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Abstract: Recently, researchers succeeded in designing and manufacturing a new class of nanoparticles (NPs) called hybrid
NPs. Among hybrid NPs, bimetallic and core–shell NPs were a revolutionary step in NPs science. A large number of green
physiochemical and methods for nanostructures synthesis have been published. Eventually, physiochemical methods are either
expensive or require the use of chemical compounds for the synthesis of bimetallic and core–shell nanostructures. The main
challenges that scientists are facing are making the process cheaper, facile and eco-friendly efficient synthesis process. Green
synthesis (biosynthesis) refers to the use of bio-resources (such as bacteria, fungi, plants or their derivatives) for the synthesis
of nanostructures. The popularity of the green synthesis of nanostructures is due to their environmental friendliness and no
usage of toxic materials, environmental friendliness for the synthesis or stability of nanostructure. Bimetallic and core–shell NPs
have many biomedical applications such as removing heavy metals, parasitology, molecular and microbial sensor, gene carrier,
single bacterial detection, oligonucleotide detection and so on. The purpose of this study is to discuss briefly the biosynthesised
bimetallic and core–shell NPs, their biomedical applications.

1Introduction
Nanoparticles (NPs) are defined as a particle with size range in 1–
100 nm, at least for one dimension [1]. Materials that are sized at
NPs are about 1000 times smaller than microsized (micronsized)
particles (Fig. 1). NPs have shown novel biological and
physicochemical properties [2–8]. 

At first, the main focus of scientists was the synthesis and
application of NPs that contained single structures, called simple
NPs such as silver, gold and selenium, due to their unique features
and utilisation [9–17].

The improvement of knowledge has helped scientists to design
a new class of NPs known as hybrid NPs, which can be defined as
well-organised nanomaterials consisting of two, three, or more
types of single nanocomponents [18]. Core–shell NPs are a kind of
hybrid NPs that are also written as core/shell, core–shell, and
core@shell NPs. Core–shell NPs are composed of two or more
nanomaterials, which includes a wide range of organic and

inorganic nanomaterials (metals or polymers), while one of them
acts as a core and the other nanomaterial is located around the
central core called shell (Fig. 2). Bimetallic NPs composed of two
different metal elements [19]. 

The knowledge of hybrid NPs synthesis stands as a
revolutionary step in the nanoscience. The ability to manipulate
NP's structure has helped us in producing a large number of hybrid
NPs [20–25]. The core–shell NPs with the ability to be utilised in a
wide range of materials as core or shell can represent its satisfying
unique features and custom functions. Depending on the purpose of
the study, core or shell materials can be selected [26]. The
properties of core–shell NPs can be altered by inducing changes in
the ingredients that constitute the core or shell layer. Features and
distinctive properties including physicochemical, biological,
optical, etc. can be observed when different nanomaterials are
combined such as core shell NPs. These hybrid NPs are employed
in designing applicable programs in different fields such as
medicine, engineering and so on [27–31].

Fig. 1 Nano to micro scales
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Core–shell NPs are classified into the following types (Fig. 3,
[32–38]) based on the structure [26]. 

Each structure contains its own unique and specific properties.

2Different synthesis methods of hybrid (core–
shell) NPs
A large number of bottom-up and top-bottom approaches have
been reported for the synthesis of various nanomaterials.

In the bottom-up approach, self-assemble type of atoms led to
the formations of nanosized particles; but in top-bottom approach,
bulk materials are broken down to nanosized particles (has not
been yet put under investigation for core–shell NPs). Although the
top-bottom approach is an applicable technique, yet the bottom-up
methods are preferred.

Regarding the synthesis of core–shell NPs, three step
approaches have been reported:

i. One-step: The core and shell are formed together.
ii. Two-step: The core is synthesised first, then the shell layer is
formed around the synthesised core surface.
iii. Multiple-step: The core is synthesised first, then the first shell
layer is formed around the synthesised core surface and finally a
second shell layer is set up on the first shell surface or have the
core removed, in which hollow-core–shell NPs can stand (Fig. 4).

