar in the various regions, but there are conceptual
differences. Compare, for example, Trentino Alto Adige with Liguria or Valle d’Aosta: the
differences in terms of D − 1 in the acute phase of the epidemic are small, but figure 2b shows
that this is not true3 in terms of Ie. The difference is due to the different demographic structure.
Trentino Alto Adige is a relatively ‘young’ region, where about 58% of the population is under
the age of 50, while this percentage drops to 53% in Valle d’Aosta and to 48% in Liguria. The
proposed theory makes a distinction between deaths in older people and those in younger
people, associated with the greater aptitude of the former to develop life-threatening diseases
during epidemics. This means that a greater variation in the number of deaths in older people is

3Table 5 in the electronic supplementary material indicates that, in March, D − 1 is 0.698 in Trentino A.A., 0.557 in Liguria,
0.609 in Valle d’Aosta, whereas the corresponding values for Ie are, respectively, 3.172, 2.046, 1.978.
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recognized as a different sign of the effects of an epidemic with respect to an equal variation
in the young. According to this rationale, the differential mortality index in Trentino would
lead, because of its young demographic structure, to an underestimation of the ‘strength’ of the
epidemic. The same observation can be made also for other regions. Moreover, note that Ie never
reaches positive values in Lazio, Campania, and Sicilia, whereas D − 1 in March is positive, albeit
slightly. This is because the increase in deaths in these regions was higher among the younger
than among the older population. In conclusion, the differential mortality indicator can certainly
provide useful information about the effect of an epidemic, but it cannot consider the distribution
of deaths by age and the demographic structure of the population, which should instead play a
significant role.

Recall that the epidemic ratio r, and hence the relative index of epidemic Ie, depends on the
variables σ , Y and β, which respectively take into account the force (lethality) of the virus, its
level of spread and our ability to cure the disease, as per equation (2.7). It is reasonable to assume
that β and σ have almost the same values in all Italian regions. Hence, the observed differences
in terms of Ie should be attributed to the level of spread Y, which varies over time in the various
regions owing to the spread of the virus and can be constrained by institutional actions such as
imposed social distancing, reduced mobility, use of face masks and lockdown. On the other hand,
an increase in β can only derive from an increased efficiency of the health system, the discovery
of an effective cure or the administration of a vaccine, while a decrease in β can be interpreted as
a negative effect being induced, e.g. by exceeding the capacity of intensive care units.

In order to analyse how the relative index of epidemic is influenced by a variation in β,
theoretically compare two different configurations 1, say ‘1a’ and ‘1b’, at the same time of
observation. From equation (2.7) one derives that the corresponding epidemic ratios ra and rb
satisfy the scaling law

rb

ra
= β1a

β1b

ln [KIc/(Y1a σ1a)]
ln [KIc/(Y1b σ1b)]

, (4.1)

where β1a, Y1a, σ1a and β1b, Y1b, σ1b are the model parameters in the configurations ‘1a’ and ‘1b’,
respectively, whereas KIc is clearly invariant.

If the spread and the force of the epidemic is the same for the two configurations, i.e. Y1a = Y1b
and σ1a = σ1b, then (4.1) provides

rb = β1a

β1b
ra. (4.2)

Consider, for example, the first wave of the epidemic in Bergamo, the most affected Italian
province, and let Ia

e = 100(ra − 1) denote the measured actual index of epidemic. Figure 9 shows
the index Ib

e = 100(rb − 1) corresponding to the case in which Yσ is left unchanged and β is varied.
Observe that even a very small increase in β provides a strong effect.

