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rotation of the femoral component resulted in significant 
increase in medial compartment load transfer for knee flex-
ion including and beyond 60°. External rotation of the fem-
oral component within the limits studied did not influence 
tibiofemoral load transfer.
Conclusions  Internal rotation of the femoral component 
will adversely influence medial compartment load trans-
fer and could lead to premature polyethylene wear on the 
medial side.

Keywords  Femoral rotation · Load · Flexion · Knee 
arthroplasty

Introduction

Total knee arthroplasty (TKA) is designed to alleviate pain 
and restore function with optimal active range of move-
ment. Contemporary primary knee replacement is met 
with 10-year survivorship in excess of 95%, up to 20% of 
the patient cohort remain less than entirely satisfied and 
early revision for loss of movement and pain is a significant 
clinical worry [1, 21, 35, 41]. In both registry and single-
institution series, up to 20% of the patient group remain 
dissatisfied with the final outcome with greater than 50% 
of such cases related to poor movement or lack of stabil-
ity and unexplained pain [4]. Modern designs of cruciate-
retaining knee replacement systems aim to distribute load 
evenly across the articulating surfaces so as to both reduce 
polyethylene wear rates and ultimately the TKA revision 
burden [24]. The kinematic performance of the artificial 
knee is reliant upon exact placement with respect to the 
soft tissue envelope of the tibiofemoral and patellofemoral 
articulations [29]. The common denominator for both is the 
femoral component.

Abstract 
Purpose and hypothesis  Correct femoral component rota-
tion at knee arthroplasty influences patellar tracking and 
may determine function at extremes of movement. Addi-
tionally, such malrotation may deleteriously influence flex-
ion/extension gap geometry and soft tissue balancing kin-
ematics. Little is known about the effect of subtle rotational 
change upon load transfer across the tibiofemoral articula-
tion. Our null hypothesis was that femoral component rota-
tion would not influence load across this joint in predict-
able manner.
Methods  A cadaveric study was performed to examine 
load transfer using the orthosensor device, respecting laxity 
patterns in 6° of motion, to examine load across the medial 
and lateral compartments across a full arc of motion. 
Mixed-effect  modelling allowed for quantification of the 
effect upon load with internal and external femoral com-
ponent rotation in relation to a datum in a modern single-
radius cruciate-retaining primary knee design.
Results  No significant change in maximal laxity was 
found between different femoral rotational states. Internal 
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Femoral component placement may be performed using 
either a gap balancing or measured technique [26, 34]. 
No technique is consistently superior or reliable for femo-
ral component placement [38]. Gap balancing is reliant 
upon correct tibial resection; otherwise, there is a com-
pound error [14, 22]. Measured resection may introduce 
a malrotation due to difficulty identifying key anatomical 
landmarks [25, 43]. Femoral component malrotation will 
deleteriously influence the geometry of the flexion gap 
and patellar tracking [2, 17]. Load and constraint enjoy a 
complex and not always inverse relationship, and the flex-
ion gap works with the soft tissue envelope and final lax-
ity pattern to determine load across the flexed knee [8, 14]. 
Abnormal load may cause pain and stiffness. Our current 
standard biomechanical assessment is restricted to standing 
alignment views, and our knowledge of tibiofemoral load 
transfer in flexion is limited. A greater understanding of the 
load distribution across the tibiofemoral articulation under 
defined laxity conditions would allow for the study of the 
kinematic effect of component rotation and therefore sub-
sequently predict the clinical performance of such a pros-
thetic joint [20].

In this study, we performed work to quantify the effect 
of femoral component rotation upon knee laxity and tibi-
ofemoral contact force. Our primary (null) hypothesis was 
that femoral component rotation would neither influence 
load transfer across the tibiofemoral articulation nor maxi-
mal laxity for the knee arthroplasty construct at key points 
of knee flexion.

