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Abstract 

Background  Aquaculture plays an important role in global protein supplies and food security. The ban on antibiotics 
as feed additive proposes urgent need to develop alternatives. Gut microbiota plays important roles in the metabo-
lism and immunity of fish and has the potential to give rise to novel solutions for challenges confronted by fish 
culture. However, our understanding of fish gut microbiome is still lacking.

Results  We identified 575,856 non-redundant genes by metagenomic sequencing of the intestinal content samples 
of grass carp. Taxonomic and functional annotation of the gene catalogue revealed specificity of the gut microbiome 
of grass carp compared with mammals. Co-occurrence analysis indicated exclusive relations between the genera 
belonging to Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes, suggesting two independent ecological groups 
of the microbiota. The association pattern of Proteobacteria with the gene expression modules of fish gut and the liver 
was consistently opposite to that of Fusobacteria, Firmicutes, and Bacteroidetes, implying differential functionality 
of Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes. Therefore, the two ecological groups were considered 
as two functional groups, i.e., Functional Group 1: Proteobacteria and Functional Group 2: Fusobacteria/Firmicutes/Bac
teroidetes. Further analysis revealed that the two functional groups differ in genetic capacity for carbohydrate utiliza-
tion, virulence factors, and antibiotic resistance. Finally, we proposed that the ratio of “Functional Group 2/Functional 
Group 1” can be used as a biomarker that efficiently reflects the structural and functional characteristics of the micro-
biota of grass carp.

Conclusions  The gene catalogue is an important resource for investigating the gut microbiome of grass carp. Multi-
omics analysis provides insights into functional implications of the main phyla that comprise the fish microbiota 
and shed lights on targets for microbiota regulation.
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Background
Fish consumption accounts for 1/6 of the world’s animal 
protein intake (FAO, 2020). Due to the limited resources 
of capture fisheries, aquaculture has become the main 
way to improve the global supply of fish products [1, 2]. 
The limitations of production factors (land, feed, etc.) 
and aquaculture environmental stresses (pathogens, par-
asites, etc.) have resulted in continuous challenges to the 
high-efficiency and green development of aquaculture 
[3–5]. Moreover, the ban on antibiotics as feed additive 
proposes urgent need to develop alternatives.
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Studies of fish microbiome have the potential to give 
rise to novel solutions to challenges confronted by the 
aquaculture industry [6]. The important role of the com-
mensal microbiota in immune homeostasis, disease, and 
health has been demonstrated in humans [7–9], and 
a comprehensive gut microbiome gene catalogue was 
established [10, 11]. Studies in fish have also found that 
commensal microbiota plays important roles for host 
metabolism and immunity [12]. Regarding metagen-
omic study, a gene catalogue of the gut microbiome of 
zebrafish was constructed using metagenomics, includ-
ing 1,569,102 non-redundant genes, which provides 
resources for gut microbiome-related research of this 
model animal [13]. Metagenomic study of salmonid-
related Mycoplasma species revealed adaption to salmo-
nid host and specific functions to benefit the host, such 
as biosynthesis of essential amino acids and metabolism 
of B vitamins [14–16]. However, as farmed animals, the 
metagenomic studies in fish lagged behind those in live-
stock and poultry. For instance, a metagenomic study in 
goat constructed 719 high-quality metagenome-assem-
bled genomes (MAGs) and revealed their functions in 
the production of short-chain fatty acids (SCFAS) [17]. 
Microbial function was discovered for fiber digestion 
in the rumen, and a potential cross talk between micro-
biome and host cells was confirmed in dairy cows by 
metagenomic sequencing [18]. A gut microbial gene 
catalogue was constructed in chicken, and metagenomic 
analysis provided insights into the growth-promoting 
effect of Macleaya cordata extract (MCE) [19]. In con-
trast, the microbial gene catalogue has not yet been 
constructed in economic fish species and functions of 
main phyla in the aspect of host-interaction remains 
unclear. Weighted gene co-expression network analy-
sis (WGCNA) has been used in correlations between 
host gene sets and factors (such as phenotypic traits and 
environmental factors) [20], which helps to identify key 
relationships between gene co-expression modules and 
microbial taxa [21].

Diet is a key factor that influences the structure and 
function of the gut microbiota [22]. Feeds in aquacul-
ture have been shifting from animal proteins derived 
from marine resources to plant proteins [4]. Replace-
ment of animal proteins by plant proteins is common in 
aquaculture, giving rise to formulations with differential 
percentage of animal versus plant protein sources. Thus, 
carnivorous (animal protein dominated), omnivorous 
(relatively balanced in animal and plant proteins), and 
herbivorous (plant protein dominated) diets have become 
distinctive features of feeds in aquaculture, and microbial 
alteration associated with the three dietary types is repre-
sentative when investigating the structural and functional 
characteristics of fish microbiota.

Grass carp (Ctenopharyngodon idella), belonging to 
the Cyprinidae family, is the most important freshwater 
farmed fish species in China. At present, the produc-
tion value of grass carp ranks the first among cultured 
freshwater fish globally. In this study, we investigate 
the structural and functional characteristics of the gut 
microbiome of grass carp. Metagenome sequencing 
of microbiota was conducted in fish fed carnivorous, 
omnivorous, and herbivorous diets. The gene catalogue 
was established, and the functional implications of key 
microbial taxa in the aspect of host interaction were 
evaluated by multi-omics approach.

Materials and methods
Experimental diets
According to the nutritional requirements of NRC 
(2011) and Wang et  al. [12], the experimental formu-
lations of different diets for grass carp were designed 
with equal nitrogen and lipid levels (Table 1). In brief, 
soy protein concentrate and wheat gluten protein were 
the protein sources for the herbivorous diet (HD), and 
casein and gelatin were the protein sources for the 
carnivorous diet (CD). Equal proportions of protein 
sources in the carnivorous and herbivorous diets make 
up the omnivorous diet (OD). Microcrystalline cellu-
lose has been added as a dietary fiber for herbivorous 
fish. Soybean oil is applied as a fat source and adapted 
to the high-fat level feeding levels in aquaculture.