Based on the structure, bimetallic NPs are classified into the
following types (Fig. 5) (it should be mentioned that bimetallic
NPs are not necessarily spherical. The following bimetallic pictures
are samples for help to better understanding of bimetallic NPs
structure): 

Based on the essence, the hybrid (bimetallic or core shell) NPs
synthesis methods are classified to: physical, chemical, green
synthesis or combination of above two or three methods [39].
Although each of these techniques has their own advantages and
disadvantages, yet the green synthesis methods have proven to be
cost-effective, environmentally benign and easier than
physiochemical methods. Nature has provided millions of bio-
resources (fungi, bacteria, plants or their derivatives) that seem to
be suitable for the synthesis of a wide range of nanostructures [40].
The advantage of nanostructures synthesised by green approach is
that these particular bio-resources contain a large variety of
biomolecules that cover the surface of synthesised NPs, thus forms
the capping layers around it, which further provide stability and
biocompatibility to green NPs. Although one of the challenges that
are faced regarding most of the physically and chemically
synthesised NPs is aggregation, yet it seems the biomolecules that
cover the surface of green synthesised NPs are capable of avoiding
aggregation due to existing capping layer [41, 42]. In comparison
with the plant extract, the production of bimetallic and core–shell
NPs through the utilisation of bacteria and fungi are very limited.
Up to now, less than ten studies have been performed on bacterial
or fungi biosynthesis of hybrid core–shell NPs. Despite the fact
that it is possible to use bacteria or fungi strains in the process of
synthesising NPs, yet researchers are not interested due to its
difficulties and dependency on costly cell cultures.

Several published reports have demonstrated the biosynthesis of
bimetallic and core–shell NPs such as magnetic nickel/iron-oxide,
gold/silver, Fe3O4–Ag and Au–Ag NPs. Plants or their derivatives
are suitable for simple, fast, and stable synthesis of bimetallic and
core–shell NPs with different shapes, structures, and sizes in large
scales.

If the desired surface structure of green synthesised NPs is
obtained, they can be forced to bind to a variety of polymers,
antibodies, aptamers and so on. In the green synthesis of
nanostructures, the extract has a significant influence on the coated
functional groups that exist on the surface of resulting synthesised
nanostructures. Depending on the bio-resource applied in the green
synthesis process of nanostructures, the surfaces can be modified
by different functional groups. Therefore, choosing the right bio-
resource is critical for achieving the suitable surface that is
modified by the obtained synthesised nanostructures. For example,
the use of green tea leaf extract, due to its high polyphenol content
can lead to a polyphenol surface coating on the resulting
synthesised nanostructures (Fig. 6). 

Therefore, it can be noted that depending on the purpose, the
green synthesis of NPs is possible and practicable. Selecting the
proper bio-resource for the synthesis procedure in addition to the
reducing ions for the nanostructures can modify the surface coating
of NPs. The biosynthesised core–shell NPs have had a better usage
in clinical trials. Chemically synthesised NPs may end up coated
with toxic chemical materials that are applied in the synthesis
process, limiting their applications in medical studies by
considering how these impurities can be involved in the
experiments. However, biosynthesising NPs have brought a
solution for these restrictions. For example, some NPs are rapidly
oxidised such as copper and iron. One way to prevent oxidisation is
to cover their surface by the shell layer.

3Characterisation of bimetallic and core–shell
NPs
Identifying and studying the physicochemical properties, structure
details, purities, and dopants of biosynthesised NPs is very
important as the structure, size, shape of NPs can significantly
affect their performance and properties. In fact, determining the
physicochemical characteristics of NPs helps to effectively
understand the relationship between these characteristics and their
performance. From previous studies, the antimicrobial efficiency of
silver NPs with smaller sizes seem to be more than that of the
larger sizes. Describing the behaviour and structure of green
synthesised NPs is quite difficult due to the existence of various
macromolecules in their extract which participate in their own
structure.