Materials and methods

Specimen demographics

This work was performed under formal ethical approval 
and UK HTA licence within the surgical training facil-
ity xxxxxxxxxxx (Human Tissue Act 2004, section  16/2, 
licence number 12148). Whole lower limb cadaveric mate-
rial without pre-existing radiographic evidence of mal-
rotation/fracture/deformity or arthritic disease was used. 
Eight fresh frozen lower limbs disarticulated at the hip 
(three right, five left from Caucasian donors with median 
BMI 22, range 17–28, male/female ratio 7:1, and mean 
age 74, range 64–79  years) were  prepared in a standard-
ised manner as reported in previous published work [6, 
9, 14]. Limbs were mounted onto a custom rig with the 
tibia hung vertically and secured using set screws to pre-
vent specimen rotation. All muscle groups acting across 
the knee joint were loaded throughout the experimental 
procedure using previously validated methodology for the 
study of cadaveric knee kinetics. In particular, the iliotibial 
band (ITB), quadriceps muscle group, biceps tendon and 

medial hamstring apparatus were individually loaded in a 
physiological manner direction (Fig.  1). Navigation track-
ers  (Stryker  eNdtrac  Knee Navigation System, Michigan 
USA) were fixed to  the femur and tibia 25  cm from the 
joint line, respectively, and in such a manner as to avoid 
interfering with muscle pull [5]. Previous work had vali-
dated the use of eight limbs and confirmed that this pro-
vides sufficient power to identify significant differences 
using this technique with 95% confidence presuming 80% 
power [8, 22].

Surgical procedure

Insertion of a Stryker Triathlon (Michigan USA) single-
radius cruciate-retaining TKA (CR-TKA) via a medial 
parapatellar approach was  undertaken using a meas-
ured resection technique [27, 34]. The femoral compo-
nent rotation was determined using the transepicondylar 
axis, validated using the mid-trochlear axis. A balanced 
knee was confirmed as that where after minimal soft tis-
sue release, there was passive full extension, full flexion 
with normal ‘no touch’ patellar tracking, less than grade 
1 laxity for varus valgus stressing at 0°, 30°, 60° and 90° 
of flexion, firm endpoint to Lachman testing and no laxity 
for anteroposterior stressing at 90° of flexion. To achieve 
such, 8  mm of distal femoral resection was performed at 
5° valgus intramedullary alignment. Femoral sizing was 
undertaken using anterior referencing. The mid-point of 

Fig. 1   Experimental setup with custom jig and cadaveric limb loaded 
using a cable and pulley system to load in physiological directions. 
ITB 30 N, vastus lateralis 71 N rectus femoris and vastus intermedia-
lis 61 N, vastus medialis 42 long and short head biceps femoris 44 N, 
semimembranous and semitendinosus 44 N. An arthrotomy has been 
performed (inset picture right) showing the Verasense tibial device is 
in situ with wireless hub connected to display unit (inset picture left). 
Navigation sensors on tibia and femur track motion and enabling lax-
ity measurements
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the medial epicondyle may be difficult to localise but to 
reduce any peroperative error both senior authors agreed 
the mid-point of such so as to define the epicondylar axis. 
The rotation of the final 4 in 1 femoral cutting block was 
further validated using the mid-sulcus or Whiteside line. 
The tibia was then prepared using a 9-mm resection from 
the superiormost tibial condyle in a plane perpendicu-
lar to the anatomical axis with an associated 3° posterior 
slope achieved via an extra-medullary jig. The tibial cut-
ting block was centred at the mid-third of the tibial tuber-
cle and formal resection performed. The trial tibial base-
plate was centred without restraint on the cut surface. Final 
orientation of the tibial component was determined after 
cycling the knee >20 times. The final seated position which 
achieved greatest conformity was marked on the anterior 
tibial crest using diathermy. For each experiment and each 
position of femoral component rotation, the tibial compo-
nent was allowed to find its most conforming position. A 
standard polyethylene insert was selected and inserted with 
trial components to ensure the flexion and extension gaps 
were stable for varus valgus and anteroposterior stressing 
at the defines points of flexion stated earlier. Full extension 
was confirmed. The flexion gap allowed for full flexion but 
was balanced such as to ensure no opening in deep flex-
ion. So as to optimise femoral component stability on the 
distal femoral resection, lughole screws were inserted and 
captured the femoral component whilst being buried and 
not interfering in articulation with the poly-component. 
This ensured absence of component rotation or glide or 
translation at any point of the experimental stressing in 6° 
of motion during the flexion/extension arc of the experi-
ment (Fig.  2). A Verasense (Orthosensor, Dania FL) of 
appropriate thickness then replaced the polyethylene insert. 
With the knee held in 10° of flexion, the tibial rotation was 
adjusted and secured when the Verasense system registered 
a parallel contact point rotation [12]. Medial and lateral 
tibiofemoral contact forces were recorded as the loaded 
knee was taken through a range of passive flexion without 
stressing. No procedure required more than a simple peri-
articular medial or lateral capsular release to satisfy our 
criteria for balancing as defined by confirming the load 
across the medial and lateral compartments were within 
15lbs (pounds-force) of each other, respectively, through a 
full arc of motion (Fig. 2) [12, 45]. This state defined the 
datum for femoral component rotation for each knee. To 
allow for ±3° of femoral rotation whilst maintaining the 
original component size, femoral cuts were downsized by 
2  mm. The externally rotated (ERF-TKA) and internally 
rotated (IRF-TKA) states were achieved with the insertion 
of custom wedges (Fig.  3). The femoral component was 
fast secured following each rotation using custom cancel-
lous thread lughole screws engaging the stronger subchon-
dral bone. Care was taken to perform surgical closure of the 

