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Abstract: Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril
(CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility,
diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and
pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing
specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling
their characteristics in host–guest inclusions. Furthermore, both CB[m] and pillar[n]arene were
employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked
molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played
significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces
together, molecular “joint” to connect different monomers into larger assemblies, and “stabilizer” in
accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.

Keywords: self-assembly; hybrid macrocycles; cucurbit[m]uril; pillar[n]arene; host–guest inclusion

1. Introduction

With an origin derived from the mimic of natural and biological process [1–4], supramo
-lecular self-assembly [5–7], especially supramolecular polymers [8,9], has provided an
interesting research focus [10,11] in recent decades for designing and fabricating marvelous
smart materials [12–14] via noncovalent interactions [15,16]. Self-assembly, as an important
supplementary method to classic organic synthesis and polymerization, has aroused much
research interest [17,18]. Particularly, choosing the significant building blocks during prepa-
ration has not only affected the functions of supramolecular polymeric self-assembly [19,20],
but also has decided the procedure/progress of building such supramolecular architec-
tures [21–23]. As one type of important building blocks [22], macrocycles [24,25] and their
host–guest inclusions [26] have frequently participated in the procedure of building com-
plicated hierarchical supramolecular polymeric self-assembled materials [27]. Interestingly,
to achieve the particular target in function and application [28–30], several different kinds
of macrocycles [24] have been simultaneously employed in fabricating supramolecular
polymeric self-assemblies, leading to the formation of the significant hybrid macrocyclic
system [31–33].

Actually, the fabrication of a proper hybrid macrocyclic system by diverse macrocycles
was not easy [32,34,35]. There were several difficulties in the design strategy and exper-
imental procedure [36]. For example, the modification and functionalization of various
macrocycles were usually challenging [37], in addition to coupling them together. If not
adopting the proper design and efficient synthesis methods, the building of hybridized
macrocycles might become not only overdesigned, but also time-consuming [38,39]. In
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addition, during the construction, different behaviors of diverse macrocycles in molecular
recognition should be controlled and balanced in order to achieve the purpose of function
and application [40,41]. For example, the different-sized host cavities [26] and various
driving forces [42,43] capturing guests should be paid attention during molecular recog-
nition. Furthermore, the role of diverse macrocycles in a hybrid system should be fully
considered and taken advantage of. For example, some macrocycles could promote the
solubility of the integrated system [44–47], while other macrocycles could contribute to
catalyzing particular reactions during the process of self-assembly [48–50].

Pillar[n]arene [51,52] (Chart 1) was discovered in 2008 and has been widely used in
the process of supramolecular self-assembly [53,54]. Due to its unique physiochemical
properties and symmetric structures, pillar[n]arene usually has poor solubility in aqueous
solutions [55]. Thus, such a macrocycle requires particular modification to possess the
ability of solubilizing in aqueous solutions [56–58]. Several functional groups have been
involved including carboxylate and ammonium salts [59–62]. However, the method and
choice of dissolving pillar[n]arene in aqueous solutions were limited. It will be interesting
to investigate whether other water-soluble macrocycles could integrate with pillar[n]arene
in a hybrid system and promote its solubility in aqueous solution or not. One favorite
candidate is cucurbit[m]uril (CB[m], Chart 1) [63,64], composing cyclic repeating glycoluril.
Furthermore, it will be fantastic to learn whether the addition of CB[m] will play other
roles in the hybrid system, or not. It is already known that the hydrophobic cavity of CB[m]
can show similar molecular recognition as that of pillar[n]arene towards various guests,
and CB[m] is commercially available with different-sized cavities, which can enrich the
host–guest interaction in the possible integrated hybrid macrocyclic system [65,66].

