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1  | INTRODUC TION

The liver has numerous functions, including metabolism, bile secre‐
tion, glycogen storage, hematopoiesis, and immunity (Knell, 1980). 

The liver also detoxifies endogenous and exogenous substances, 
including medicines (Brockmoller & Roots, 1994), which may be 
harmful. However, liver pathology rarely results in clinical signs until 
the extent of the injury is severe; therefore, this organ should be 
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Abstract
The homeostasis of the gut microbiome is crucial for human health and for liver func‐
tion. However, it has not been established whether the gut microbiome influence he‐
patic progenitor cells (HPCs). HPCs are capable of self‐renewal and differentiate into 
hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare 
in	adults.	After	sustained	liver	damage,	a	ductular	reaction	occurs,	and	the	number	of	
HPCs is substantially increased. Here, we administered five broad‐spectrum antibiot‐
ics	for	14	days	to	deplete	the	gut	microbiomes	of	male	C57BL/6	mice,	and	we	meas‐
ured the plasma aminotransferases and other biochemical indices. The expression 
levels of two HPC markers, SRY‐related high mobility group‐box gene 9 (Sox9) and 
cytokeratin (CK), were also measured. The plasma aminotransferase activities were 
not affected, but the triglyceride, lactate dehydrogenase, low‐density lipoprotein, 
and high‐density lipoprotein concentrations were significantly altered; this suggests 
that	liver	function	is	affected	by	the	composition	of	the	gut	microbiome.	The	mRNA	
expression of Sox9 was significantly higher in the treated mice than it was in the 
control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed 
around	the	bile	ducts.	The	mRNA	expression	levels	of	proinflammatory	factors	(in‐
terleukin	[IL]-1β,	IL-6,	tumor	necrosis	factor	[TNF]-α, and TNF‐like weak inducer of 
apoptosis	[Tweak])	were	also	significantly	higher	in	the	antibiotic-treated	mice	than	
the levels in the control mice. These data imply that the depletion of the gut microbi‐
ome leads to liver damage, negatively impacts the hepatic metabolism and function, 
and activates HPCs. However, the underlying mechanisms remain to be determined.
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carefully protected. The liver receives 70% of its blood supply from 
the gut via	 the	portal	vein	 (Krarup,	Larsen,	&	Madsen,	1975),	 sug‐
gesting that this organ is the first to encounter absorbed nutrients, 
antigens, toxins, and microorganisms. The direct connection be‐
tween the gut and the liver implies that the intestinal microbiome or 
its products will affect the liver.

The gut microbiome consists of more than 104 species and ~1014 
individual cells. The species and the number of cells of each species 
vary substantially in the intestine and according to host factors, in‐
cluding age, diet, and sex (Orrhage & Nord, 2000). The homeostasis 
of the gut microbiome plays an important role in physical health by 
affecting the functions of various visceral organs and may also af‐
fect mental health (Ivanov & Honda, 2012). Previous studies have 
revealed that a wide variety of hepatic diseases are associated with 
disturbances in the gut microbiome, such as nonalcoholic steatohep‐
atitis, cirrhosis, alcoholic liver cirrhosis, and hepatic carcinoma (Bajaj 
et al., 2012; Chen et al., 2011; Fukui, Brauner, Bode, & Bode, 1991; 
Imajo	et	al.,	2012;	Lu	et	al.,	2011;	Qin	et	al.,	2014;	Rivera,	Bradford,	
Seabra, & Thurman, 1998; Tuomisto et al., 2014). For instance, alco‐
holic liver disease is associated with the perturbation of the gut‐liver 
axis	because	of	large	quantities	of	lipopolysaccharide	(LPS),	peptido‐
glycan,	bacterial	16S	DNA,	and	other	deleterious	bacterially	derived	
molecules entering the liver. This perturbation results in macrophage 
(Kupffer cell) activation and the secretion of inflammatory cytokines, 
including	 interleukin	 (IL)-6	 and	 IL-1β, and reactive oxygen species; 
this, in turn, increases the permeability and inflammation of the gut, 
creating a vicious circle. In addition, the activation of stellate cells 
results in the increased expression of α‐smooth muscle actin and col‐
lagen, which contribute to liver fibrosis and cirrhosis (Szabo, 2015).

Studies of hepatic progenitor cells (HPCs) have significantly pro‐
gressed	 in	recent	years.	As	early	as	1958,	Wilson	and	Leduc	 iden‐
tified bipotential liver progenitor cells that could differentiate into 
hepatic parenchymal cells or into biliary epithelial cells (Wilson & 
Leduc,	1958).	By	altering	the	culture	conditions	of	these	cells,	sev‐
eral laboratories have been able to replicate this bidirectional differ‐
entiation in vitro (Furuyama et al., 2011; Hao et al., 2013; Huch et 
al.,	2013;	Li	et	al.,	2006;	Suzuki	et	al.,	2008).	HPCs	account	for	<1%	
of the total number of liver cells, with almost all of these cells being 
dormant and located around the Hering ducts. However, when the 
liver is subjected to sustained damage, such as that resulting from the 
intraperitoneal injection of carbon tetrachloride (Petersen, Zajac, & 
Michalopoulos, 1998), bile duct ligation (Irie et al., 2007; Mu et al., 
2017; Wu, Ma, Gibson, Hirai, & Tsukada, 1981), choline‐deficient and 
ethionine-supplemented	diet	 (Akhurst	et	al.,	2001;	Passman	et	al.,	
2015), methionine‐choline‐deficient diet (Morell et al., 2017), thio‐
acetamide diet or partial hepatectomy (Chien et al., 2018; Grzelak et 
al.,	2014;	Kohn-Gaone	et	al.,	2016;	Lu	et	al.,	2016),	HPCs	are	stimu‐
lated to proliferate and to protect and regenerate the injured liver. 
The source of HPCs remains controversial. Some researchers con‐
tend that these cells exist in a quiescent state around bile ducts until 
activated (Tee, Kirilak, Huang, Morgan, & Yeoh, 1994; Tee, Smith, & 
Yeoh, 1992), while other researchers contend that some HPCs orig‐
inate	from	hepatocytes	 (Wu	&	Lee,	2017)	or	 from	an	extrahepatic	

source,	 especially	 bone	marrow	 (Li	 et	 al.,	 2011;	 Zhai	 et	 al.,	 2018).	
In addition, recent studies have indicated that HPCs originate from 
the transdifferentiation of biliary epithelial cells (Raven et al., 2018). 
However, it has not been established whether the disturbance of the 
gut microbiome influences HPC activation.