arthrotomy via interrupted mattress sutures respecting the 
anatomy of the parapatellar tissues prior to any testing [31]. 
The senior authors (xxx/xx) performed all surgical proce-
dures and stress testing. For all experiments, there were two 
senior surgeons, a surgical assistant, a manual operator of 
the orthosensor system, a senior scientist recording the out-
put from the navigation system.

Data capture and analysis

Data were captured, as per previous validated work, using a 
standard computerised navigation system with orthosensor 
provided range of compatible tibial trials [14, 37]. Knees 
were manually stressed to mimic intraoperative laxity 
assessment. A datum was taken from the knee in extension 
from which maximal displacements of the tibia in relation 
to the fixed femur were tracked via computer navigation 
(Stryker eNdtrac Knee Navigation System, Michigan, USA) 
to an accuracy of ±0.5 mm in 6° of freedom [5, 10, 28]. For 
each TKA condition, maximal displacements (anteroposte-
rior, varus, valgus, internal and external rotation) were each 
recorded at five angles of flexion (0°, 30°, 60°, 90°  and 
110°). To reduce hysteresis, repeated flexion cycles were 
undertaken between measurements and ensured compart-
ment forces remained constant during passive flexion. After 
each set of measurements, the output instrumentation was 
reset at zero. The Verasense device recorded tibiofemoral 
contact force (lbs/force) and contact points continuously 
during testing (millimetre accuracy ±2 mm—C. Anderson, 
OrthoSensor, personal communication 03.08.2015) with 
additional data capture under maximal stress at each of the 
five angles of flexion. Three knee conditions were defined 

Fig. 2   Verasense display as viewed by the surgeon during balancing. 
This image shows a rotationally matched tibiofemoral construct as 
well as a balance soft tissue envelope as defined by medial and lateral 
compartments contact forces the within 15lbs
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with the internal and external rotatory states compared 
with the neutral or datum. These were the internally rotated 
femoral component (IRF-TKA) and the externally rotated 
femoral component (ERF-TKA) (Fig. 3).

Statistical analysis

Mixed-effect modelling was used to quantify the effect of 
flexion angle, direction of movement and implantation of 
TKA upon laxity [30, 32]. Displacements were used as the 
response variable, with TKA and flexion as covariates. Stu-
dent’s t test was used to compare differences in tibiofemoral 
force and contact point measurements. Significance was set 
at a level of p < 0.05.