In this review, we will discuss and summarize the recent progress in building self-
assembly containing both CB[m] and pillar[n]arene. Due to the possession of similar
cavities, both present in the integrated hybrid system could show competition in including
similar/same guests. Thus, a valuable synthesis/preparation strategy was employed in the
hybridized system to balance and control their different molecular recognition. Except for
competition, the relationship between them in an integrated system also shows cooperation
in accommodating diverse guests, in addition to providing the possibility of bridging
smaller pieces together for hierarchical self-assemblies such as mechanically interlocked
molecules [67–71] and supramolecular polymers [72–75]. Interestingly, due to the particular
structure and physiochemical properties, CB[m] could play diverse roles in the CB[m]-
pillar[n]arene hybrid macrocyclic system such as acting as “microreactor” and molecular
“joint” [76–78]. Finally, because the self-assembly containing CB[m]-pillar[n]arene hybrid
macrocyclic system is still under development, we will try to raise some scientific and
technical issues in this review, and propose considerable challenges for future research.

Polymers 2022, 14, x  2 of 13 
 

 

adopting the proper design and efficient synthesis methods, the building of hybridized 
macrocycles might become not only overdesigned, but also time-consuming [38,39]. In 
addition, during the construction, different behaviors of diverse macrocycles in molecular 
recognition should be controlled and balanced in order to achieve the purpose of function 
and application [40,41]. For example, the different-sized host cavities [26] and various 
driving forces [42,43] capturing guests should be paid attention during molecular recog-
nition. Furthermore, the role of diverse macrocycles in a hybrid system should be fully 
considered and taken advantage of. For example, some macrocycles could promote the 
solubility of the integrated system [44–47], while other macrocycles could contribute to 
catalyzing particular reactions during the process of self-assembly [48–50]. 

Pillar[n]arene [51,52] (Chart 1) was discovered in 2008 and has been widely used in 
the process of supramolecular self-assembly [53,54]. Due to its unique physiochemical 
properties and symmetric structures, pillar[n]arene usually has poor solubility in aqueous 
solutions [55]. Thus, such a macrocycle requires particular modification to possess the 
ability of solubilizing in aqueous solutions [56–58]. Several functional groups have been 
involved including carboxylate and ammonium salts [59–62]. However, the method and 
choice of dissolving pillar[n]arene in aqueous solutions were limited. It will be interesting 
to investigate whether other water-soluble macrocycles could integrate with pil-
lar[n]arene in a hybrid system and promote its solubility in aqueous solution or not. One 
favorite candidate is cucurbit[m]uril (CB[m], Chart 1) [63,64], composing cyclic repeating 
glycoluril. Furthermore, it will be fantastic to learn whether the addition of CB[m] will 
play other roles in the hybrid system, or not. It is already known that the hydrophobic 
cavity of CB[m] can show similar molecular recognition as that of pillar[n]arene towards 
various guests, and CB[m] is commercially available with different-sized cavities, which 
can enrich the host–guest interaction in the possible integrated hybrid macrocyclic system 
[65,66]. 

In this review, we will discuss and summarize the recent progress in building self-
assembly containing both CB[m] and pillar[n]arene. Due to the possession of similar cav-
ities, both present in the integrated hybrid system could show competition in including 
similar/same guests. Thus, a valuable synthesis/preparation strategy was employed in the 
hybridized system to balance and control their different molecular recognition. Except for 
competition, the relationship between them in an integrated system also shows coopera-
tion in accommodating diverse guests, in addition to providing the possibility of bridging 
smaller pieces together for hierarchical self-assemblies such as mechanically interlocked 
molecules [67–71] and supramolecular polymers [72–75]. Interestingly, due to the partic-
ular structure and physiochemical properties, CB[m] could play diverse roles in the 
CB[m]-pillar[n]arene hybrid macrocyclic system such as acting as “microreactor” and mo-
lecular “joint” [76–78]. Finally, because the self-assembly containing CB[m]-pillar[n]arene 
hybrid macrocyclic system is still under development, we will try to raise some scientific 
and technical issues in this review, and propose considerable challenges for future re-
search. 

 
Chart 1. Illustration of chemical structures of CB[m] and pillar[n]arene. Chart 1. Illustration of chemical structures of CB[m] and pillar[n]arene.



Polymers 2022, 14, 1777 3 of 13

2. The Competition and Cooperation between CB[m] and Pillar[n]arene as the Host

As significant hosts, both CB[m] and pillar[n]arene could show different characteristics
in host–guest complexation, due to diverse-sized cavities and various driving forces in
recognizing guests. Interestingly, both could exhibit very strong capacity in molecular
recognition towards the same guest. Thus, if placed under specialized conditions, they
could definitely show competition in efficiently capturing those particular guests. Further
effort has been made in controlling and balancing their diverse performances in molecular
recognition by building integrated self-assemblies, i.e., hybrid macrocyclic systems.