In	this	study,	we	treated	C57BL/6	mice	with	five	broad-spectrum	
antibiotics for 14 days at the maximum dose to eliminate their gut 
microbes. Subsequently, we assessed the serum biochemical indices 
and quantified the expression of the progenitor cell marker SRY‐re‐
lated	high	mobility	group-box	gene	9	(SOX9)	(Lo,	Chan,	Leung,	&	Ng,	
2018; Pozniak et al., 2017; Tarlow, Finegold, & Grompe, 2014). The 
plasma	aspartate	aminotransferase	(AST)	and	alanine	aminotransfer‐
ase	(ALT)	activities	were	not	significantly	higher	in	the	treated	mice	
than they were in the control mice, but the triglyceride (TG), lactate 
dehydrogenase	(LDH),	 low-density	 lipoprotein	(LDL),	and	high-den‐
sity	lipoprotein	(HDL)	concentrations	were	all	affected.	In	addition,	
the expression levels of SOX9 (p < 0.0001) and the progenitor cell 
marker cytokeratin (CK) (Russell et al., 2019) were significantly higher 
in the livers of the antibiotic‐treated mice than their expression levels 
in the control mice. The mechanism of these effects may involve the 
induction of inflammation because the expression levels of proin‐
flammatory	 factors	 (IL-1β,	 IL-6,	 tumor	necrosis	 factor	 (TNF)-α, and 
TWEAK)	were	also	higher.	These	 results	 indicate	 that	 the	elimina‐
tion of the intestinal flora impairs liver function and activates HPCs. 
These findings add to our understanding of gut‐liver and microbi‐
ome‐liver interactions and of the regulation of HPC activation.

2  | RESULTS

2.1 | Depletion of the gut microbiome results in 
cecal enlargement and increased colonic permeability

To	 deplete	 the	 intestinal	 microbiome,	 male	 C57BL/6	 mice	 were	
treated with an antibiotic cocktail containing meropenem, neomy‐
cin sulfate, natamycin, bacitracin, and vancomycin in their drinking 
water	for	14	days	(Abx	mice).	The	selected	antibiotics	do	not	reach	
the liver via enterohepatic circulation, which excludes the possibility 
of	direct	effects	on	the	liver	(Frohlich	et	al.,	2016;	Guida	et	al.,	2018;	
Heimesaat	et	al.,	2006;	Mohle	et	al.,	2016).	The	ceca	of	the	Abx	mice	
were obviously larger than those of the control mice (Figure 1a), such 
that	the	ratio	of	cecal	mass	to	body	mass	of	the	Abx	mice	was	sub‐
stantially higher than that of the control mice (Figure 1b). This cecal 
enlargement suggests that the gut microbiome plays an important 
role in the maintenance of intestinal morphology and health. Next, 
16S	rDNA	quantitative	polymerase	chain	 reaction	 (qPCR)	was	also	
performed (Figure 1c), which demonstrated that the vast majority of 
gut microbes had been eliminated. Colonic hematoxylin and eosin 
(H&E) staining showed that the crypt length was obviously decreased 
and that the number of goblet cells was largely reduced (Figure 1d,e). 
Goblet cells secrete the mucus layer, which protects the colonic epi‐
thelium from the contents of the lumen. The poor changes in crypt 
length and goblet cell number indicated that the colonic epithelium 
was damaged. To further confirm this finding, the tight junction 
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protein ZO‐1 was analyzed by real‐time PCR and immunochemistry 
(Figure	 1f,g).	 Both	 the	mRNA	 and	 protein	 levels	were	 significantly	
reduced	in	the	Abx	mice	compared	to	those	in	the	control	mice.

2.2 | Depletion of the gut microbiome causes liver 
dysfunction

The maximum depletion of the gut microbiome caused a signifi‐
cant reduction in the ratio of liver mass to body mass (Figure 2a). 
Serum	 AST	 and	 ALT	 did	 not	 differ	 between	 the	 Abx	 and	 control	
mice (Figure 2b,c), implying that hepatic parenchymal cells were not 
lysed	as	a	result	of	antibiotic	treatment.	Plasma	albumin	(ALB)	was	
also unaffected (Figure 2d). However, H&E staining of liver sections 
showed hepatocytomegaly, cytoplasmic rarefaction, and a loss of 
visible	hepatic	cord	structure	(Figure	2e,f).	In	addition,	serum	LDH,	
globulin	(GLB),	TG,	HDL-C,	and	LDL-C	were	all	significantly	affected	
by antibiotic treatment (Figure 2g–k), implying the presence of he‐
patic pathology, inflammation, and disordered lipid and cholesterol 
metabolism.