Results

Native knee

Total tibial rotation (combined internal and external rota-
tion for each point of knee flexion of replaced state) and 
maximal varus/valgus laxity were found to increase con-
sistently from full extension to deep flexion for all knee 
specimens. Rotational and coronal laxity did also increase 
with knee flexion within the native knee. This increase in 
laxity/rotation comparing the native versus the replaced 
state was significant for maximal anteroposterior move-
ment (AD) when comparing 110°–30° (Fig. 4a).

CR‑TKA laxity pattern

A decrease in laxity was found for all knees after implan-
tation of a single-radius (CR-TKA) cruciate-retaining knee 
design when compared to the native state. This reduction in 
maximal laxity only reached significance for rotatory laxity 
in higher levels of knee flexion beyond 90° (Fig. 4a–c).

Load transfer

Assessment of the unstressed flexion arc showed that con-
tact forces across the medial and lateral compartments 
showed no statistical difference at each angle of flexion in 
the CR-TKA (Fig. 5a). Tibiofemoral contact force demon-
strated equilibrium of load in the primary CR-TKA at each 
angle of flexion. The total force across the tibiofemoral 
joint was seen to decrease with flexion. An inverse relation-
ship for total contact load versus maximal laxity was, as 
expected, found consistently for each knee.

IRF‑TKA laxity pattern

Maximal anteroposterior was significantly increased for 
the internally rotated femoral component state beyond 60° 
when compared to both the neutrally and externally rotated 
femoral component states. Varus valgus maximal move-
ment and maximal rotatory motion assessment failed to 

Fig. 3   Pictorial representation of femoral component alignment, 
exaggerated for demonstration, showing the neutrally aligned CR-
TKA (b), and the rotated femoral component to create the IRF-TKA 
(a) and ERF-TKA (c). Black lines demonstrating original femoral siz-

ing and red lines demonstrating the downsized femoral cuts (2 mm) 
to accommodate for component rotation. Custom polyethylene inserts 
d, f provide reproducible rotation whilst maintaining correct femoral 
size and implant stability aided by lughole screws e for stress testing
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identify any difference for the internally rotated compo-
nent state when compared to neutral or external rotation 
(Fig. 4a–c).

Load transfer

Load across the medial compartment was significantly 
increased at and beyond 60° of flexion with the internal 
femoral component state (Fig. 5b). This was most marked 
when stressing the knee with maximal internal rotation 
beyond 60° of flexion. At 90° flexion, a mean of 83% of the 
total contact load was borne by the medial compartment in 
the ERF-TKA compared to 47 and 43% in the CR-TKA and 
ERF-TKA, respectively (p < 0.05).

ERF‑TKA laxity pattern

The laxity pattern for the externally rotated femoral com-
ponent knee arthroplasty (ERF-TKA) did not significantly 
alter when compared to the primary neutral position of the 
femoral component. Whilst the greatest difference between 
the ERF-TKA and CR-TKA was found at 110° with an 
increase in rotational laxity, this failed to reach statisti-
cal significance. No significant difference at any angle of 

flexion was found between the neutrally and externally 
rotated femoral component arthroplasty states for maxi-
mal anteroposterior movement or varus valgus stressing 
(Fig. 4a–c).

Load transfer

Similar load was found across the medial and lateral femo-
ral compartments between 0° and 30° of flexion when com-
paring the ERF-TKA versus CR-TKA states. Between 60° 
and 110° load increased across the lateral compartment 
under rotational stress for the ER-TKA when compared 
to the CR-TKA. This change did not, however, reach sig-
nificance (Fig. 5c). It was representative of a proportional 
increase in lateral compartment loading in the ER-TKA 
state compared to the CR-TKA in mid to deep flexion. 
Overall, the ERF-TKA load pattern very closely resem-
bled the pattern of contact force recorded for the neutrally 
aligned femoral component (CR-TKA) state.

