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Objective: To assess the performance of convolutional neural networks (CNNs) for automated detection of
keratoconus (KC) in standalone Scheimpflug-based dynamic corneal deformation videos.

Design: Retrospective cohort study.
Participants: We retrospectively analyzed datasets with records of 734 nonconsecutive, refractive surgery

candidates, and patients with unilateral or bilateral KC.
Methods: We first developed a video preprocessing pipeline to translate dynamic corneal deformation

videos into 3-dimensional pseudoimage representations and then trained a CNN to directly identify KC from
pseudoimages. We calculated the model’s KC probability score cut-off and evaluated the performance by
subjective and objective accuracy metrics using 2 independent datasets.

Main Outcome Measures: Area under the receiver operating characteristics curve (AUC), accuracy, spec-
ificity, sensitivity, and KC probability score.

Results: The model accuracy on the test subset was 0.89 with AUC of 0.94. Based on the external validation
dataset, the AUC and accuracy of the CNN model for detecting KC were 0.93 and 0.88, respectively.

Conclusions: Our deep learning-based approach was highly sensitive and specific in separating normal from
keratoconic eyes using dynamic corneal deformation videos at levels that may prove useful in clinical practice.
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Keratoconus (KC) is a progressive ectatic disease characterized
by corneal steepening and thinning due to deficits of structural
integrity inducing irregular astigmatism and myopia with dete-
rioration of visual acuity and vision-specific quality of life.1,2

Early diagnosis of KC is of foremost importance to halt
disease progression.3 Corneal topography or tomography
systems allow assessment of alteration of corneal shape and
assist in KC classification and monitoring.4 However, these
instruments cannot measure the mechanical stability of the
cornea, which is thought to be the primary abnormality that
triggers stromal thinning and steepening.5 Therefore, the early
diagnosis of KC by analyzing corneal biomechanical
properties has become a research hotspot aiming to measure
the in vivo biomechanical properties of the cornea before the
onset of topographic or tomographic changes.5,6 The Corvis
ST (Oculus Optikgeräte GmbH) was introduced as a
noncontact tonometer that records the ocular deformation
response induced by a constantly defined air puff using an
ultrahigh-speed Scheimpflug camera. The captured images are
analyzed by the Corvis ST software to produce an estimate of
intraocular pressure and several dynamic corneal response
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(DCR) parameters that provide a detailed assessment of corneal
biomechanical properties. These parameters can be used to
separate normal (N) from ectatic corneas.6e9 A video function
uses these images to release a slow-motion video of the corneal
deformation reaction in response to the air pulse (4330 frames/
second.). This highly precise video permits a viewable biome-
chanical analysis of the cornea.10

In this era of artificial intelligence, deep learning has
greatly improved the diagnostic accuracy of some ocular
diseases.11,12 Recently, deep learning has achieved high
diagnostic performance in dry eye disease identification
from ocular surface videos.13

In our study, we assessed the performance of deep con-
volutional neural networks (CNNs) for the automated
detection of KC in Corvis ST videos as a complementary
diagnostic tool to corneal topography and tomography data.

Patients and Methods

This study was conducted following ethical standards in the
Declaration of Helsinki and its later amendments and was approved
1https://doi.org/10.1016/j.xops.2023.100380
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by the institutional review board of Federal University of São
Paulo-UNIFESP/EPM (as the coordinator center) and the Hospital
de Olhos-CRO, Guarulhos (as the affiliate center), and the Salouti
Eye Center in Iran. Corresponding data use agreements were
signed among contributing parties to use the data. We retrospec-
tively analyzed datasets with records of 734 nonconsecutive,
refractive surgery candidates, and patients with unilateral or
bilateral KC, in these 2 centers located on 2 different continents
which ensures subjects’ ethnic variability in testing our approach
capabilities to separate N from keratoconic corneas. Once required,
each subject provided informed written consent to participate in the
study before using their data, and data were de-identified in Brazil
and Iran before any further processing. A total of 232 Subjects (131
N and 101 KC) were enrolled from the Hospital de Olhos-CRO,
Guarulhos (Brazil-Dataset 1), and 502 Subjects (259 N and 243
KC) were enrolled from the Salouti Eye Center (Iran-Dataset 2).

All participants had a complete ophthalmic examination
including Scheimpflug-based corneal tomography using the Pen-
tacam HR and corneal biomechanical assessment using the Corvis
ST (Oculus Opikgeräte GmbH).