In order to analyse the effects of a variation in Y, the two configurations ‘1a’ and ‘1b’ to be
compared are defined by σ1a = σ1b = σ and β1a = β1b = β. Setting ψ = Y1a/Y1b, from (4.1) one
obtains

rb = ra
ln [KIc/ (Y1b σ)] − lnψ

ln [KIc/ (Y1b σ)]
⇒ψ =

(
KIc

Y1b σ

)1−(rb/ra)
. (4.3)

Our aim now is to evaluate the evolution of the coefficient Y during the first wave of the epidemic.
Referring again to the case of Bergamo, consider configuration ‘1b’ as the one corresponding to
the first week of February (2–8 February) when, according to figure 3, the wave was just about to
begin. At this stage, the force of the epidemic was σ1b = σ and its level of spreading Y1b. Consider
configurations ‘1a’ corresponding to the successive weeks, for which σa = σ remains constant but
the spreading varies, i.e. Y1a = Y1a(t) =ψ(t)Yb, in order to emphasize the dependence upon time.
Clearly, in the week 2–8 February, one finds Ya = Yb and r1a = r1b, so that ψ = 1 from (4.3). Setting
ra = ra(t), now a function of time determined from the analysis of the mortality data, ψ =ψ(t), can
be determined from (4.3) since the ratio rb/ra(t) is known.

Recall from the discussion at the end of §2a that this theory can only compare any two different
states. In particular, in (4.3) the number Y1b/σKIc represents the term of comparison for the force
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of the epidemic and its level of spread. Of course, this could be expressed as a function of any
other state. For example, referring to configuration ‘0’ defined by the average mortality rates in
the first week of February in years before COVID-19, with epidemic values β0, Y0 and σ0, since
presumably β0 = β1b = β, from (2.7) one obtains

rb = ln[KIc/(Y0 σ0)]
ln[KIc/(Y1b σ1b)]

⇒ [KIc/(Y1b σ1b)] = [KIc/(Y0 σ0)]1/rb . (4.4)

Certainly Y0σ0/KIc is a small number since it refers to a pre-COVID-19 condition: this can be
chosen arbitrarily as the unit of measurement for the epidemic level. Setting Y0 σ0/KIc = 10−9,
from (4.4) and (4.3) one obtains the function ψ(t) for Bergamo on a weekly basis, from 2 February
to 13 June. Its plot is represented in figure 10a.

Observe that ψ(t) is increasing up to the peak in the week of 15–21 March, and then decreases.
This is an evident effect of the restrictive countermeasures that were organized in Bergamo;
otherwise, the spreading would have continued to increase.

What would have happened if stricter countermeasures had been organized in order to limit
further the level of spread? Consider configuration ‘1a’ to be the same as before, for which Y1a(t)
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has just been calculated through the functionψ(t). Configuration ‘1b’ now corresponds to a purely
theoretical state in which the values of σ and β are left unchanged, whereas the level of spread is
Y1b(t) = Y1a(t)/k, where k ≥ 1 is a constant. In equation (4.3) now ψ =ψ(t) is substituted by ψ(t)/k,
ra = ra(t) is known, and one finds rb = rb(t) and, therefore, Ib

e = 100 (rb − 1). The corresponding
plots are represented in figure 10b for various values of k. While comparing figures 9 and 10b,
observe that a small variation in β has a very strong effect on the spread of the epidemic, while the
dependence upon Y is much milder. This is not surprising, because the discovery of an effective
cure or an improvement in the capacity of intensive care units represent important step-changes,
whereas limiting the epidemic with countermeasures such as social distancing requires a great
effort to obtain limited results.

Of course, further research is still needed. This theory defines a measure of the strength of the
epidemic as a function of the variables Y, σ , β, KIc, but does not provide their specific expressions
as a function, for example, of the capacity of the health system and the type and duration of
the restrictive countermeasures organized to limit the spread. What is still needed is a precise
definition of the specific mathematical expression for these variables as a function of other more
specialized state variables. To this aim, reference should be made to models that can describe the
kinetics of the epidemic from balance equations, as in the SIR approach. Indeed, the proposed
theory is by no means an alternative to models of this kind, but complementary to them.