Load transfer with varus/valgus stress testing

There was consistency of load transfer across the medial 
and lateral compartments for both neutral datum femoral 

Fig. 4   a Maximal anterior laxity (mm) under anterior draw stress 
testing with knee flexion (degrees). Native knee (square), CR-TKA 
(circle), ERF-TKA (triangle), IRF-TKA (solid line) n = 8. b Maximal 
rotational laxity (degrees) with knee flexion (degrees). Native knee 

(square), CR-TKA (circle), ERF-TKA (triangle), IRF-TKA (solid 
line) n = 8. c Maximal varus valgus laxity (degrees) with knee flex-
ion (degrees). Native knee (square), CR-TKA (circle), ERF-TKA (tri-
angle), IRF-TKA (solid line) n = 8
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position and external rotation of the femoral component 
under both valgus (Fig.  5d) and varus maximal stress 
testing (Fig.  5e). Interesting, whilst this did not reach 

significance, there was a consistent increase in load transfer 
on the medial compartment in higher degrees of knee flex-
ion for both varus and valgus load (Fig. 5d, e).

Fig. 5   a Mean tibiofemoral contact force (lbs) during a normal flex-
ion arc (degrees) with no external stress applied. CR-TKA (clear 
circle left), ERF-TKA (crossed circle middle), IRF-TKA (solid cir-
cle right) n = 8. b Mean tibiofemoral contact force (lbs) at maximal 
internal rotation stress with knee flexion (degrees). CR-TKA (clear 
circle left), ERF-TKA (crossed circle middle), IRF-TKA (solid cir-
cle right) n = 8. c Mean tibiofemoral contact force (lbs) at maximal 
external rotation stress with knee flexion (degrees). CR-TKA (clear 

circle left), ERF-TKA (crossed circle middle), IRF-TKA (solid cir-
cle right) n  =  8. d Mean tibiofemoral contact force (lbs) at maxi-
mal valgus stress with knee flexion (degrees). CR-TKA (clear circle 
left), ERF-TKA (crossed circle middle), IRF-TKA (solid circle right) 
n = 8. e Mean tibiofemoral contact force (lbs) at maximal varus stress 
with knee flexion (degrees). CR-TKA (clear circle left), ERF-TKA 
(crossed circle middle), IRF-TKA (solid circle right) n = 8
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Discussion

The principal findings of this work were the rejection of the 
null hypothesis that femoral component rotation would not 
influence load transfer across the tibiofemoral joint. Inter-
nal rotation of the femoral component led to increased load 
across the medial tibiofemoral compartment most markedly 
beyond mid-flexion. This redistribution of load was found 
even with a neutrally aligned knee replacement. It is possi-
ble that such increased load across the medial compartment 
could explain the pain reported by patients in clinical series 
with malrotated components [3, 17, 29]. The study failed 
to demonstrate a reciprocal increase in load on the lateral 
side with external rotation of the femoral component. Fur-
ther, whilst the relationship between laxity patterns for total 
load across the tibiofemoral articulation mimicked those 
previous reported, the experiment failed to demonstrate a 
significant inverse relationship of such at the extremes of 
motion. Subtle internal malrotation of the femoral compo-
nent resulted in a substantial increase in load transfer across 
the medial compartment. These differences were most evi-
dent for both varus and valgus stress testing in flexion. This 
dynamic biomechanical imbalance in flexion would not 
be detected in any standard long leg film view performed 
postoperatively and sheds light on the limitations of static 
views to determine biomechanical axes after surgery.