Experimental design and sample collection
Grass carp with an initial weight of about 20 ± 0.28  g 
were selected and maintained in the culture system for 
3  weeks. Before the formal experiment, the fish were 
treated with the CD diet for 1 week. Then, 108 fish of 
the same-sized fish were randomly allocated to three 
tanks and fed three times a day by satiety feeding, with 
one of the three diets CD/OD/HD for 3  weeks (Sup-
plementary Fig. 1A). During the experiment, the water 
temperature was maintained at 26 ± 2  °C. At weeks 
1 and 3, 18 fish were randomly selected from each 
dietary group to form six biological replicates, with 
each replicate consisting of a mixture of three fish to 
ensure sufficient intestinal content samples for shotgun 
sequencing. The intestinal contents and tissues were 
sampled 4–6  h after feeding. Specifically, after anes-
thesia with MS-222, the hindgut was quickly stripped 
to collect the contents. In addition, the corresponding 
hindgut and liver tissues were collected and stored. All 
samples were quickly frozen directly in liquid nitrogen 
and finally transferred to − 80 °C.
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DNA extraction and metagenome sequencing
Total DNA was extracted from all intestinal content 
samples using the CTAB method. The integrity of the 
extracted DNA was measured by electrophoresis on 
a 1% agarose gel, and the concentration of DNA was 
determined using Qubit (Qubit™ dsDNA HS Assay Kit, 
Invitrogen, USA). High-quality metagenomic libraries 
(average size of DNA constructs 420–580 bp) were then 
constructed according to the manufacturer’s instruc-
tions of the library preparation kit (VAHTS® Universal 
Plus DNA Library Pren Kit for Illumina). Sequencing of 
metagenomic libraries was performed on the Illumina 
NovaSeq 6000 sequencing technology platform (Illu-
mina, San Diego, CA, USA) in paired-end 150-bp mode 
(PE150).

RNA extraction, transcriptome sequencing, and data 
analysis
RNA of intestinal and liver samples was extracted 
according to the operating instructions of TRIzol rea-
gent (Invitrogen, USA). Subsequently, nucleic acid con-
centration was determined in NanoDrop 2000 (Thermo 
Fisher Scientific, Waltman, MA, USA), and integrity 

testing was performed using Agilent Bioanalyzer 2100 
system, Hieff NGS® Ultima Dual-mode mRNA Library 
Prep Kit for Illumina® (cat. no.13533ES96) was used 
for library construction. The libraries were tested by 
Qsep-400 method and then sequenced via the Illumina 
NovaSeq 6000 technology platform (150  bp paired-
end) using the NovaSeq 6000 S4 Reagent Kit (Illumina, 
San Diego, CA, USA). A total of 466.18 Gb Clean Data 
was obtained from 72 transcriptome sequencing sam-
ples. After the clean data were mapped onto the refer-
ence genome (http://​www.​ncgr.​ac.​cn/​grass​carp/​files/C_​
idella_​female_​scaff​olds.​fasta.​v1.​gz) [23] by HISAT2 
(version 2.0.4,–dta -p 6 –max-intronlen 5,000,000) 
[24], the transcript was assembled and using String-
Tie (Version V1.3.4d,–merge -F 0.1 -T 0.1) [25]. Gene 
expression was quantified by FPKM method [26]. Fold-
Change > 1.5 and p-value < 0.05 were considered to be 
differentially expressed genes (DEG) using edgeR (ver-
sion3.8.6) [27]. Enrichment analysis of KEGG pathways 
was performed using clusterProfiler (version 3.10.1), 
and q-value < 0.05 was considered to be a significant 
enrichment. Default parameters were used for unlisted 
parameters.

Table 1  Experimental formulations for different diets of grass carp

a Containing the following (g/kg vitamin premix): thiamine, 0.438; riboflavin, 0.632; pyridoxine, 0.908; d-pantothenic acid, 1.724; nicotinic acid, 4.583; biotin, 0.211; folic 
acid, 0.549; vitamin B12, 0.001; inositol, 21.053; menadione sodium bisulfite, 0.889; retinyl acetate, 0.677; cholecalciferol, 0.116
b Containing the following (g/kg mineral premix): CoCl2.6H2O, 0.074; CuSO4.5H2O, 2.5; FeSO4.7H2O, 73.2; NaCl, 40.0; MgSO4.7H2O, 284.0; MnSO4.H2O, 6.50; KI, 0.68; 
Na2SeO3, 0.10; ZnSO4.7H2O, 131.93; cellulose, 501.09

Ingredient (g/kg diet) Carnivorous diet Omnivorous diet Herbivorous diet

Soybean protein concentrate 0 210.32 420.64

Vital gluten 0 44 88

Casein 304 152 0

Gelatin 76 38 0

Vital gluten 310 265 220

Soybean oil 84.2 82.7 81.1

Lysine 0 3.69 7.37

Methionine 7.24 9.245 11.25

VC phosphate 1 1 1

Vitamin premixa 2 2 2

Mineral premixb 2 2 2

Monocalcium phosphate 20 20 20

Choline chloride 2 2 2

Microcrystalline cellulose 80 80 80

Zeolite powder 111.56 88.045 64.64

Total 1000 1000 1000

Conventional nutrients

  Crude protein (%) 35.27 35.25 35.95

  Crude lipid (%) 8.47 8.27 8.64

  Crude ash (%) 4.72 4.06 3.94

  Dry matter (%) 95.28 95.94 96.06

http://www.ncgr.ac.cn/grasscarp/files/C_idella_female_scaffolds.fasta.v1.gz
http://www.ncgr.ac.cn/grasscarp/files/C_idella_female_scaffolds.fasta.v1.gz
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Metagenomic assembly and non‑redundant gene 
catalogue construction
The raw tags were filtered using Trimmomatic (version 
0.33) to obtain high-quality sequencing data (CleanTags) 
with the parameters (LEADING:3 TRAILING:3 SLID-
INGWINDOW:50:20 MINLEN:100), and the bowtie2 
(version 2.2.4) was used to perform sequence alignment 
with the host genome removing host contamination. 
Metagenome assembly was performed using the soft-
ware MEGAHIT (Version 1.1.2), and contig sequences 
shorter than 300  bp were filtered [28]. The QUAST 
(Version 2.3) software was used to evaluate the assem-
bly results [29]. MetaGeneMark (Version 3.26) software 
was used to identify coding regions in the genome using 
default parameters [30]. Redundancy was removed using 
MMseqs2 software (Version 12-113e3) using a similarity 
threshold set to 95% and a coverage threshold set to 90% 
to construct non-redundant gene catalogue [31, 32].