In the in following sections, common physicochemical
characterisation techniques of NPs are described briefly.

3.1 Spectroscopic analysis

UV–vis spectroscopy analysis is very common for primary
detection of different kinds of NPs with the ability to absorb
electromagnetic radiation in the UV–vis spectral region; e.g. the
UV–vis absorbance of gold NPs is around 490–600 nm range.

3.2 Microscopic analysis

Microscopic analyses, such as transmission electron microscopy
(TEM) and high-resolution TEM (HRTEM), atomic-force
microscopy (AFM), scanning electron microscopy (SEM), field
emission SEM (FESEM) and analysis have been used to examine
the size, morphology, and distribution of nanomaterials. AFM and
SEM images are not applicable for studying the structure of core–
shell NPs since they characterise the surfaces. Recognising the core
in SEM images is too difficult while TEM images are very
convenient for studying the structure of core–shell NPs considering
its ability in measuring the thickness and spacing between core and
shell/shells. Energy dispersive spectrometry (EDS) is an accessory
of electron microscopy instruments (TEM and SEM). EDS is a
powerful method for determining the chemical nature of the core
and shell, which has displayed the distribution of elements in the
studied samples.

3.3 X-ray diffraction (XRD)

Scattering analysis and XRD analysis have been utilised to
examine the crystal structure and phase purity of the synthesised

Fig. 2 Structure of core–shell NPs
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NPs (crystal structure is a description of the ordered arrangement
of atoms).

3.4 Fourier transform infrared (FTIR) spectroscopy

FTIR can be used to identify the surface modification of NPs,
confirm the load-drug and overlay functional, identify the type of
functional groups and biomolecules that are responsible for
capping and efficient stabilisation of NPs, ensure the existence of
shells in core–shell NPs, verify the band between the two layers of

the shell in core double shell NPs, and qualitative and quantitative
identification of the molecular structure of organic compounds in
the NPs structure and especially in structure of core–shell NPs or
hollow-core/porous-shell materials.

3.5 Thermal gravimetric analysis (TGA)

TGA is a thermal analysis by which the mass of an NPs is
measured over time as the temperature changes (usually between
25 and 800°C). Also, the properties of the oxidation resistance of

Fig. 3 Schematic diagram (A–H) and TEM (A″–H″) pictures of different structures of core–shell NPs
A, AƎ: core–shell NPs
B, BƎ: core double-shell particles or core multi-shell NPs
C, CƎ: polyhedral core/shell NPs
D, DƎ: core porous-shell NPs
E, EƎ: hollow-core shell NPs or single-shell NPs
F, FƎ: hollow-core double-shell NPs
G, GƎ: moveable-core–shell NPs
H, HƎ: multi-core–shell NPs
M, MƎ: irregular shape core–shell NPs
N, NƎ: rod core–shell NPs
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the core–shell NPs can be tested by the TGA. For example, Ammar
et al. illustrated that the weight increment of the coated particles
caused by FeNi oxidation decreased from 20 to 4%, which is
relative to that of the uncoated FeNi particles using TGA.

This analysis can be utilised to determine the structure of core–
shell NPs, hydration, effective absorption of drugs in mesopore
NPs, and measuring the magnetic performance of hybrid NPs.
TGA measurements can be performed under different atmospheres
such as air, hydrogen, ozone, and argon. We can ascertain the
amount of organic molecule residues in the structure of NPs
through the TGA analysis in ozone. Significant weight loss in the
mass of green synthesised NPs at high temperatures is due to the
degradation of biomolecules in the structure of NPs, considering
how the biomolecules in the extract play the roles of both capping
and reducing agents.

3.6 Vibrating sample magnetometer (VSM)

VSM can be used to study the magnetic properties of NPs.
Maintaining magnetic properties, achieving higher magnetic
properties, determination of the magnetic performance regarding
the core–shell NPs when compared to the single structured NPs,
have made it important and practicable in biology, medicine and
industry applications. The magnetic Fe3O4: TiO2 core–shell NPs
can be applied to tumour therapy. VSM has shown the magnetic
properties of iron–iron derivatives NPs with higher magnetism than
iron NPs (single structure).