Transforming growth factor‐beta 1 (TGFB1) is one of the three 
subtypes of TGF‐β, a multifunctional protein that regulates cell 
growth, differentiation, apoptosis, the immune response and cellular 

homeostasis (Heldin, Miyazono, & Ten, 1997; Seoane & Gomis, 2017; 
Shi & Massague, 2003; Wu & Hill, 2009), and hence, can be regarded 
as a marker of hepatocyte dysfunction (Raven et al., 2018). Higher 
Tgfb1	 expression	 was	 found	 in	 the	 livers	 of	 Abx	 mice	 (Figure	 2l).	
Augmenter	of	 liver	 regeneration	 (ALR)	 stimulates	hepatocyte	pro‐
liferation, protects the liver from injury, and participates in organ 
formation and development (Gandhi, 2012; Hongbo et al., 2012; Mu 
et	al.,	2016;	Vodovotz	et	al.,	2013),	and	the	ALR	mRNA	expression	
level	was	 lower	 in	 the	Abx	mice	 than	 its	expression	 in	 the	control	
mice (Figure 2m). These results imply that liver dysfunction and mor‐
phological changes result from gut microbial ablation.

2.3 | Depletion of the gut microbiome in adult mice 
activates HPCs

SOX9 is important in early embryonic development and is a member 
of a family of genes homologous to the sex‐determining region of the 
Y chromosome (Sry). The Sry gene induces the development of mam‐
malian testes and participates in gender determination. In previous 
studies, SOX9 has been used as a progenitor or stem cell marker 
(Hongbo	 et	 al.,	 2012;	 Tanimizu,	 Nishikawa,	 Ichinohe,	 Akiyama,	 &	
Mitaka,	2014).	The	mRNA	expression	of	Sox9 was significantly higher 

F I G U R E  1   Cecal enlargement is induced by the maximum depletion of the gut microbiome. (a) Representative images of the cecum in 
control	and	Abx	mice.	(b)	Cecal	mass/body	mass	in	control	and	Abx	mice.	(c)	16S	rRNA	analysis	of	Abx	and	control	mice.	(d)	Representative	
colonic	H&E-stained	images.	(e)	Colonic	crypt	length	comparison.	(f)	Tight	junction	protein	ZO-1	relative	mRNA	level.	(g)	Representative	
immunochemistry images of ZO‐1 expression. In all panels, the data are expressed as the mean ± SEM; control (n	=	8),	Abx	(n = 8); **p < 0.01 
versus control, ***p < 0.0001 versus control. H&E, hematoxylin and eosin
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in	the	livers	of	Abx	mice	(Figure	3a)	than	it	was	in	the	livers	of	the	
control mice, suggesting that HPCs were activated. SOX9 immuno‐
histochemistry (Figure 3b) showed that this protein was expressed 
around	the	bile	ducts	in	the	Abx	mice,	whereas	in	the	control	mice,	
there were very few SOX9‐expressing cells. The quantification of 
the	SOX9-positive	area	per	field	of	view	(PFV)	is	shown	in	Figure	3c.

Cytokeratins are a group of intermediate filament proteins that 
are expressed in both keratinized and nonkeratinized epithelial 
tissues. These proteins maintain the overall structural integrity of 
epithelial cells and play a crucial role in tissue differentiation and spe‐
cialization. CK expression has therefore been used as a marker of tis‐
sue differentiation, for example, to assess tumor malignancy (Barak, 
Goike, Panaretakis, & Einarsson, 2004; Moll, 1998; Nicolini, Ferrari, 
& Rossi, 2015) and progenitor cell activation. Immunostaining using 
a pan‐CK antibody showed that CKs were prominently expressed in 
the	Abx	mouse	 liver	but	were	not	expressed	 in	the	control	mouse	

liver	(Figure	3d).	The	estimated	number	of	pan-CK-positive	cells	PFV	
is shown in Figure 3e. In contrast to the situation of SOX9, a per‐
centage of the stained area was not used to quantify CK expression 
because in the pan‐CK‐stained sections, positive cells were present 
in well‐defined borders. These data demonstrate that HPCs are acti‐
vated following gut microbial depletion.

2.4 | Depletion of the gut microbiome is associated 
with macrophage activation and the higher 
expression of genes encoding proinflammatory 
cytokines in the liver

We next explored the mechanism underlying HPC activation 
following antibiotic treatment. Following antibiotic treatment, 
the	 serum	 LPS	 level	was	 significantly	 increased	 in	 the	 Abx	mice	
compared	 to	 that	 in	 the	 control	 mice	 (Figure	 4a).	 According	 to	

F I G U R E  2  Serum	biochemical	indices	and	hematoxylin-eosin	(H&E)	staining	in	control	and	Abx	mice.	(a)	Liver	mass/body	mass	in	control	
and	Abx	mice.	Serum	AST	(b),	ALT	(c),	and	ALB	(d)	in	control	and	Abx	mice.	(e)	Representative	images	of	H&E	staining	in	control	and	Abx	
mice.	(f)	The	lesion	area	was	estimated	using	PFV	analysis	of	the	H&E-stained	images.	Serum	LDH	(g),	GLB	(h),	TG	(i),	HDL-C	(j),	and	LDL-C	
(k)	concentrations	in	control	and	Abx	mice.	(l)	Tgfb1	mRNA	expression	in	control	and	Abx	mice.	(m)	ALR	mRNA	expression	in	control	and	Abx	
mice. In all panels, the data are expressed as the mean ± SEM; control (n	=	8),	Abx	(n = 8); *p < 0.05 versus control, **p < 0.01 versus control, 
***p	<	0.0001	versus	control.	ALB,	albumin;	ALT,	alanine	aminotransferase;	AST,	aspartate	aminotransferase;	GLB,	globulin;	HDL,	high-
density	lipoprotein;	LDH,	low-density	lipoprotein;	LDL,	low-density	lipoprotein;	TG,	triglyceride
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the literature (Bawa & Saraswat, 2013; Malaguarnera, Giordano, 
Nunnari, Bertino, & Malaguarnera, 2014; Szabo, 2015; Yang et al., 
2019),	in	the	gut-liver	axis,	LPS	is	a	key	component	that	binds	to	the	
toll-like	 receptor	 (TLR)	 family	members	 to	activate	macrophages,	
which	are	associated	with	several	liver	diseases.	Because	CD68	is	
a	marker	of	macrophages,	we	analyzed	CD68	protein	expression	by	
immunochemistry (Figure 4c) and counted the number of marked 
macrophages	(Figure	4b).	The	number	of	macrophages	in	the	Abx	
mice was obviously increased compared with that of the control 
mice. We hypothesized that proinflammatory cytokines might con‐
tribute	to	HPC	activation.	IL-6	is	a	pluripotent	cytokine	that	is	prin‐
cipally secreted by macrophages during the acute phase response, 
inflammation, bone catabolism, hematopoiesis, and cancer pro‐
gression.	IL-6	could	therefore	represent	a	biomarker	of	disease	se‐
verity	and	a	prognostic	indicator	(Ji	et	al.,	2016;	Rincon,	2012).	The	
expression of IL‐6 was higher than that of TNF‐α and IL‐1β in the 
mice	and	was	significantly	higher	in	the	Abx	mice	than	it	was	in	the	
control mice (Figure 4d, p	<	0.01).	IL-1β, which is secreted by mac‐
rophages, is an important mediator of inflammation and has other 