Taxonomic profiling, functional annotation, and microbial 
data analysis
The protein sequences from the non-redundant gene 
set were aligned to the NCBI-nr database (2019–03) to 
obtain annotated taxonomic information using Dia-
mond software (version 0.9.24) [33] with a threshold of 
e-value < 1e-05. The NR that could not be classified to any 
taxa were defined as unknown taxa. In addition, Eukary-
ota and Metazoa with very low abundance were excluded. 
Protein sequences from non-redundant gene catalogue 
were aligned to the KEGG (Kyoto Encyclopedia of Genes 
and Genomes) database [34] using Diamond software 
(version 0.9.24). The threshold was e-value < 1e-05, and 
if there was more than one match hit, the best match 
was selected as the annotation for that sequence. Simi-
larly, the protein sequence of NR was aligned with egg-
NOG (version4.0) [35] using Diamond software (version 
0.9.24). Carbohydrate-activated enzymes (CAZys) were 
annotated by aligning the protein sequence of NR to the 
dbCAN database (HMMdb V8) [36] using HMMER (ver-
sion3.0). The antibiotic resistance genes (ARGs) were 
annotated by alignment with the Comprehensive Anti-
biotic Resistance Database (CARD) [37] using RGI (ver-
sion4.2.2). Protein sequences of NR were annotated by 
the virulence factor annotation database (VFDB) [38] 
using BLAST (version2.2.31 +) software [39].

Abundance calculations for sequencing were referred 
to the previous method [40]. Based on taxonomic, KO, 
and CAZys annotations, the relative abundance of phy-
lum, family, genus, species, KO, and CAZys was calcu-
lated by summing up the abundance of genes belonging 
to each category [19]. In addition, the abundance of 
virulence factor and antibiotic resistance genes in each 
functional group was calculated from the number of 

related genes normalized to the number of total NCBI 
nr-annotated genes in the functional group. The ratio 
of Functional Group 2/Functional Group 1 = the sum of 
the relative abundance of Fusobacteria, Firmicutes and 
Bacteroidetes in the sample/the relative abundance of 
Proteobacteria in this sample. Based on the R language 
(v3.1.1) and python2, alpha-diversity (including Ace, 
Chao1, Shannon, Simpson index) analysis was applied via 
the picante package (v1.8.2), principal coordinate analysis 
(PCoA) applied to assess the beta diversity of gut bacte-
rial communities based on python2 (cogent, v1.5.3), the 
vegan package (v2.3–0) was applied for the analysis of 
PERMANOVA/ANOSIM, and the pheatmap package 
(v1.0.2) was applied for the plotting of heat maps. Venn 
diagram (v1.6.9) was applied for the analysis of vennd, 
mothur (v1.22.2) was applied for the analysis of rarefac-
tion curve, and matplotlib (v1.5.1) was applied for the 
analysis of taxonomic composition.

Metagenome‑assembled genomes
Metagenomic binning was applied to assembled data by 
using three different algorithms: MetaBAT2 (version2.12) 
[41], MaxBin (version2.2.6) [42], and CONOCOCT (ver-
sion1.0.0) [43]. Subsequently, the software DAS_Tool 
(version1.1.2 –search_engine diamond –write_bins 1 
–score_threshold 0) was used to integrate the results of 
the different metagenomic binning software [44]. The 
integrated metagenomic bins (or metagenome-assem-
bled genomes, MAGs) were evaluated using checkM 
(version1.1.3, default parameters) [45] software. High-
quality bins were defined by selecting completeness ≥ 80 
contamination ≤ 10 [46]. MAGs were clustered into spe-
cies-level genomic bins (SGBs) using dRep (version3.0.3) 
[47] with a threshold of 95% ANI. Finally, the GTDB-Tk 
(v1.2.0) software was used to annotate bins for taxonomic 
classification by reference to the Genome Taxonomy 
Database (GTDB) [48]. SGBs containing at least one 
MAGs in the GTDB were considered to be known SGBs, 
otherwise, the SGB was considered as unknown [49].

Weighted gene co‑expression network analysis
We performed weighted gene co-expression network 
analysis (WGCNA) using WGCNA package [50] on the 
platform BMKCloud (www.​biocl​oud.​net). Firstly, the 
expression of all genes in the gut and the liver was used to 
construct gene co-expression modules. Secondly, Pear-
son correlations between module eigengenes (MEs) and 
ecological groups were calculated.

Co‑occurrence network analysis
The relative abundance of the core microbiota was 
applied to construct a matrix of correlations, followed 
by random matrix theory to determine the threshold of 

http://www.biocloud.net
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correlation. The correlation network data was visualized 
through the igraph (version 1.2.7) package.

Statistical analysis
The unpaired t-test was used to assess the differ-
ences between the two groups, and the Tukey’s mul-
tiple comparisons test was used to analyze the three or 
more groups. The plots and diagrams were displayed by 
ggplot2 (2.2.1) using R language. GraphPad Prism (ver-
sion 8.0) software was applied for graphing.

Results
Establishment and assessment of grass carp microbiome 
gene catalogues
Shotgun metagenomics yielded 476,855,093 valid reads 
(Table S1). A total of 2,099,912 contigs were assembled 
after quality control and de-hosting, and 575,856 non-
redundant  (NR) genes were identified with an aver-
age length of 1.65  kb (Table S2). Rarefaction analysis of 
all samples showed curves approaching saturation (at 
sequences number of 372,000–5308000) (Supplemen-
tary Fig.  1B). A total of 374,843 NR genes (65.09%) can 
be blasted to the NCBI-nr database (Table S3). A total of 
64.88% of the NR genes could be taxonomically classified. 
Among them, 97.28% were assigned to bacteria, with the 

remaining genes being assigned to viruses (1.41%), fungi 
(1.42%), or archaea (0.17%) (Fig. 1A). At the phylum level, 
most of the annotated genes (53.74%) belonged to Proteo-
bacteria, followed by Bacteroidetes (16.99%), Firmicutes 
(13.81%), and Fusobacteria (6.86%) (Fig.  1B). Our fur-
ther analysis revealed that 48.71% of the NR genes were 
assigned to bacterial genera, predominantly in Aero-
monas (17.04%), Bacteroides (6.94%), Shewanella (5.33%), 
and Cetobacterium (5.10%) (Fig. 1C).