Due to the lock-and-key principle in supramolecular chemistry [79,80], CB[m] and
pillar[n]arene usually exhibit different behaviors in recognizing guest molecules with
diverse associate constants, (Ka). Thus, CB[m] could be used as an extra tool to control the
physiochemical properties of self-assembled pillar[n]arene and its host–guest complexes.
For example, Ref. [79], in comparison with the monomer M1 (Scheme 1) and short ethylene
oxide chains-bearing pillar[5]arene (P1, Scheme 1), pillar[5]arene perfunctionalized with
ten outer triethylene oxide groups (P2, Scheme 1) could not only have improved solubility
in water, but also exhibited the lower critical solution temperature (LCST) behavior [81],
i.e., sharp transition and narrow hysteresis (2 ◦C), due to the possession of both longer
oligomeric ethylene oxides and macrocyclic skeletons [79]. Additionally, instead of shorter
viologen salts such as G1 (Scheme 1), P2 could include the didecylviologen salt (G2,
Scheme 1) in the stoichiometry of 1/1 with the Ka as (4.3 ± 0.5) × 103 M−1 at 25 ◦C, due to
stronger hydrophobic and charge transfer interactions. Interestingly, the clouding point
(Tcloud) of P2 could be controlled by the concentration and amount of G2, changing from 25
to 60 ◦C. Particularly, due to that cucurbit[7]uril (CB[7], Scheme 1) could include viologen
salts also in 1/1 molar ratio but with the stronger Ka as high as 105 × M−1, CB[7] was
used a competitive host to exclude G2 from P2 (Table 1), leading to the decrease of Tcloud
in the system containing G2 and P2 to 47 ◦C [79]. Furthermore, the host–guest inclusion
controlled reversible turbid-to-clear/clear-to-turbid transition could be achieved by the
subsequent addition of G2 and CB[7] in the solution of P2 (Figure 1). Actually, both CB[m]
and pillar[n]arene could fully utilize their capacities of capturing guests to further affect
the morphologies of guests-based self-assemblies [82].
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Because of the different-sized cavities, CB[m] and pillar[n]arene could also adjust their
own cavities with proper sizes, i.e., choose the pair of hosts with proper sized cavities, to
present the similar Ka towards the specialized guest. However, they might have different
types of host–guest inclusions in accordance with diverse driving forces. For example,
with the similar Ka of around 104 ×M−1, CB[7] (Scheme 1) could form inclusion with the
guest of hemicyanine dyes (G3, Scheme 2) in the stoichiometry of 1/1 due to the ion–polar
interaction, while pillar[6]arene P3 (Scheme 2) could interact with G3 in 2/1 molar ratio
with a sandwiched binding model due to the intermolecular interaction with the electron
donor–acceptor, i.e., exo-wall complexation, where the guest was not included into the
cavity of P3 [83].
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Thus, by taking advantage of their own characteristics such as various Ka and binding
model in recognizing guests, CB[m] and pillar[n]arene could cooperate together to interact
with guest molecules in an integrated hybrid macrocyclic system. For example, ref [84], due
to the ion-dipole and CH . . . O interactions as indicated by computational studies [85] using
a semi-empirical tight binding method, the ring-on-ring hybrid macrocyclic host systems
were just prepared by integrating CB[10] and polycationic perfunctionalized pillar[5]arene
P4 (Scheme 3) together, where the complex ratio could be tuned from 1/2 to 1/1 (Figure 2),
as confirmed by 1H NMR titration. Interestingly, the weaker interaction between P4 and
CB[8] (Scheme 3) further revealed that the size match between pillar[n]arene and CB[m]
was also vital for successfully building a hybrid macrocyclic composite. Particularly,
characteristics in recognizing various guests by both cavities of CB[10] and pillar[5]arene
could be further controlled and balanced, leading to either the formation of complicated
multiple complexes or the damage of the hybrid macrocyclic host systems (Table 1). Due
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to the possession of two independent hybrid cavities (Figure 2), both 1-pentanesulfonate
(G4, Scheme 3) and 9,9′-spirobifluorene (G6, Scheme 3) could be included by the hybrid
macrocycles via the cavities of pillar[5]arene and CB[10], exhibiting strong Ka as (3.8 ± 0.4)
× 106 and (3.3 ± 0.7) × 105 M−1, respectively. However, the butane-1,4-disulfonate (G5,
Scheme 3) could trigger the disassembly of hybrid macrocycles P4•CB[10], and precipitate
CB[10] in the solution phase (Figure 2).
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1/1, and the different performances of 1/1 P4•CB[10] in recognizing G4 and G5.
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Table 1. The relationship between CB[m] (CB[7] and CB[10]) and pillar[n]arene (P2 and P4) including
competition in acting as the host towards guests such as G2, and cooperation in building hybrid
macrocyclic system to include guests such as G4-G6.