functions, including cell proliferation, differentiation, and apopto‐
sis (Chung et al., 2015; Sato et al., 2014; Shrivastava, Mukherjee, 
Ray,	&	Ray,	2013).	IL-1β	expression	was	also	higher	in	the	Abx	mice	
than it was in the control mice (Figure 4b). TNF‐α, a cytokine that is 
produced mainly by activated macrophages, is involved in the sys‐
temic inflammatory response and contributes to the acute phase 
response	(Ji	et	al.,	2016;	Sato	et	al.,	2014).	The	mRNA	expression	
of TNF‐α	in	the	Abx	mice	was	higher	than	that	in	the	control	mice	
(Figure	4c).	TWEAK	 is	a	cytokine	produced	by	macrophages,	be‐
longs to the TNF superfamily and may regulate inflammation, cell 
apoptosis,	and	proliferation.	TWEAK	has	been	shown	to	be	associ‐
ated	with	HPC	activation	in	previous	studies	(Akahori	et	al.,	2015;	
Hamill, Michaelson, Hahm, Burkly, & Kessler, 2007; Sheng et al., 
2018).	The	mRNA	expression	of	Tweak was significantly higher in 
the	Abx	mice	than	it	was	in	the	control	mice	(Figure	4d,	p < 0.0001). 
These data may imply that macrophages play a critical role in HPC 
activation	by	releasing	inflammatory	cytokines,	especially	IL-6	and	
TWEAK.	Thus,	these	inflammatory	cytokines	may	be	regarded	as	
key targets for more extensive research.

F I G U R E  3   The expression levels of the hepatic progenitor cell markers SOX9 and CK were significantly increased by microbiome 
ablation. (a) Sox9	mRNA	expression	was	determined	by	qPCR	to	be	significantly	higher	in	Abx	mice	than	in	control	mice.	(b)	Representative	
immunohistochemical	staining	for	SOX9	in	control	and	Abx	mice.	(c)	The	SOX9-positive	area	in	the	control	and	Abx	mice	was	estimated	using	
PFV	analysis.	(d)	Representative	immunohistochemical	staining	for	pan-CK	in	control	and	Abx	mice.	(e)	The	pan-CK-positive	cell	number	
in	the	control	and	Abx	mice	was	estimated	using	PFV	analysis.	Control	(n	=	8),	Abx	(n = 8); **p < 0.01 versus control, ***p < 0.0001 versus 
control.	CK,	Cytokeratin;	PFV,	per	field	of	view;	qPCR,	quantitative	polymerase	chain	reaction
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3  | DISCUSSION

The depletion of the gut microbiome led to a reduction in liver mass, 
suggesting	that	liver	function	might	be	impaired.	Although	the	serum	
ALT	and	AST	activities	and	the	ALB	concentration	were	not	affected,	
H&E staining demonstrated that hepatocytomegaly, cytoplasmic 
rarefaction, and a loss of hepatic cord structure had occurred, im‐
plying	liver	cell	damage.	Lipid	metabolism	(as	shown	by	TG),	choles‐
terol	metabolism	(as	shown	by	LDL	and	HDL),	glycolysis	(as	shown	by	
LDH),	and	inflammatory	status	(as	shown	by	GLB),	were	all	substan‐
tially affected by the depletion of the gut microbiome, confirming 
hepatocyte dysfunction. Most importantly, we found evidence that 
HPCs were activated because the progenitor cell markers SOX9 and 
CK were both expressed at higher levels. Inflammatory cytokines, 
especially	IL-6	and	TWEAK,	may	mediate	this	effect.

The gut microbiota and its human host have a symbiotic relation‐
ship once the microbiome has been gradually generated and stabi‐
lized during the first 1–3 years of life (Milani et al., 2017; Tanaka & 
Nakayama,	2017).	Various	hepatic	diseases	have	been	shown	to	be	
linked to gut microbial dysbiosis, including nonalcoholic fatty liver 
disease, alcoholic liver disease, hepatic fibrosis, sclerosis, and hepatic 
carcinoma. The liver receives two blood supplies: one‐quarter comes 
from the systemic circulation via the hepatic artery, and the other 
three‐quarters arrive via the portal vein from the gut. These two 
blood supplies suggest that the liver is the first organ to encounter 
nutrients, antigens, toxins, and other substances absorbed from the 
gut. This connection has been termed the “gut‐liver axis,” and its im‐
portance in the pathogenesis of liver diseases has been repeatedly 

shown since it was first described in 1998 (Seabra, Stachlewitz, & 
Thurman, 1998).