Using KEGG and eggNOG for function classification, 
187,972 (32.64%) and 329,336 (57.19%) NR genes were 
annotated with KEGG orthologous groups (KOs) (Table 
S4) and eggNOG orthologous groups (OGs) (Table S5). 
The proportion of genes annotated to KOs or OGs is 
lower than that in mammals [51], reflecting that gut 
commensal bacteria were less studied in fish. The KEGG 
profiles showed similarities in gut microbial functions of 
grass carp compared with human and pig. However, the 
genes for carbohydrate metabolism, amino acid metabo-
lism, nucleotide metabolism, and energy metabolism are 
more abundant in human and pig, while the genes for cell 
motility and cellular community are more abundant in 
the fish microbiota (Fig. 1D) [19]. These results suggest a 
deviation of the gut microbial function of fish compared 
with mammals, with a general lower genetic capacity for 

Fig. 1  Establishment and analysis of grass carp gut microbiome gene catalogues. A Taxonomic annotation of the grass carp gut gene catalog 
at the super kingdom level. Only non-redundant genes that could be classified from the NCBI nr database were involved in the analysis. B and C 
The NR genes assigned to bacteria were taxonomically annotated at the phylum (B) and genus (C) level. D KEGG functional files of the grass carp 
gut gene catalogue. Genes without functional annotation were excluded, and relative gene abundance analysis was performed at the second level 
of the KEGG



Page 6 of 17Li et al. Microbiome            (2024) 12:2 

nutrient metabolism but higher capacity for microbe-
microbe interactions.

Reconstruction of microbial genomes from metagen-
omic sequencing data has been reported in humans [52], 
ruminants [46], and pigs [51, 53] by using metagenomic 
binning methods. We constructed metagenome-assem-
bled genomes (MAGs) based on metagenomic data of 
grass carp and assembled a total of 129 high-quality 
MAGs (completeness > 80% and contamination < 10%) 
(Table S6). The 129 MAGs were further organized into 
species-level genome bins (SGBs) by average nucleo-
tide identity (ANI) threshold of 95%. This resulted in a 
total of 18 SGBs. Fifteen SGBs were without any pub-
licly annotatable genomes and were defined as unknown 
SGBs (uSGB). Subsequent taxonomic annotation by 
the Genome Taxonomy Database Toolkit (GTDB-Tk) 
revealed that the 18 SGBs are mainly from Proteobacte-
ria, Fusobacteria, Bacteroidetes, and Firmicutes (Table 
S7).

The ecological interactions of gut microbiota of grass carp
The top 30 genera contributed more than 80% to the total 
abundance of the microbiota (Supplementary Fig.  2A 
and B), while the VENN analysis showed that 23 genera 
were shared among different dietary groups and time 
points (Supplementary Fig. 2C). Further analysis among 
the taxonomically annotated genera revealed that shared 
genera contributed 79.4–89.20% of the total abundance 
(Fig.  2A), indicating that shared genera dominated the 
microbial community and thus can be considered as core 
genera. Co-occurrence network analysis was performed 
to further explore the ecological interactions between 
the core genera. At week 1, co-exclusive patterns were 
observed between the core genera belonging to Proteo-
bacteria (except Acinetobacter) and Fusobacteria, Bacte-
roidetes, or Firmicutes (Fig. 2B). Similarly, the genera of 
Proteobacteria (except Photobacterium, Acinetobacter, 
Pseudomonas) showed exclusive relations with one or 
more of the genera of Bacteroidetes, Firmicutes (except 
Enterococcus), or Fusobacteria at week 3 (Fig. 2C). Simi-
larly, analysis at the phylum level showed that there were 
mutually exclusive patterns between Proteobacteria and 
Fusobacteria, Firmicutes, or Bacteroidetes (Fig.  2D and 
E). Thus, the results indicated mutually exclusive rela-
tions between the core genera belonging to Proteobacte-
ria and those belonging to Fusobacteria, Firmicutes, and 
Bacteroidetes, suggesting two independent ecological 
groups of the intestinal microbiota of grass carp: Proteo-
bacteria and Fusobacteria/Firmicutes/Bacteroidetes.

Gut microbiota was associated with host gene modules
In order to explore the functional characteristics of 
the gut microbiota, correlation analysis of the gut 

microbiota and host gene modules was conducted. 
WGCNA analysis revealed 24 and 31 gene modules 
of gut expressed genes at weeks 1 and 3, respectively 
(Supplementary Fig. 2D and F). In the liver, 31 and 25 
gene modules were obtained at weeks 1 and 3, respec-
tively (Supplementary Fig. 2E and G).

We further investigated the association of the two 
ecological groups (Proteobacteria and Fusobacteria/Fir
micutes/Bacteroidetes) with gene modules (M) of host 
by Pearson analysis. Gene modules were differentiated 
by colors (Fig.  3). The association pattern of Proteo-
bacteria with the gene modules of gut and the liver at 
week 1 was consistently opposite to that of Fusobacte-
ria, Firmicutes, and Bacteroidetes (Fig. 3A and B), and 
the opposite association was also observed at week 3 
(Fig. 3C and D), indicating differential functionality of 
Proteobacteria and Fusobacteria/Firmicutes/Bacteroide
tes in terms of their interaction with fish host. There-
fore, the ecological groups can be considered as two 
functional groups, i.e., Functional Group 1: Proteobac-
teria and Functional Group 2: Fusobacteria/Firmicutes
/Bacteroidetes.