There are weaknesses inherent in the use of cadaveric 
material for such experimental work. None of the knees 
used in this work exhibited arthritic change or deformity. 
And whilst this does minimise the confounding effects 
of soft tissue contracture or bone loss, it may not entirely 
accurately replicate the operative state. However, the use 
of non-arthritic knees did allow for better accuracy when 
determining anatomical landmarks such as the epicondy-
lar axis and ensured that baseline implantation was simple 
reliable and achieved quickly by the two senior operating 
surgeons. In contrast to previous work, all muscle groups 
acting across the knee joint were loaded as per previous 
methodology [22]. Particular attention was made to ensure 
free full tibiofemoral and patellar movement in the native 
loaded state and after primary implantation, cognisant of 
previous work, thereby confirming the importance of load 
across the joint to achievement of inherent stability [16, 
22, 46]. The loads used in this study were subphysiological 
consistent with previous work so as to reduce risk of mus-
cle tearing. Time zero assessment takes no account of the 
patient size, demographics or activity level. However, the 
use of cadaveric knees does allow for repeated-measures 
statistical analyses and reduces the confounding influence 
of pathological or functional differences between patients, 
thereby potentially enhancing the power of this work. Fur-
thermore, prior to experimentation, all limbs had under-
gone radiographic assessment to exclude peri-articular 

deformity, degenerative change and confirmed neutral fron-
tal plane alignment, which was confirmed as neutral for all 
limbs.

Excess internal femoral rotation in the absence of tibial 
malrotation is reported as an indication for revision arthro-
plasty [13, 23]. Several series confirm that revision for 
femoral component malrotation in isolation will achieve 
improved function with particular emphasis on functional 
measures which rely upon a stable and balanced mid-flex-
ion tibiofemoral articulation [13, 23, 42]. Unlike the work 
of Thompson et al., we did allow for the tibia to sit on the 
tibial surface where there was maximal conformity, by 
cycling the knee after fixing the femoral component and 
allowing the tibia to sit accordingly, congruity was opti-
mised from a load perspective [7, 33, 40]. Internal femoral 
component rotation with overstuffing of the medial com-
partment in flexion may stretch the MCL leading to pain, 
stiffness, failure to facilitate safe flexion and impaired 
varus/valgus laxity [11, 22, 33, 40]. Increased compartmen-
tal load on the medial side may lead to premature failure 
and suboptimal performance due to abnormal non-physi-
ological load being shared across the articulation. Jeffcote 
et  al. [15] correlated tibiofemoral forces with collateral 
ligament strain when increasing the flexion gap. Medial 
tibial pain has been reported in this patient cohort, and the 
finding of increased medial compartmental load with inter-
nal femoral component rotation could offer an explanation 
for such. We believe that this is the first work to identify 
abnormal preferential asymmetrical loading of the medial 
compartment without evidence of a reciprocal effect on 
laxity. Much previous work has argued that achievement of 
a quadrilateral flexion gap and the use of ligament tension 
devices may aid with load distribution but without deter-
mining load per se. However, this work does raise concerns 
about how reliable peroperative manual stress is at deter-
mining equivalent loading across the medial and lateral 
compartments [44]. Previous CT work has found rotational 
alignment errors in vivo to range from 13° of internal rota-
tion to as much as 16° of external rotation have been docu-
mented [36]. Correct coronal plane alignment is associated 
with good clinical outcomes, but little is known of the cor-
rect mechanical axis in flexion [19]. Our work has focused 
on a much narrower range of rotation and despite such has 
still identified significant variation in load transfer. Greater 
errors in 3D placement can underscore the early clinical 
failures with patients reporting suboptimal functional per-
formance from mediolateral pathological laxity and inevi-
table pain from loosening and abnormal loading of the sub-
chondral bone [18].

Our work failed to find differences in load on the lateral 
side with external rotation of the femoral component. It is 
known that the posterolateral corner, additionally, is inef-
fective in flexion [39]. This apparent capacity to dissipate 
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load in flexion could explain the minimal change in load 
on the lateral side with excess femoral external rotation. 
Recent work on the kinematics of femoral component rota-
tion did examine the impact of femoral and tibial compo-
nent rotation upon load in the surrounding muscle groups 
[40]. These workers found that femoral component rota-
tion principally influenced load in the quadriceps apparatus 
and collateral ligaments, thereby determining varus valgus 
movement. However, no work was done to examine load 
across the joint. Our work has added to this knowledge 
by relating in isolation femoral component rotation, albeit 
with more subtle rotational margins [40].
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