Most of the deleterious effects of gut microbes on the liver 
are mediated through inflammation (Bawa & Saraswat, 2013; 
Yamada et al., 2017), which is triggered by interactions between 
the microbes, the liver, and the immune system. Key to this pro‐
cess is the interaction of hepatic macrophages (Kupffer cells) 
with	 pathogen-associated	 molecular	 patterns	 (PAMPs).	 PAMPs,	
especially	endotoxin	or	LPS,	bind	to	TLRs	(Miura	&	Ohnishi,	2014;	
Miyake	&	Yamamoto,	2013),	particularly	to	TLR4	(Carotti,	Guarino,	
Vespasiani-Gentilucci,	&	Morini,	2015),	and	activate	Kupffer	cells,	
which	attempt	to	remove	pathogens	from	the	liver.	As	our	results	
show, the depletion of the gut microbiota resulted in massive 
reductions in goblet cells and significantly shortened the crypt 
lengths. The expression of the tight junction protein ZO‐1 was 
decreased	in	the	Abx	mice	compared	to	that	in	the	control	mice.	
These results indicate that gut permeability was increased, al‐
lowing	 LPS	 to	 penetrate	 the	 gut	wall	 and	 be	 absorbed	 into	 the	
bloodstream. In line with the above results, the concentration of 
LPS	 in	 the	 serum	was	 significantly	higher	 in	 the	Abx	mice	com‐
pared to that in the control mice. Moreover, macrophages in the 
livers	of	Abx	mice	were	 substantially	 activated.	These	observa‐
tions were consistent with previous literature reports that have 
indicated	 that	LPS	activates	macrophages	 (Ghosh,	Bie,	Wang,	&	
Ghosh, 2014). To achieve the removal of pathogens, a series of 
inflammatory pathways are activated, and a number of cytokines 
are	released.	In	addition,	hepatic	stellate	cells	express	TLR4	and	
are	therefore	sensitive	to	LPS.	Once	these	cells	are	activated	by	

F I G U R E  4   Inflammatory	cytokine	expression	is	much	higher	in	the	Abx	mice	than	it	is	in	the	control	mice.	(a)	Serum	LPS	ELISA	
absorbance	value	comparison.	(b)	Representative	images	of	CD68	immunochemistry.	Each	red	arrow	indicates	a	CD68-positive	macrophage.	
The	bottom	left	corner	is	the	enlarged	image,	and	the	brown	corners	are	macrophages.	(c)	CD68-positive	cell	number	PFV	in	control	and	Abx	
mice. (d) IL‐6	mRNA	expression	was	determined	by	real-time	PCR	to	be	significantly	higher	in	the	Abx	mice	than	it	was	in	the	control	mice.	(e)	
IL‐1β	mRNA	expression	was	much	higher	in	the	Abx	mice	than	that	in	the	control	mice.	(f)	TNF‐α	mRNA	expression	was	much	higher	in	the	
Abx	mice	than	that	in	the	control	mice.	(g)	Tweak	mRNA	expression	was	determined	using	qPCR	to	be	significantly	higher	in	the	Abx	mice	
than that in the control mice. Control (n	=	8),	Abx	(n = 8); *p < 0.05 versus control, **p < 0.01 versus control, ***p < 0.0001 versus control. 
PFV,	per	field	of	view;	qPCR,	quantitative	polymerase	chain	reaction;	LPS,	lipopolysaccharide
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LPS,	 they	 produce	 larger	 amounts	 of	 collagen,	 which	 promotes	
fibrosis.

The greatest current challenge in research on the gut microbiome 
is to determine whether it plays a causative role in physiological and 
pathological processes. The current experimental strategies make 
use of pathogen‐free rodents, antibiotic‐induced microbial modifica‐
tions, infection with enteric pathogenic bacteria, and transplantation 
with probiotics or fecal flora. In pathogen‐free mice, fecal bacterial 
transplantation can be used to study the role of the microbiome in 
a disease process or to assess the effects of the gut microbial com‐
position	 during	 development	 (Lundberg,	 Toft,	 August,	 Hansen,	 &	
Hansen,	2016).	Given	that	it	is	impossible	to	use	this	approach	in	hu‐
mans, the standard approach remains a combination treatment with 
multiple	antibiotics	 to	ablate	 the	gut	microbiome.	Antibiotic	 treat‐
ment can be used to control the composition of the intestinal flora in 
a controlled, clinically feasible way to study the effects of particular 
types of intestinal microorganisms on the host.

Under normal circumstances, very few HPCs are evident in the 
liver. This finding contrasts with the situation in many other organs 
and tissues, such as the intestine and hair follicles, in which progenitor 
cells continuously divide and supply new daughter cells. Under normal 
circumstances, adult liver parenchymal cells remain in the G0 phase. 
However, when the liver suffers a major insult, such as hepatectomy 
or toxic damage, the main source of daughter cells tends to be the 
hepatic parenchymal cells. Only if the division of hepatic parenchymal 
cells is inhibited, such as during chronic liver failure, are HPCs acti‐
vated, and these cells proliferate and differentiate to generate new 
hepatic parenchymal cells and cholangiocytes. In this study, the de‐
pletion of the gut microbiome not only negatively affected liver health 
but also induced a ductular reaction; and the progenitor markers 
SOX9 and CK were expressed in larger quantities around the lumen.

Interleukin-6	is	a	cytokine	that	has	multiple	effects	and	redun‐
dant	activities.	IL-6	is	mainly	produced	by	macrophages	in	response	
to	PAMPs	and	damage-associated	molecular	patterns	(Jinkawa	et	al.,	
2019);	IL-6	plays	a	role	in	the	removal	of	infectious	agents	during	the	
acute phase and during immune responses to protect and repair the 
damaged	tissue	(Gonzalez	et	al.,	2018;	Mendlovic	et	al.,	2017).	IL-6	
can be used as a biomarker of disease severity and as a prognostic in‐
dicator (Jang et al., 2012); in addition, its expression is always higher 
than that of TNF‐α	and	IL-1β.	IL-6	has	traditionally	been	considered	
an	obvious	proinflammatory	cytokine.	IL-6	is	involved	in	the	devel‐
opment of tumors associated with inflammation and the regulation 
of innate and/or adaptive immune responses (Chen et al., 2018; 
Giardino et al., 2017). In addition to its deleterious effects on inflam‐
mation	and	cancer,	IL-6	has	been	shown	to	have	a	regenerative	and	
antiinflammatory potential (Naseem, Hussain, & Manzoor, 2018).