KEGG analysis revealed that gut gene modules signifi-
cantly associated with the microbiota mainly included 
functions of recognition of microorganisms by the 
immune system (e.g., Toll-like receptor signaling path-
way, NOD-like receptor signaling pathway, and RIG-I-
like receptor signaling pathway) and the downstream 
cellular processes (e.g., apoptosis, phagosome, cell adhe-
sion molecules, and ferroptosis) at week 1 (Fig.  3E). In 
the liver, gene modules with significant association with 
microbiota involved functions of nutrient metabolism 
(e.g., propanoate metabolism, fatty acid metabolism, fatty 
acid biosynthesis, and biosynthesis of unsaturated fatty 
acids), the immune system (e.g., NOD-like receptor sign-
aling pathway and RIG-I-like receptor signaling pathway), 
and the endocrine systems (e.g., PPAR signaling pathway 
and adipocytokine signaling pathway) (Fig. 3E). Similarly, 
the gut gene modules included functions of the immune 
system (e.g., Toll-like receptor signaling pathway, NOD-
like receptor signaling pathway and RIG-I-like recep-
tor signaling pathway), nutrient metabolism pathways 
(e.g., fatty acid biosynthesis, fatty acid metabolism and 
fat digestion, and absorption), and the endocrine system 
pathway (PPAR signaling pathway) at week 3 (Fig.  3F), 
while in the liver, the gene modules involved nutritional 
metabolic pathways (e.g., purine metabolism, pyrimi-
dine metabolism, and primary bile acid biosynthesis) 
and endocrine systems involved in metabolism (insulin 
signaling pathway, PPAR signaling pathway, and adipo-
cytokine signaling pathway) (Fig. 3F). Taken together, the 
two functional groups were associated with host nutrient 
metabolism and immunity.
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The two functional groups differ in genetic capacity 
for carbohydrate utilization, virulence factors, 
and antibiotic resistance
The gut microbiota utilizes carbohydrates by carbo-
hydrate-active enzymes (CAZy) and produces SCFAs, 
which are beneficial to the host in both nutritional and 
immune aspects [19, 54, 55]. In contrast, virulence fac-
tors and antibiotic resistance are generally negative 
factors that may exert detrimental effect [56–58]. We 
therefore analyzed the genes encoding CAZy, virulence 

factors, and antibiotic resistance harbored by the two 
functional groups. The results showed that members 
of Functional Group 2 enriched CAZy genes encoding 
enzymes degrading arabinoxylan, pectin, mucin, inulin, 
and cellulose compared with Functional Group 1, and 
only the starch-related CAZy gene family was enriched in 
Functional Group 1 (Fig. 4A and B).

Furthermore, members of Functional Group 1 
encoded more virulence factor (VF) genes compared 
with Functional Group 2 (Fig.  4C). In particular, VF 

Fig. 2  Co-occurrence network analysis of the core genera of grass carp gut microbiota. A The relative abundance of shared genera 
in the microbiota. B and C Co-occurrence network of core genera at weeks 1 and 3. D and E Co-occurrence network of microbiota at the phylum 
level at weeks 1 and 3. The connection strength threshold is Spearman’s r > 0.5, and correlation is considered as significant when p-value < 0.05. 
The size of the connection point represents the relative abundance of a specific microbe. Red lines indicate co-occurrence. Green lines indicate 
co-exclusion, and the thickness of the line shows the strength of the correlation. The dotted ellipse indicates a specific modular unit
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genes involved in antiphagocytosis, endotoxin, and 
manganese are enriched in Functional Group 2, while 
Functional Group 1 enriched VF genes across 12 dif-
ferent VF classes (Fig.  4D), suggesting that Functional 
Group 1 may exert more negative phenotypes in the 
host-microbes interaction. In terms of antibiotic 

resistance genes (ARG), the overall number of ARGs is 
higher in Functional Group 1 versus Functional Group 
2 (Fig.  4E). Functional Group 2 encoded more resist-
ance genes against oxazolidinone, macrolide, rifamycin, 
bicyclomycin, lincosamide, and streptogramin, while 
Functional Group 1 enriched ARGs for resistance to 11 
antibiotic classes (Fig. 4F).

Fig. 3  Gut microbiota is associated with host gene modules. A, B, C, and D Weighted gene co-expression network analyses (WGCNA) 
was performed to identify co-expressed gene modules (M). Gene modules are clusters of highly interconnected genes, which are designated 
by color codes (such as black M). The association of the two ecological groups with host gene modules was investigated by Pearson analysis. A 
and B represent association with gut and liver gene modules at week 1, and C and D represent association with gut and liver gene modules at week 
3. Heatmaps show the correlation between gene modules and the two ecological groups of microbiomes. Clustering was performed by a complete 
clustering method using Euclidean distances. KEGG pathways enriched in the gene modules correlated with the functional groups (E and F). 
Enriched bubble plots have been shown for pathways with q-values < 0.05. Five or six biological replicates were included during analysis, $p < 0.1; 
*p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 4  The two functional groups differ in genetic capacity for carbohydrate utilization, virulence factors, and antibiotic resistance. A and B 
Differences in genetic capacity for carbohydrate substrate utilization. A Heat map showing the proportion of each carbohydrate-active enzyme 
(CAZy) category in different functional groups. B Abundance of genes involved in carbohydrate substrate utilization. (The abundance of genes 
annotated to different types of carbohydrates was normalized to the total carbohydrate-active enzyme in each sample. The abundance of total 
carbohydrate-active enzyme genes in different functional groups was adjusted to 100,000.) Arabinoxylan-related CAZy families, CE1, CE2, CE4, 
CE6, CE7, GH10, GH11, GH115, GH43, GH51, GH67, GH3, and GH5; pectin-related CAZy families, CE12, CE8, GH28, PL1, and PL9; mucin-related CAZy 
families, GH1, GH2, GH3, GH4, GH18, GH19, GH20,GH29, GH33, GH38, GH58, GH79, GH84, GH85, GH88, GH89, GH92, GH95, GH98, GH99, GH101, 
GH105, GH109, GH110,GH113, PL6, PL8, PL12, PL13, and PL21; inulin-related CAZy families, GH32 and GH91; cellulose-related CAZy families, GH1, 
GH44, GH48, GH8, GH9, GH3, and GH5; starch-related CAZy families, GH13, GH31, and GH97. C Number of genes annotated to virulence factors 
in the two functional groups. D The abundance of genes encoding virulence factors in the two functional groups. Genes for each VF class were 
normalized to the number of total NCBI nr-annotated genes in each functional group. E The number of antibiotic resistance genes in the two 
functional groups. Antibiotic resistance genes were normalized to the total NCBI nr-annotated genes in each functional group (adjusted to 100,000). 
F The abundance of ARGs in the two functional groups. Genes for each resistance class were normalized to the number of total NCBI nr-annotated 
genes in each functional group. Thirty-four biological replicates were included in each functional group during analysis. The Mann–Whitney test 
was used to analyze differences between functional groups, *p < 0.05; **p < 0 .01; ***p < 0.001; ****p < 0.0001
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The ratio of “Functional Group 2/Functional Group 1” 
reflects the structural and functional characteristics 
of the microbiota
Dietary ingredients are key factors influencing the gut 
microbiota [22]. We evaluated the effect of diets on the 
microbial composition of grass carp. Rarefaction curve 
analysis of the samples indicated saturation of sequenc-
ing depth (Supplementary Fig.  3A and C). At week 1, 
the relative abundance of Proteobacteria decreased in 
OD and HD groups compared with CD group, while the 
abundance of Firmicutes and Bacteroidetes increased 
(Fig.  5A). Similarly, the abundance of Proteobacteria 
decreased, and Fusobacteria increased in OD and HD 
groups compared with CD group at week 3 (Fig.  5B). 
Diets had no significant influence on the α-diversity of 
the microbiota including ACE, Chao1, Shannon, and 
Simpson indices (Supplementary Fig.  3E and F). Prin-
cipal coordinate analysis (PCoA) revealed a significant 
alteration of the microbiota due to dietary groups at both 
weeks 1 and 3. The microbiota of CD clustered alone, 
while the microbiota of OD and HD clustered together 
(Supplementary Fig. 3G, H, I, K, and L).