The inclusion criterion for the KC population was the presence
of clear signs of bilateral KC in corneal maps (derived from the
Pentacam) such as Index of surface variance (deviation of the
corneal radius with respect to the mean value) > 30, KC index (the
ratio between the mean radius of curvature values in the upper and
lower corneal segments) > 1.07, and minimum radius of curvature
(the index that corresponds to the point of maximum anterior
curvature) < 7.5. The topographical KC classification had to be at
least stage 1 (topographical KC � 1). The inclusion criteria for the
N participants were the presence of Corvis ST examination and a
Pentacam’s Belin-Ambrósio enhanced ectasia index total deviation
< 1.6 standard deviation from normative values. Exclusion criteria
were any previous ocular surgery or disease such as corneal
collagen crosslinking or intracorneal ring segment implantation
and myopia > 10.00 diopters. Moreover, to confirm the diagnosis
of KC or N, all cases from each clinic were blindly reviewed by a
third-party anterior segment expert (S.T.) to confirm inclusion
criteria.

Measurements in each center were performed by the same
experienced examiners, captured by automatic release to ensure
user independence, and only examinations with good quality scores
were included after a second manual, frame-by-frame analysis,
made by an independent masked examiner to ensure the quality of
each acquisition. For each participant, only 1 eye was randomly
included in the analysis to avoid bias due to the relationship be-
tween bilateral eyes in the subsequent analysis.

DCR Parameters

The Corvis ST measures the corneal response to an applied pre-
defined air impulse using an ultrahigh-speed Scheimpflug camera
that captures 4330 frames per second for only 33 ms and eventually
generates a video with 140 frames. Dynamic corneal response and
related corneal thickness (pachymetric) parameters are calculated
by analysis of the full process of the corneal dynamic response
recorded. The stiffness parameter at the first applanation (SP A1)6

and 2 established indices including the Corvis biomechanical index
(CBI)7 and the tomographic and biomechanical index (TBI)9 were
used for comparative analysis. The biomechanically corrected
intraocular pressure (bIOP) was used for correlations.

The stiffness parameter at the first applanation is defined as the
resultant pressure divided by the deflection amplitude at the first
applanation (A1). The resultant pressure is defined as the adjusted air
pressure at A1 minus bIOP. The adjusted air pressure represents the
load of the air pressure (calculated by converting the spatial and
temporal velocity profiles of the air puff to pressure) impinging on
2

the cornea at A1.6 Corvis biomechanical index includes several DCR
parameters in addition to Ambrósio’s Relational Thickness to the
horizontal profile.7 This combined index is calculated by logistic
regression analysis where a final beta is transformed into a logistic
sigmoid function.7 The TBI is generated by combining DCR and
tomographic parameters using the leave-one-out crossvalidation
technique implemented by a random forest classifier.9 The DCR and
selected tomographic parameters were exported and linked to the
related video and participants’ demographic data. Each video was
tagged by a serial number and the specific class (N or KC).

Corvis ST Video Frames Preprocessing

A total of 734 high-quality slow-motion video clips from 734
eyes showing the corneal deformation as a result of a constant air
pulse were exported from the ST Corvis machines in both study
centers. Recorded videos were sampled in audio video interleaved
format at a resolution of 576 � 214 at 13 frames per second
yielding a video length of 10 seconds. Each video is a synchro-
nized release of the cross-sectional corneal image covering the
horizontal 8.8 mm of the cornea. The video frames show the
sequence of corneal shape change from convex to concave
passing through the A1 state. When the air puff reaches its
maximum the cornea is at its highest concavity. When the air puff
is switched off the cornea returns to its original shape passing
through the second applanation state. When the cornea finally
returns to its natural convex shape, the video frame capturing
ends. During the recording process, a blue light-emitting diode
(LED) light (470 nm wavelength, ultraviolet free) illuminates the
area, and the dispersed light from the cornea is recorded.7

Preprocessing Steps. The following fully automated video
frame processing steps were performed using the OpenCV library
(version 4.5.4, http://opencv.org).
1- The Corvis ST videos display other features not related to the
cornea as light is also dispersed from other anterior segment
structures. This results in various background random
shadows in addition to the printed timecode in ms and the
Oculus Opikgeräte GmbH logo. Supplementary videos N1
and KC1 represent 2 examples of raw Corvis ST videos.
For consistency, the same sampled videos will be used to
show successive preprocessing steps afterward. All these
background features are regarded as noise in our
preprocessing and were removed in the first preprocessing
step by extracting the cornea foreground image; this step
produced abstract corneal sectional frames over a black
smooth background (See supplementary video N2 and KC2).

2- Replacement of corneal stromal image heterogeneity
(produced by light dispersion by corneal stroma) by
smooth white mask and binarizing each frame (See
supplementary video N3 and KC3).

3- All frames are registered, guided by the position of the
peripheral segments of the corneal mask in each frame.
Therefore, overlapping the successive corneal masks can
convey information about pure deflection of the cornea,
being insensitive to shifts or rotation of the entire eyeball
caused by the air puff.