Transmembrane	 IL-6	 receptor	 expression	 was	 limited	 to	 the	
surface	 of	 liver	 cells	 and	 to	 some	 leukocytes.	 Another	 molecule,	
called	soluble	IL-6	receptor	(sIL-6R),	is	present	in	the	tissue	fluid	and	
serum	and	makes	 it	possible	 to	combine	 IL-6	with	many	other	cell	
types	 (Tanaka	&	Kishimoto,	2014).	This	allows	 IL-6	to	be	delivered	
to	 the	 cells	 that	 do	 not	 express	 the	 IL-6	 receptor.	 The	 IL-6/IL-6R	
complex binds to the signal transducer gp130 to activate the Janus 

Kinase	 (JAK)	 and	 the	 signal	 transducer	 and	 activator	 of	 transcrip‐
tion	3	 (STAT3)	pathways	 (Kubo,	Hanada,	&	Yoshimura,	2003).	The	
activation	 of	 the	mitogen-activated	 protein	 kinase	 (MAPK)	 signal‐
ing pathway in rapidly proliferating cells is usually observed after 
IL-6	stimulation	(2003,	Jones,	Horiuchi,	Topley,	Yamamoto,	&	Fuller,	
2001),	and	IL-6	signaling	directly	activates	the	prosurvival	phospha‐
tidylinositol	3-kinase/Akt	pathway	(Levy	&	Lee,	2002).

Although	IL-6	is	associated	with	many	liver	diseases	and	cancers,	
it	is	also	crucial	for	liver	regeneration	(Naseem	et	al.,	2018).	IL-6	me‐
diates various pathways in the liver, including immediate early gene 
transcription,	DNA	repair,	glycogen	storage,	antioxidant	activity,	an‐
giogenesis,	cell	proliferation,	and	liver	protection.	 IL-6R	and	gp130	
are widely expressed in all liver cells, including Kupffer cells, hepatic 
stellate	cells,	hepatocytes,	and	sinus	endothelial	cells.	IL-6	has	been	
shown	to	regulate	HPCs	(Lu	et	al.,	2015).	By	IL-6/STAT3	signal	trans‐
duction, HPCs proliferated and supported liver regeneration, while 
the	 absence	 of	 IL-6	would	 limit	 the	 proliferation	 of	HPCs	 and	 re‐
duce liver regeneration (Yeoh et al., 2007). In addition, the number 
of	HPCs	in	IL-6-deficient	mice	decreased,	and	in	the	absence	of	IL-6	
signaling, more liver failure with cell necrosis and impaired regener‐
ation	occurred	(Cressman	et	al.,	1996).

TWEAK,	a	member	of	the	TNF	superfamily,	is	expressed	in	mul‐
tiple	 tissues.	The	many	biological	 functions	of	TWEAK	 include	 the	
regulation of cell apoptosis and necrosis, proliferation, migration, and 
differentiation; in addition, this protein can trigger angiogenesis and 
induce	 the	 expression	 of	 inflammatory	 cytokines	 (Xu,	 Zhao,	&	 Liu,	
2016).	TWEAK	has	only	one	receptor,	fibroblast	growth	factor-induc‐
ible	14	(Fn14),	which	is	a	type	I	transmembrane	protein,	and	TWEAK	
is	the	only	 ligand	of	Fn14.	TWEAK	is	widely	expressed	 in	dendritic	
cells,	monocytes,	macrophages,	and	natural	killer	cells	 (Liu,	Xiao,	&	
Xia,	2017).	Among	inflammatory	cells,	macrophages	and	monocytes	
are	the	main	sources	of	TWEAK,	while	in	normal	tissues,	the	expres‐
sion	levels	of	TWEAK	and	Fn14	are	very	low.	Higher	levels	of	TWEAK	
and Fn14 expression usually appear in response to stress, tissue dam‐
age, or remodeling; this expression can also occur in connection with 
many other disorders, including autoimmune diseases and cancers 
(Gu et al., 2013; Wang et al., 2017), triggering the activation of mul‐
tiple downstream signaling pathways that can modify these tissues.

Jakubowski	et	al.	 (2005)	suggested	that	TWEAK	is	a	direct	mi‐
togen of HPCs. Fn14 has no intrinsic protein kinase activity and is 
associated with tumor necrosis factor receptor–associated factor 
receptor molecules to trigger activated nuclear factor kappa light 
chain enhancer of activated B cells (NFκB) (Tirnitz‐Parker et al., 
2010);	extracellular	signaling	regulates	the	kinase	and	MAPK	path‐
way of c‐Jun N‐terminal kinase. Feng et al. (2000) reported a rapid 
induction of Fn14 expression in early liver regeneration after partial 
hepatectomy. The authors also studied hepatocellular carcinoma cell 
lines, where the overexpression of Fn14 occurred in poorly differ‐
entiated cell lines. This suggests that it may be linked to progenitor 
cells. Jakubowski et al. confirmed this hypothesized relationship be‐
tween HPCs and Fn14 signaling pathways with experiments. Their 
study	 showed	 that	 TWEAK	 overexpression	 by	 the	 transgenic	 or	
adenovirus methods can induce the HPC response. In the mouse 
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model of oval cell (another name for HPCs in rodents) proliferation, 
TWEAK/Fn14	knockout	inhibited	the	appearance	of	HPCs.	In	addi‐
tion,	TWEAK	can	directly	induce	the	proliferation	of	bile	duct	epi‐
thelial	cell	lines	with	progenitor	characteristics	(Liu	et	al.,	2015).