Considering the ecological and functional differ-
ence of Functional Group 1 and Functional Group 2, 
the ratio of the abundance of Functional Group 2 and 
Functional Group 1, designated as “Functional Group 
2/Functional Group 1,” was calculated to evaluate the 
structural and functional characteristics of the micro-
biota. At week 1, “Functional Group 2/Functional Group 

1” was significantly higher in OD/HD diets versus CD 
diet (Fig. 5C), and a similar trend in “Functional Group 
2/Functional Group 1” was observed among the three 
dietary groups at week 3 (Fig. 5E). PCoA analysis showed 
that the microbial structure associated with different 
diets was well explained by “Functional Group2/Func-
tional Group 1,” with the microbiota of high ratio (OD/
HD) deviating from those of low ratio (CD) at both week 
1 (Fig. 5D) and week 3 (Fig. 5F). Thus, the ratio of “Func-
tional Group2/Functional Group 1” can be used as a 
parameter to evaluate the structural characteristics of the 
gut microbiota of grass carp.

Furthermore, PCoA analysis showed a robust separa-
tion between the microbiota of high ratio groups (OD/
HD) and low ratio CD group in terms of the abundance 
of genes encoding carbohydrate-coding enzymes (ANO-
SIM, R = 0.85, p = 0.001; R = 0.51, p = 0.007), and the sepa-
ration was efficient at both weeks 1 and 3 (Fig.  6A and 
B). Compared with low ratio microbiota (CD), high ratio 
microbiota (OD/HD) enriched CAZy genes for arabinox-
ylan, pectin, and cellulose utilization (Fig. 6C and D). On 
top of it, the microbiota with high ratio harbored more 
abundance of the gene encoding the key enzyme (FTHFS) 
for acetate production. A similar trend was observed for 
butyrate producing key enzymes (Buk, AtoA/D), while 
no obvious difference was observed for the propionate 
producing gene (PcoAt) between the high ratio (OD/
HD) and low ratio (CD) groups (Fig. 6E). Together, these 
results indicated that the microbiota of high ratio groups 

Fig. 5  The ratio of “Functional Group 2/Functional Group 1” reflects the structural difference of microbiota associated with different dietary groups. 
A and B The relative abundance of top ten phyla of the gut microbiota at weeks 1 and 3. C and E Ratio of “Functional Group 2/Functional Group 1” 
at weeks 1 and 3. D and F Principal coordinate analysis (PCoA) of the microbiota associated with different dietary groups by Bray–Curtis’s distance. 
Samples with “high Functional Group 2” or “high Functional Group 1” were marked with different colors. The dotted ellipse borders represent 
the 95% confidence interval. Data were expressed as the mean ± SEM (n = 5 or 6 biological replicates), **p < 0 .01; ***p < 0.001
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Fig. 6  The ratio of “Functional Group 2/Functional Group 1” reflects the functional characteristics of the microbiota. A and B PCoA analysis 
of the abundance of CAZy genes in different dietary groups. Samples with “high Functional Group 2” or “high Functional Group 1” were marked 
with different colors. C and D Relative abundance of CAZy genes for a particular substrate in different dietary groups. E The relative abundance 
of key enzyme genes associated with the production of acetate (FTHFS: acetyl-formyltetrahydrofolate synthase/formate-tetrahydrofolate ligase), 
propionate (PcoAt: propionyl-CoA:succinate-CoA transferase/propionate CoA-transferase), and butyrate (Buk, butyrate kinase; AtoA, acetoacetate 
CoA transferase beta subunit; and AtoD, acetoacetate CoA transferase alpha subunit) in different dietary groups based on KEGG orthologous 
groups. F and G PCoA analysis of genes encoding virulence factors in different dietary groups. Samples with “high Functional Group 2” or “high 
Functional Group 1” were marked with different colors. H Chao1 index analysis of virulence factor gene abundance. I and J The relative abundance 
of each class of virulence factor genes in different dietary groups at week 1 (I) and week 3 (J). K The richness and diversity of antibiotic resistance 
genes were analyzed by Chao1 and Shannon indices, respectively. L The relative abundance of each class of antibiotic resistance genes in different 
dietary groups. ARGs with relative abundance below 1 in 100,000 were excluded in the analysis
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had higher functional capability for carbohydrate utiliza-
tion and SCFAs production.