CB[m] Pillar[n]arene Relationship Guests Ref

CB[7] Pillar[5]arene
P2

Competition of hosts (Ka of P2⊃G2 ~103

M−1) vs. (Ka of CB[7]⊃G2 ~105 M−1)
G2 [79]

CB[10] Pillar[5]arene
P4

Forming hybrid macrocyclic system
CB[10]•P4 presenting integrated Ka towards

G4 and G6 as ~106 and ~105 M−1
G4-G6 [84]

3. The Preparation of Mechanically Interlocked Molecules Containing CB[m]
and Pillar[n]arene

Except for utilizing their diverse characteristics for promoting competition and cooper-
ation in molecular recognitions, both CB[m] and pillar[n]arene were further employed for
fabricating advanced mechanically interlocked molecules (MIM) by fully considering the
CB[m]-catalyzed alkyne-azide 1,3-dipolar cycloaddition, namely, “click” reaction [86,87], in
addition to the strong capacity of pillar[n]arene in accommodating and stabilizing special-
ized linear cationic substrates [88]. In other words, the molecular “rod” in building MIM
could be captured by enough pillar[n]arene moieties with an expected rigid and linear
geometry, while CB[m] could hold the molecular “stoppers” and promote the formation of
the “bridge” between the “rod” and “stoppers” by “click” reactions. Finally, both CB[m]
and pillar[n]arene acted as the “wheel” in the obtained MIM.

For example, Ref. [89], two [4]rotaxanes such as CP1 and CP2 and two [5]rotaxane
CP3 and CP4 (Table 2) were cooperatively prepared in the presence of the host–guest
inclusion of CB[6]⊃N-(3,5-dimethoxybenzyl)propargylammonium chloride (G7, Scheme 4),
pillar[5]arene (P5, Scheme 4) and linear azidoalkyl-modified bipyridinium dications such
as G8-G11 (Scheme 4) via CB[6]-catalyzed “click” reaction at 55 ◦C in acetonitrile with
the yield ranging from 30–96%. With similar design strategy and synthesis methods by
using the stopper with CB[m] as the catalyst—CB[6]⊃G7, in addition to the “rod” of
G8, G9 and G12 [88], pillar[5]arene moiety was further substituted by pillar[6]arene (P6,
Scheme 5), leading to the synthesis of different dumbbell compounds including CP5-
CP7 (Scheme 5 and Table 2) in the yield of 39–68% [90]. Interestingly, due to the lock of
pillar[5]arene and pillar[6]arene in those space limited dumbbell compounds, in addition
to the particular functional groups such as carbonyl and hydroxyl moieties rooted in CB[m]
and pillar[n]arene, respectively, [4]rotaxane possessed various interesting conformational
isomers with the assistance of forming intermolecular hydrogen bonds (Figure 3) [88–92].
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Table 2. Self-assembled hybrid macrocyclic systems such as [n]rotaxane CP1-CP7 and supramolecular
polymer P7⊃G13⊂CB[8] by different CB[m] such as CB[6] and CB[8], pillar[n]arene including P5-P7,
and guests including G7-G13, as the important building blocks.