Because all of these inflammatory cytokines can be secreted 
by macrophages, these cells are likely to play a central role in the 
activation of HPCs in response to gut microbial depletion. We may 
speculate that with the removal of intestinal bacteria, intestinal ho‐
meostasis	is	disrupted	and	permeability	is	increased,	causing	LPS	to	
leak	into	the	blood.	Excessive	LPS	activates	the	macrophages	in	the	
liver.	Activated	macrophages	secrete	inflammatory	cytokines,	espe‐
cially	IL-6	and	TWEAK.	One	pathway	is	that	IL-6	binds	to	IL-6R	and	
then	binds	 to	 gp130,	 thereby	 activating	 the	 JAK/STAT	3	 signaling	
pathway and activating the HPC response; the other pathway is that 
TWEAK	binds	to	Fn14	to	activate	NFκB, thereby activating the HPC 
response. However, the specific mechanisms need to be defined, 
and there may be other mechanisms involved.

To our knowledge, our study is the first to demonstrate a link 
between the gut microbiome and HPC activation. We have demon‐
strated that the elimination of the vast majority of intestinal mi‐
crobes can stimulate HPC activation, suggesting that HPC activity 
may be triggered by microbial dysbiosis. The mechanism underlying 
this phenomenon may involve the release of proinflammatory cyto‐
kines,	especially	IL-6	and	TWEAK,	with	macrophages	playing	a	major	
role during this process. Further work is necessary to illuminate the 
precise mechanisms.

4  | MATERIAL S AND METHODS

4.1 | Mice

Male	 C57BL/6	 mice	 were	 purchased	 from	 Beijing	 Vital	 River	
Laboratory	 (China).	 According	 to	 the	 national	 standard	 (GB	
14925‐2001), we housed the specific‐pathogen‐free grade mice 
in a barrier system under strict microorganism control and a con‐
trolled 12‐hr light‐dark cycle. Eight‐week‐old mice were used in the 
experiments.

The cocktail of antibiotics used consisted of neomycin (2 mg/
ml,	neomycin	sulfate,	HY-B0470,	MedChem	Express	[MCE]),	mero‐
penem (1 mg/ml, meropenem Trihydrate, M2279, J&K Scientific, 
China),	 bacitracin	 (5	 mg/ml,	 184862,	 J&K	 Scientific),	 vancomycin	
(1 mg/ml, vancomycin hydrochloride extracted from Streptomyces 
orientalis,	 122263,	 J&K	 Scientific),	 and	 natamycin	 (1.2	 μg/ml, HY‐
B0133, MCE), which were all dissolved in autoclaved water (Frohlich 
et	al.,	2016;	Guida	et	al.,	2018;	Kiraly	et	al.,	2016)	and	were	included	
in the drinking water of the mice for 14 days to ablate the gut micro‐
biome.	At	 the	end	of	 the	experiment,	 the	mice	were	anesthetized	
with 5% chloral hydrate, blood was collected from the retro‐orbital 
sinus, and then the mice were sacrificed by cervical dislocation. The 
ceca	and	livers	were	collected.	A	portion	of	each	liver	was	snap-fro‐
zen in liquid nitrogen for subsequent qPCR, and another portion 
was immersed in 4% paraformaldehyde for subsequent paraffin em‐
bedding. The cecal samples were snap‐frozen and then placed in a 

−80°C	 freezer.	The	blood	 samples	were	 centrifuged	 for	10	min	at	
1,000×g, and then the serum samples was collected and delivered 
at	4°C	to	the	Capital	Medical	University	Clinical	Laboratory	Center	
for the assays.

4.2 | LPS ELISA analysis

The	 ELISA	 Kit	 for	 LPS	 was	 purchased	 from	 Cloud-Clone	 Corp.	
According	to	the	instruction	manual,	100	μl each of the standard di‐
lution, blank and serum samples was added to the appropriate wells. 
The	plate	was	covered	with	a	sealer	and	was	incubated	at	37°C	for	
1 hr. Then, the liquid was removed, and 100 μl of Detection Reagent 
A	was	added	to	each	well;	the	plate	was	covered	and	incubated	at	
37°C	 for	 1	 hr.	 Subsequently,	 the	 liquid	was	discarded,	 and	350	μl 
of 1x Wash Solution was added to each well followed by a 1–2 min 
incubation. The wash step was repeated three times. The plate was 
turned upside down and tapped onto absorbent paper to remove 
the excess liquid. Then, 100 μl of Detection Reagent B was added 
to each well, and the plate was covered and incubated for 30 min 
at	37°C.	The	 abovementioned	washing	process	was	 repeated	 five	
times. Subsequently, 90 μl of Substrate Solution was added to each 
well,	and	the	plate	was	covered	and	incubated	in	the	dark	at	37°C	for	
10–20 min until the standard liquid turned blue. Next, 50 μl of Stop 
Solution was added to each well to terminate the reaction, and the 
liquid turned yellow. The bubbles on the surface of the liquid were 
avoided, and the absorbance was immediately measured at 450 nm.