3.7 X-ray photoelectron spectroscopy (XPS)

It is very vital to identify the core–shell NPs oxidation status in
catalytic systems and gas detection sensors in order to understand
their chemical and physical behaviours. The surface oxidation of
these NPs has been investigated via XPS analysis, which is a

Fig. 4 Schematic of one-step, two-step and multiple-step synthesis approaches of core–shell NPs
 

Fig. 5 Schematic diagram (a–f) images of different structures of bimetallic NPs
(a) Core–shell NPs (all structures of core–shell NPs such as bimetallic moveable-core–shell NPs and so on),
(b) Random mixed structure bimetallic NPs,
(c) Dumbbell structure,
(e) Structure with two interfaces,
(f) Regular mosaics,
(g) Irregular mosaics,
(h) Random mixed dendritic structure (sometimes named cluster, star or flower shape structure)
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technique for analysing the surface elements with a nanometre
sampling depth. It can also determine the atomic ratio in NPs with
heterogeneous structure and provide the chemical information of
specified elements such as distinguishing between sulphate and
sulphide forms of sulphur that necessary for comprehending the
morphology of NPs core–shell.

3.8 Brunauer–Emmett–Teller (BET)

Precise measurement of surface area, volume, and pore distribution
is important in characterising the polymers pharmaceutical
materials and the coating of NPs. BET analysis was used to
determine the structure of porous, as well as the shape and position
of the cavities that are relative to each other within the NPs texture.

The surface specific area, peculiarities of the surface, and volume
of the pores of the hybrid NPs play a vital role in determining their
functional activities such as the amount of drug loaded in NPs-
based targeted drug delivery systems, and controlling the release of
the loaded drug, absorption, storage, catalytic and so on.

4Biomedical applications of core–shell NPs
Nowadays, nanoscience stands as one of the most attractive
sciences in the world (Fig. 7). Nanoscience cannot be limited to a
specific category. This particular area is an interdisciplinary field
of science that can be employed for many applications [43–50]. 

Compared to single NPs, bimetallic and core–shell NPs with
improved properties have a special economic value due to the

Fig. 6 Schematic for the synthesis of NPs using green tea that led to the synthesis of polyphenol surface coating NPs
 

Fig. 7 Schematic relationship between nanoscience and others sciences
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existing increase in their durability, performance, and breadth of
applications in medicine, engineering and other industrial fields. In
recent years, core–shell NPs have caught the attention of scientists
due to the diversity of their structures, potential and multipurpose
applications, unique structural features, simple production methods
and easy control. These NPs contain several beneficial features
such as the ability to function in a wide range of pH, temperatures,
magnetic properties and so on [51–55].

Design and synthesis of hybrid NPs with desired structures can
attract the attention of scientists toward biosynthesis hybrid NPs.
The designs of suitable custom hybrid NPs and their utilisations are
truly endless. Some products will be offered every day in this area
while containing a very strong economic ripe. A hybrid has been
known to be selective and sensitive when used as DNA, protein,
secondary metabolic or enzyme markers for diagnosing pathogens

cells or diseases. Medical applications of hybrid NPs help in the
early diagnosis of pathogens or diseases (Fig. 8). Table 1
summarises the biomedical applications of different hybrid NPs
(Table 1). 

5Conclusion
This review suggests the sustainable development in the green
synthesis of all kinds of hybrids, especially core–shell NPs, which
can lead to the expansion of green chemistry in near future.

The strong belief in the usage of biological resources (green
synthesis) is caused by observing, chemical stability, solubility and
biocompatibility of the synthesised NPs in water when compared to
the conventional physicochemical methods. Green synthesis

Fig. 8 Applications of biosynthesised bimetallic and core–shell NPs in biomedical fields
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methods can improve human and environment health by helping in
developing green chemistry and economic growth.
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