CB[m] Pillar[n]arene Self-Assembly Guests as Building
Blocks Ref

CB[6] Pillar[5]arene
P5 n]Rotaxane CP1-CP4 G7-G11 [89]

CB[6] Pillar[6]arene
P6 [n]Rotaxane CP5-CP7 G8, G9 and G12 [90]

CB[8] Pillar[6]arene
P7

Supramolecular polymer
P7⊃G13⊂CB[8] G13 [93]

4. The Preparation of Supramolecular Polymer containing CB[m] and pillar[n]arene

As shown in the above examples, the CB[m]-catalyzed “click” reactions were able
to produce the “angular” chemical structures, acting as the “stopper” in fabricating the
space-limited self-assemblies such as MIM. If preparing infinite polymeric structures, both
CB[m] and pillar[n]arene mainly performed as the molecular “joint” to accommodate linear
guests and direct the structural geometry of larger supramolecular assemblies.

For example, water soluble carboxylate perfunctionalized pillar[6]arene (P7, Scheme 6)
exhibited selected molecular recognition towards imidazolium salt G14 and G15 bearing
different groups with different Ka of 1.31 × 106 and 6.39 × 105 M−1, respectively. Thus, P7
could further complex with imidazolium subunits on a specialized guest with naphthalene
moieties on both ends (G13, Scheme 6), leaving the naphthalene subunits to be captured
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by CB[8]. Due to the enhancement of π-π stacking interactions of two nearby naphthalene
groups by CB[8], supramolecular polymers P7⊃G13⊂CB[8] (Figure 4 and Table 2) could
be prepared by those ternary components [93].
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5. Overview and Outlook

In conclusion, supramolecular self-assembly based on hybrid macrocyclic systems
containing pillar[n]arene and CB[m] were summarized in this review. Both CB[m] and
pillar[n]arene are significant hosts in the formation of host–guest complexation. Their
behaviors in molecular recognition could be greatly affected by several issues such as
solubility in various solutions, various cavities and different driving forces in complexing
guests. Both could exhibit strong competition in complexing the same/similar favorite
guest molecules. Except for competition, the capacity of CB[m] and pillar[n]arene in host–
guest inclusion could be integrated into the hybrid macrocyclic system in order to enhance
their performance in recognizing specialized guests. Furthermore, the structural skeletons
of CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-
assemblies such as MIM and supramolecular polymers. In those self-assembled systems,
hybrid hosts served as: 1) the molecular “joint” to connect different small molecular
moieties together into larger assemblies; 2) the “microreactor” to catalyze specialized
reactions which could further covalently couple building blocks into rigid architectures;
and, 3) the “stabilizer” to accommodate and stabilize guest molecules to adopt favorite
molecular geometry for advanced and complicated self-assembly.

Although much important work has been conducted in this area, several issues should
be paid attention in future studies, for example:

(1) More hybrid macrocyclic systems should be prepared in order to accomplish advanced
chemical structures in addition to applicable functions, such as with new design strategy
and new components. To date, pillar[n]arene derivatives have rarely been used as a type
of effective supplement [94] for controlling CB[m]-based supramolecular systems by taking
advantage of the particular external stimuli responsiveness of pillar[n]arene. In addition,
several types of CB[m] have been used in preparation procedures, but only pillar[5/6]arene
has been employed in the construction of a CB[m]-pillar[n]arene hybrid macrocyclic system.
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Actually, the performance of pillar[n]arene with larger cavities has more interesting behavior
in host–guest complexes [95–97]. If they could be involved in the fabrication, the hybrid
system will definitely possess different functions and “selling” points.

(2) Advanced and more complicated self-assemblies such as micelles and vesicles could
be further prepared by taking advantage of different models such as self-assembled am-
phiphiles [98], which could be of interest in exploring the functions of cargo-delivering [99–101].
Furthermore, except for rotaxane, catenane [102–105] could also be prepared by integrating
both pillar[n]arene and CB[m], enriching the family of MIM with mechanical bonds.

(3) Applications of CB[m] and pillar[n]arene-containing hybrid macrocyclic systems
should be explored further. Currently, after forming inclusions in building self-assemblies
such as MIM and supramolecular polymers, the cavities of pillar[n]arene and CB[m] will
be fully occupied and have no further function. If those cavities in self-assembled systems
could be freed, they might, accordingly, accomplish more interesting applications, such as for
biomedicines, in addition to adsorption and separation in specialized industry [106–108].
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