4- This is followed by the process of skeletonization of the
foreground corneal white mask. Skeletonization is the
process of inducing morphological thinning that succes-
sively erodes away pixels from the boundary (while pre-
serving the connectivity of the endpoints of the corneal

http://opencv.org
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periphery) until no more thinning is possible.14 This
process effectively produces a compact representation of
the corneal shape that preserves many of the topological
characteristics of the deformation process. For simplicity,
this curve will be referred to as the "corneal skeleton"
afterward (See supplementary videos N4 and KC4).
Figure S1 depicts all these preprocessing steps.

5- The vertical (y-axis) shift in the position of each pixel
along the corneal skeleton with reference to the position of
the corresponding pixel located along a horizontal refer-
ence plane (corneal skeleton or horizontal line) is calcu-
lated for each frame (simple subtraction). This process was
repeated in pixel-wise steps for each pixel along the
corneal skeleton for 225 pixels on each side of the corneal
apex position for each frame. This step yielded a 2-
dimensional (2D) numerical (integers) array for each video.
Each array has 140 horizontal lines (rows) and 450 vertical
lines (columns). Each row describes vertical positional
differences (along the y-axis) of each pixel along the
corneal skeleton in a single frame compared with a refer-
ence horizontal plane (reference corneal skeleton or hori-
zontal line). Each column is related to a specific pixel
position along the x-axis of the corneal skeleton (225 pixels
nasal and 225 pixels temporal to the position of the pixel at
the corneal apex in the first frame).

6- We developed 3 different types of 2D arrays for each video
by comparing the position of each pixel in the corneal
skeleton in each frame to a reference corneal skeleton or a
horizontal line. Each 2D array type highlights a specific
corneal “landmark” position and relatively penalizes the
other positions according to the shape of the reference
segment (plane). The first reference segment is a curve
overlapping the original corneal unaltered shape (original
2D array). The second reference segment is a horizontal
tangent to the position of the corneal apex at the original
unaltered shape (applanation 2D array). The third reference
segment is an arc overlapping the position of the cornea at
maximum concavity shape (concavity 2D array). Figure 2
shows the process of calculation of each 2D array type.
Figure 3 shows the 3 types of arrays extracted from
supplementary video N4 and KC4 as heatmaps to
facilitate visualization of 2D array numeric elements.

7- The 3 different types of 2D arrays related to the same video
were concatenated to get a 3-dimensional (3D) array (3-
channel pseudoimage). Figure S4 depicts examples of the
3D arrays generated by concatenating 3 2D arrays for
visualization (sourced from corresponding arrays shown
in Figure 3). For simplicity, these 3D arrays will be
referred to as "pseudoimages" afterward.

8- Each pseudoimage was labeled according to the class of the
corresponding source video. Pseudoimages corresponding
to Dataset 2 were randomly split into training/validation
(70%) and testing (30%) subsets. Pseudoimages corre-
sponding to Dataset 1 were used for external validation of
the model performance (external validation subset).
Classification and Validation

Dataset Final Preparation. Although each of the component 2D of
these pseudoimages represents a summary of corneal deformation
throughout the whole deformation process, we opted to use a slice
of these pseudoimages representing changes in the first 75 frames
only (450 pixels width � 75 pixels height). The first 75 frames
describe apex displacement from the undeformed state well beyond
the A1 and are closely related to the SP A1 parameter. The SP A1
index is a strong indicator of the corneal biomechanical properties
and has been proven to be useful in screening for KC with high
sensitivity and specificity and is not influenced by scleral proper-
ties.6 Each slice was normalized and resized to 224 � 224
pseudoimage. This slicing process was implemented in training/
validation, testing, and external validation subsets.

Deep CNN Architecture. To solve this binary classification
problem, we trained a DenseNet121-based CNN architecture from
scratch.15 The model was adapted to be compatible with input
pseudoimages size of 224 � 224 and the output (classifying)
layer was truncated and replaced by a light custom-designed
model on top with Softmax activation to provide the likelihood
of 2 classes of KC and N. The model’s architecture is shown in
Figure 5.

Data Augmentation and Model Training. To minimize the
risk of overfitting, all training/validation pseudoimage samples
were augmented by in-place (on-the-fly) traditional data
augmentation during training time with care to avoid corrupting
the spatial and temporal relationships between array elements.16

This included minimal width shift, shear, and zoom. The model
was trained for 600 epochs to assure improved generalizability
(an epoch is an iteration over the entire input data provided).
Categorical crossentropy was used as the loss function.17 The
optimization was performed using stochastic gradient descent
optimizer.18

Models Testing. After training, the model performance was
assessed on the test subset. We used several objective metrics
including accuracy, recall, precision, specificity, F1 score, confusion
matrix, receiver operating characteristic curve (ROC), and area un-
der the curve (AUC) to evaluate model.19 Model classification
probability score for the KC class (where 0.0 represent the
maximum probability of the N class and 1.0 represent the
maximum probability for the KC class) was proposed as a
possible index for KC detection after defining the optimal cut-off
value using the Youden index. This index will be referred to as
the "KC probability score" afterward. To get the finalized model the
whole Dataset 2 pseudoimage slices (all available training and
testing subsets) were used to repeat model training using the same
parameters aiming to boost model performance on external valida-
tion (Dataset 1) by the added value of training on all available
pseudoimage slices in Dataset 2.