The expression of GPR43 in gut was higher in high 
Functional Group 2 diets (OD/HD) compared with Func-
tional Group 1 group (CD) (Supplementary Fig.  4A). In 
the gut, acetyl-CoA production from pyruvate, amino 
acids (leucine, isoleucine), and fatty acids was all sup-
pressed in dietary groups with high Functional Group 2 
(OD/HD) versus high Functional Group 1 group (CD) 
(Supplementary Fig. 4B). On the other hand, the expres-
sion of ACSS1_2, the key enzyme for acetate assimila-
tion, was upregulated. Similarly, high Functional Group 
2 groups (OD/HD) featured reduced acetyl-CoA pro-
duction from pyruvate, amino acids (leucine, valine, iso-
leucine), and fatty acids in the liver when compared with 
high Functional Group 1 group (CD), and the expression 
of ACSS1_2 was enhanced (Supplementary Fig.  4A). In 
both gut and the liver (Supplementary Fig.  4A and B), 
the fatty acids synthesis from acetyl-CoA was enhanced 
in high Functional Group 2 dietary groups (OD/HD) 
versus CD group, indicating that the exogenous acetate 
influenced lipid metabolism. Together, these results indi-
cate that the differential SCFAs production capability of 
the microbiota with different “Functional Group 2/Func-
tional Group 1” ratio affected host metabolism, and ace-
tate was the main SCFA that exert the influence.

Further analysis of the virulence factors revealed sig-
nificant structural differences in the genes encoding the 
virulence factors for dietary groups with different ratio 
of “Functional Group2/Functional Group 1” (ANOSIM, 
R = 0.62, p = 0.001; R = 0.58, p = 0.006) (Fig.  6F and G). 
High ratio groups encoded lower abundance of virulence 
factor genes compared with low ratio group (Fig. 6 H, I, 
and J). This trend was more obvious at week 1 compared 
with week 3, which accorded with the reduced difference 
in the ratio among groups. Regarding antibiotic resist-
ance, high ratio groups (OD/HD) had lower abundance 
and diversity of ARGs compared with low ratio group 
(CD) (Fig. 6K and L).

The diversity and composition of the gut microbiota were 
associated with the diversity and composition of DNA 
viruses
The nonredundant gene catalogue was annotated 
through the nr database for the DNA virome, and rar-
efaction curves indicated that the shotgun metagenom-
ics sequencing depth was adequate to capture the DNA 
viruses (Supplementary Fig.  5A and B). The analysis 
revealed that the intestinal DNA virome was dominated 
by Caudovirales, which consisted of Myoviridae, Sipho-
viridae, and Podoviridae (Supplementary Fig.  5C and 
D, Table S12). Compared to the CD group, the relative 
abundance of Myoviridae increased, and Siphoviridae 

decreased in the OD/HD group at both weeks 1 and 3 
(Supplementary Fig.  5C and D). At the genus level, the 
gut DNA virome mainly consisted of Spn3virus, Vhm-
lvirus, Phikzvirus, Eah2virus, and Machinavirus (Table 
S12). Compared to CD, the relative abundance of Spn3vi-
rus, Vhmlvirus, Machinavirus, and Eah2virus increased, 
and Phikzvirus decreased in the OD/HD dietary groups 
(Supplementary Fig.  5E and F). Interestingly, the Chao1 
and Shannon indexes of the microbiota were strongly 
positive correlated with DNA virome (Fig. 7A and B; Sup-
plementary Fig. 6A, B, and C). A correlation study of beta 
diversity showed a strong positive correlation between 
the structural characteristics of the gut microbial com-
munity and DNA viruses (Fig. 7C and D), which was sta-
ble at both weeks 1 and 3 (Supplementary Fig. 6D). More 
specifically, Aeromonas and Tolumonas showed nega-
tive correlations with phage, while Bacteroides, Fuso-
bacterium, Clostridium, and Bacillus exhibited positive 
correlations at week 1, including Spn3virus, Vhmlvirus, 
Phikzvirus, Machinavirus (Fig.  7E). At week 3, Vibrio, 
Aeromonas, Shewanella, Acinetobacter, and Tolumonas 
were found to correlate with phages (Fig. 7F). Therefore, 
the diversity and structure of gut microbiota were signifi-
cantly correlated with DNA viruses (mainly phages) in 
grass carp. Similar results were reported in human [59], 
indicating a conserved correlation of commensal bacteria 
and phages.

Discussion
The gene catalogue of grass carp reported in this study 
comprises 575,856 NR genes, which can serve as a refer-
ence for further metagenomic studies of this important 
economic fish species. To our knowledge, this is the first 
fish gut microbial gene catalogue for economic fish spe-
cies. Despite large compositional difference, functional 
analysis revealed shared functions of fish microbiota with 
those of mammals, indicating functional redundancy of 
the microbiota. Nevertheless, compared to mammals, 
the microbiota of grass carp featured lower abundance 
of genes related to nutrient metabolism, suggesting lower 
contribution of the microbiota to host metabolism. It will 
be interesting to evaluate whether this is a common fea-
ture of fish microbiota, which awaits gut metagenomic 
analysis of more fish species.

While Firmicutes constitutes the dominant phylum of 
fish microbiome in some studies [60, 61], fish microbiota 
comprises high abundance of Proteobacteria in most 
cases [62], which is also true in this study on grass carp. 
Proteobacteria is known to include many pathogenic or 
opportunistically pathogenic genera/species and is gen-
erally regarded as negative components in the commen-
sal microbiota [63]. However, it is a paradox that this 
“negative” phylum often occupies high abundance in fish 
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microbiota, and the functionality of Proteobacteria in fish 
has never been assessed in a systematic way. The results 
in our study indicate that the functional implication of 
Proteobacteria is generally negative, as they harbor less 
genes for carbohydrate degradation and SCFAs produc-
tion while encoding more virulence factor and antibiotic 
resistance genes.