4.3 | Mouse cecal DNA isolation and 16S rRNA 
sequencing analysis

Metagenomic	DNA	was	extracted	from	the	cecal	contents	using	the	
Powersoil	DNA	Isolation	Kit	 (MoBio)	according	to	the	manufactur‐
er's instructions. Then, 0.25 g of the cecal contents was added to the 
PowerBead	tubes	and	was	gently	vortexed.	Next,	60	μl of Solution 
C1 was added to the tubes and was centrifuged at 10,000×g for 30 s 
at	room	temperature	(RT).	A	new	2	ml	collection	tube	was	utilized	
to collect the supernatant. Subsequently, 250 μl of Solution C2 was 
added,	followed	by	vortexing	and	incubation	at	4°C	for	5	min.	After	
centrifugation at 10,000×g for 1 min at RT, 500 μl of the superna‐
tant was transferred to a new 2 ml collection tube. Then, 200 μl of 
Solution	C3	was	added,	followed	by	vortexing,	incubation	at	4°C	for	
5 min and centrifugation at 10,000×g for 1 min at RT. Subsequently, 
700 μl of supernatant was transferred to a new 2 ml collection 
tube, and 1,200 μl of Solution C4, which was shaken before use, 
was added to the supernatant and vortexed slightly. Each sample 
was	processed	by	loading	three	times	(675	μl each) onto a spin filter 
and centrifuging at 10,000×g for 1 min at RT; the flow through was 
discarded every time. Next, 500 μl of Solution C5 was added, fol‐
lowed by centrifuging at 10,000×g for 30 s at RT, discarding the flow 
through, and centrifuging again at 10,000×g for 1 min at RT. The spin 
filter was carefully placed into a new 2 ml collection tube, 100 μl of 
Solution	C6	was	added	to	the	center	of	the	filter	membrane,	and	the	
filter was centrifuged at 10,000×g for 30 s at RT. The spin filter was 
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discarded.	 The	DNA	 in	 the	 tube	was	 used	 for	 subsequent	 experi‐
ments.	The	bacterial	16S	rRNA	gene	was	amplified	by	qPCR	using	
universal	 primers;	 the	 amplified	 16S	 rRNA,	which	was	 normalized	
to	glyceraldehyde	3-phosphate	dehydrogenase	(GAPDH)	expression	
level, was proportional to the number of intestinal bacteria present.

4.4 | RNA extraction and quantitative real‐time PCR

Two‐millimeter‐cubed portions of frozen liver or 1–2 mm portions 
of	 the	 colon	were	 used	 to	 obtain	 total	 RNA	 using	 TRIzol	 Reagent	
(Invitrogen) according to the manufacturer's instructions. The individ‐
ual portions were ground at a low temperature in 1 ml TRIzol Reagent 
and were placed at RT for 5 min. Then, 200 μl of trichloromethane 
was added, and the tubes were vigorously vortexed, placed at RT for 
3 min, and centrifuged at 12,000×g	 for	15	min	at	4°C.	The	 super‐
natant was carefully transferred to new tubes (140 μl × 2 = 280 μl), 
mixed with an equal volume of isopropanol, blended by gently invert‐
ing and centrifuged at 12,000×g	for	15	min	at	4°C.	The	supernatant	
was discarded, and 1 ml of 75% alcohol‐diethyl pyrocarbonate (DEPC) 
solution was added to rinse the sediment, followed by centrifugation 
at 8,000×g	for	5	min	at	4°C.	The	supernatant	was	discarded,	and	the	
pellet was air‐dried for 5–10 min followed by the addition of 30 μl 
DEPC	to	dissolve	the	sediment-acquired	RNA	solution.	Then,	reverse	
transcription	was	performed	using	a	cDNA	Synthesis	Kit	(Roche)	ac‐
cording	to	the	manufacturer's	 instructions.	Relative	mRNA	expres‐
sion was measured by qPCR using SYBR Green PCR Master Mix 
(Roche).	GAPDH	mRNA	was	amplified	in	parallel	as	a	reference	gene.	
The primer sequences are shown in Table 1.

4.5 | Immunohistochemistry

Liver	paraffin	sections	(5	μm thick) were successively dewaxed in 
xylene	and	were	rehydrated	in	gradient	alcohol	solutions.	A	rabbit	
polyclonal	antibody	against	SOX9	(ab26414,	Abcam),	an	anti-pan-
CK	polyclonal	 rabbit	antibody	 (Z0622,	Dako),	a	 rabbit	polyclonal	
antibody	 against	 CD68	 (ab125212)	 and	 a	 rabbit	 polyclonal	 anti‐
body against ZO‐1 (40‐2200, Invitrogen) were applied (1:200), and 
the	 slides	 were	 incubated	 overnight	 at	 4°C	 followed	 by	 rinsing	
with PBS. The liver sections were then incubated with a second‐
ary	antibody	(PV-6001,	ZSbio,	Beijing,	China)	for	1	hr,	and	the	an‐
tibody	was	detected	using	DAB.	The	sections	were	counterstained	

in hematoxylin for 15 s, washed with tap water, dehydrated and 
mounted using neutral balsam. The results were analyzed by an in‐
dependent, trained observer who was blinded to the experimental 
treatment conditions, and both the number of cells and the total 
density of the immunoreactive material were determined using 
ImageJ software.

4.6 | Statistical analysis

Each result is presented as the mean ± SEM of at least three inde‐
pendent experiments. The differences between the two groups 
were analyzed using Student's t test. Statistical significance was cal‐
culated using SPSS package version 17.0, with p < 0.05 considered to 
represent statistical significance.
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 F (5′ to 3′) R (5′ to 3′)

Sox9 TGAAGAACGGACAAGCGGAG CAGCTTGCACGTCGGTTTTG

Tgfb1 AGGAGACGGAATACAGGGCT ATGTCATGGATGGTGCCCAG

ALR AGGAACCAGCCAGACACAAG CGCCAACGCTCATCTACTCT

IL-6 AGGAGACTTCACAGAGGATACC GAATTGCCATTGCACAACTCTT

TNF‐α AGGGTCTGGGCCATAGAACT CCACCACGCTCTTCTGTCTAC

IL-1β GTGTCTTTCCCGTGGACCTT CGTCACACACCAGCAGGTTA

TWEAK CCAGACAGAGGAAAGCCAGG CTCACTGTCCCATCCACACC

ZO‐1 GAGCTACGCTTGCCACACTGT TCGGATCTCCAGGAAGACACTT

TA B L E  1   Real‐time PCR primers
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