In particular, we conjecture that the variable Y, and hence the value of Ie, is strictly associated
with the epidemic reproduction number Rt. Of course, Rt and Ie refer to events shifted in time: the
former indicates contagions, while the latter is found from mortality rates. Hence, Ie shall be
compared with values of Rt estimated some time previously, corresponding to the average time
between diagnosis and death. In any case, whereas the estimate of Rt requires time to collect and
select data4 and is strongly influenced by the quality of data [41,42], the estimate of Ie is much
more rapid, since it is found from raw mortality. On the other hand, once the correlation between
Y and Rt is defined, the relative index of epidemic might also be used as a tool for verifying the
goodness of the estimate of Rt.

5. Conclusions
A multi-scale statistical theory has been proposed to define a relative index of epidemic for the
comparative quantification of its potential lethality (strength), with respect to a population
observed at different times in any two epidemic configurations. A peculiar feature is the
renormalization of the human age by assigning to older people a greater predisposition than
younger people to develop a physical degradation (‘human damage’), which favours the onset of
pathologies and co-morbidities potentially critical in case of infection. The probability of finding a
certain level of human damage in one individual provides the statistical distribution for the risk of
death with respect to a yield criterion, which accounts for the force (lethality) of the virus, the level
of spread and our capacity to cure the disease, all interpreted through mathematical variables.
Remarkably, this rationale conforms to the classical Weibull theory of the statistical strength of
brittle structures containing a population of crack-like defects, in correlating the statistical spatial
distribution of crack size and shape with the risk of fracture at a prescribed stress level, according
to a fracture toughness criterion that determines the onset of catastrophic crack propagation in
the structure.

The input for the estimates is represented by raw data on mortality, regardless of the cause
of death but sorted by age, collected in various configurations corresponding to different time
intervals of observation. As an example, the theory has been applied to the first wave of
COVID-19 in Italy (January–June 2020), taking as configurations of comparison the conditions of

4The researchers at the Bruno Kessler Foundation in Trento are in charge of estimating Rt on behalf of the Italian authorities.
In their estimations, they only consider symptomatic infected people and disregard people who have contracted the virus
abroad. According to the Italian ISS, a period of between 7 and 15 days is necessary to obtain a good estimate of Rt.
Unfortunately, to the best of our knowledge, at the time of writing the official estimates of Rt have not yet been released
for the period considered here. Hence, the comparison between Rt and Ie cannot be done now.
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previous years, certainly characterized by milder forms of epidemics. The theory predicts precise
scaling laws for the age of death in the various configurations, which agree very well with the
observations in the Italian regions and provinces on a weekly or monthly basis. The proposed
index of epidemic, taking into account the demographic structure of the population, weighs the
number of deaths according to a risk based on age; therefore, it appears more accurate than
other indicators considering the excess mortality rates, which are unable to distinguish deaths
from accidental causes. The comparison of the results of our theory and the excess mortality
rates reveals similarities at the qualitative level, but also conceptual differences in territories
characterized by diverse demographic structures.

An advantage of this theory is that it uses raw mortality data, which are usually considered
the least assumption-laden records of the effect of an epidemic, but an extension could be made
to other categories, such as the number of people needing intensive care unit beds. The major
limitation, at least at the current stage, consists in the lack of a correlation between the parameters
of the theory (level of human damage, lethality of the virus, level of spread, capacity of the health
system) and the extensive variables on which such parameters depend, such as factors specific to
the patient and the virus (co-morbidities, antibody-dependent enhancement, immune history), to
the health system (availability of beds, intensive care services, medications, treatments, diagnostic
tests, vaccines) and to the control of the spread (social distancing, use of face masks, restrictions,
quarantine, lockdown). Certainly, this correlation shall be informed by the existing mathematical
models that describe the kinetics of an epidemic, such as the SIR approach and its derivations, for
which the present theory is certainly not an alternative but is complementary. A comprehensive
multidisciplinary approach is certainly of paramount importance for the management of the
epidemic, in particular to make decisions about when, where and to what extent to apply or
release restrictive measures, in particular the lockdown which, if prolonged beyond necessity,
may cause irreparable damage to the economy of a country.
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