We constructed the co-occurrence network of the core 
genera and observed that except for a few genera, mem-
bers from Proteobacteria showed negative correlations 
with the genera belonging to Firmicutes, Fusobacteria, 
and Bacteroidetes. Therefore, Proteobacteria and Fir-
micutes/Fusobacteria/Bacteroidetes form two ecologi-
cal groups. Further studies revealed consistent opposite 
association pattern of the two ecological groups with 
gene modules of host, which prompted us to define them 
as two functional groups. Consistent with their oppo-
site association patters with the host, the two functional 

groups showed difference in genetic capacity for carbo-
hydrate utilization, SCFAs production, virulence factors, 
and antibiotic resistance. Considering their ecological 
and functional difference, we proposed that the ratio of 
“Functional Group 2/Functional Group 1” can be used to 
evaluate the structural and functional characteristics of 
grass carp gut microbiota. We found that the ratio was 
robust in reflecting overall compositional difference of 
the microbiota associated with different diets. Moreover, 
the functionality of the microbiota can also be reflected 
by the ratio. We also found that the ratio of “Functional 
Group 2/Functional Group 1” can also depict structural 
characteristics of gut microbiota of other fish species, 
including zebrafish and largemouth bass (Supplementary 
Figs.  7 and 8), suggesting potentially extensive applica-
tion of the ratio in evaluating the gut microbiota of fish 
species. In mammals, the Firmicutes/Bacteroidetes ratio 
of intestinal microbiota reflects the degree of obesity 

Fig. 7  Diversity and composition of DNA viruses were associated with the diversity and composition of the gut microbiota. A and B Spearman 
correlation analysis between gut DNA viral and microbiota alpha diversity at weeks 1 and 3. C and D Correlation analysis of beta diversity 
of intestinal DNA viruses and microbiota (E and F). The heat map shows the correlation between intestinal DNA viruses (mainly phages) 
and microbiota at the species level. Correlation was conducted by Spearman’s analysis. Red represents positive correlation, blue represents negative 
correlation, and the shade of the color indicates the value of the correlation coefficient
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[64]. The ratio of “Functional Group 2/Functional Group 
1” proposed in this study is a similar way of description 
of the microbiota. Our preliminary data suggest that the 
ratio reflects the overall health of fish, with higher ratio 
correlating with better health (Supplementary Fig. 9 and 
data not shown), but the specific functional implications 
of the ratio deserve further detailed studies. Notably, the 
two functional groups comprise major phyla of the gut 
microbiome of grass carp, and thus, the ratio is a rela-
tively rough biomarker that depicts the characteristics of 
the microbiota. Further studies are warranted to inves-
tigate the ecological and functional interactions of the 
core subgroups within the two functional groups, which 
may give rise to more accurate microbiome signature as 
reported in human [58].

Metagenomic studies of fish microbiota have been rare. 
Recently, a series of studies investigated salmonid-related 
Mycoplasma species by metagenomic analysis. Firstly, 
the studies confirmed that the gut microbiota of Atlan-
tic salmon is low in diversity and dominated by Myco-
plasma. By constructing MAGs, the studies described the 
mutualistic relationship and co-diversification between 
commensal Mycoplasma and its salmonid host. Salmo-
nid-related Mycoplasma can benefit the host through 
biosynthesis of essential amino acid and metabolism of B 
vitamins. Unlike that in salmon, the intestinal microbiota 
of grass carp showed relatively high diversity, with genera 
belonging to Proteobacteria, Firmicutes, Fusobacteria, 
and Bacteroidetes constituting considerable abundance 
in the microbiome. By metagenomic analysis, our study 
provided knowledge about the overall function of main 
taxonomic groups of the intestinal microbiota of grass 
carp. Further studies may uncover the specific functions 
of key commensal taxa through MAGs construction 
[14–16]. Studies have confirmed that the gut microbiota 
is able to ferment dietary fiber to produce short-chain 
fatty acids (e.g., acetate) that modulate lipid metabolism 
in the host [54, 65]. In our study, it was found that acetate 
metabolized by gut microbiota under group 1 diets (e.g., 
OD diets) was able to activate host GPR43 genes (espe-
cially intestinal) and participate in host fatty acid anabo-
lism, which suggests conserved mechanism in the aspect 
of SCFA-mediated host-microbiota interactions in fish 
and mammals.

Enterotypes were first reported to exist in humans with 
robust clustering of gut microbial communities [66, 67]. 
Enterotype-like structures have also been reported in 
several animal studies, although their gut microbial com-
position differs from that of humans. In addition, there 
has been found to be a correlation between enterotype 
and host growth traits in pigs [68]. It should be noted 
that the microbiota variation of grass carp observed in 
this study is more like to be continuous, which is not a 

stratified variation that can be depicted by enterotypes. 
This might be due to that the influence of “artificial 
diets” on the intestinal microbiota of grass carp is too 
big, which overwhelmed the possible stratified variation 
of the microbiota in natural cases. The ratio of “Func-
tional Group 2/Functional Group 1” can reflect the 
structural and functional features of fish microbiota, and 
the microbiota associated with different diets and time 
points can be roughly classified as “high ratio” and “low 
ratio.” However, such classification does not fit the con-
cept of enterotypes. Enterotypes that can robustly clus-
ter the gut microbiota variation in fish deserves further 
investigation.

Conclusions
The gut microbial gene catalogue of grass carp extended 
our knowledge about the gut microbiome of this eco-
nomically important fish species and provided resources 
for fish gut microbiome-related research. The taxonomic 
and functional annotation results reflected that the gut 
commensal bacteria were less studied in fish compared 
with mammals, highlighting the importance of more fun-
damental research in this field. We found that Proteobac-
teria is generally negatively correlated with the members 
of Fusobacteria/Firmicutes/Bacteroidetes, and the two 
groups showed differential functionality in terms of their 
interaction with fish host. Consistent with their differen-
tial functionality, the two functional groups differed in 
the genetic capacity for carbohydrate utilization, SCFAs 
production, virulence factors, and antibiotic resist-
ance. Furthermore, the ratio of “Functional Group 2/
Functional Group 1” can efficiently reflect the structural 
and functional characteristics of the gut microbiome of 
grass carp and could be used as a biomarker to assess 
the microbiota. Our results provide insights into func-
tional implications of the main phyla that comprise the 
fish microbiota and shed lights on targets for microbiota 
regulation, which may promote the development of green 
inputs for aquaculture that derive from or target the gut 
microbiota.
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