Model Performance Benchmarking. To obtain benchmark
performance metrics that allow comparison of the network per-
formance in KC detection, we used SP A1 parameter, CBI, and
TBI indices individually from Dataset 2 for training 3 Naive
Bayes Classifiers (NBCs) to solve this binary classification
problem.20 The corresponding parameters in Dataset 1 were used
for validation of the classification performance of NBCs.
Similarly, the performance of the finalized trained CNN model
on pseudoimage slices in Dataset 1 was assessed and compared
to the NBCs performance using confusion matrix, ROC curve,
AUC, and detection error tradeoff curve.19 The detection error
tradeoff curve allows for easier visual assessment of the overall
performance of classification algorithms compared with ROC
curves, without the need to magnify the top left corner of the
ROC plots when models have high-AUCs. Also, it facilitates
operating point analysis for extraction of the optimum point at
which the false-negative error rate will improve. A pairwise
comparison of the ROC curve of our algorithm with the ROC
curves of the SP A1 parameter, CBI, and TBI indices was per-
formed using the method described by DeLong et al.21
3



Figure 2. Flow chart of the method of calculation of distance between each pixel on the corneal skeleton relative to the corresponding pixel in the reference
segment. This process is repeated for each extracted corneal skeleton to get 140 numerical rows representing 140 video frames. AeC, represent 3 reference
segments used and (1, 2, 3) represent samples of the corneal skeleton at its original position, applanation, and maximum concavity consecutively. The arrows
represent the distance calculated between each reference segment and the corneal skeleton at the sampled corneal position (in pixels). The highlighted
arrows in B-2 are expected to represent similar values during applanation.
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Correlations. To investigate the association between parame-
ters, a pairwise correlation of age, central corneal thickness (CCT),
bIOP, SP A1, CBI, TBI, and KC probability scores were evaluated
using the Spearman rank correlation coefficient.
Figure 3. The 3 types of extracted 2-dimensional numerical arrays are represen
original reference segment map, the applanation reference segment map, and th
were extracted from supplementary video N4. 2-a, 2-b, and 2-c represent the or
the maximum concavity reference segment map consecutively. These arrays w
values (distance in pixels), while cool colors represent smaller values.

4

Class Activation Maps. Class activation maps (CAMs) high-
light the regions that were more important for the CNN to identify
a particular class, enabling a visual inspection of the model decision
basis.22 We implemented a global average pooling (shape 7 � 7)
ted as heatmaps to facilitate visualization. 1-a, 1-b, and 1-c represent the
e maximum concavity reference segment map consecutively. These arrays
iginal reference segment map, the applanation reference segment map, and
ere extracted from supplementary video KC4. Hot colors represent larger



Figure 5. Schematic diagram showing the structure of the employed custom network created on top of DenseNet121 model after truncation of the last
classifying layer: First and second fully connected layers (1024 and 512 nodes respectively); Batch Normalization layer; Dropout (0.5), Global-
AveragePooling2D; Batch Normalization; Dropout (0.5); final classifying fully connected layer (2 nodes with Softmax activation). Pseudoimages extracted
from videos were cropped to represent the early 75 video frames and then resized to 224 � 224 before being fed into the model.
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before the final Softmax activation to produce the desired CAMs by
projecting back the weights of the output layer and multiplying each
feature map spatial average (calculated by global average pooling)
with the corresponding weight to obtain the CAMs. Although the
adopted preprocessing approach generated concatenated 3D
numeric arrays, these pseudoimages can still convey average
information about the most important frame sequence and area of
the horizontal corneal section that guided the model decision.
According to our preprocessing, pseudoimage slicing, and
resizing, as every CAM has 7 � 7 component squares, each
component square represents 64.3 (450/7) pixels of the registered
corneal skeleton frames in the horizontal meridian (spatial
dimension) and 10.7 (75/7) consecutive video frames vertically
(temporal dimension).

Statistical Analysis

All statistical analyses were performed using Scipy (Scientific
Computing tools for Python, version 1.8.1)23 and scikit-learn li-
braries of Python (version 1.1.1.).24 Scikit-learn is a Python
module for machine learning built on top of Scipy. Normally
distributed data were presented as the mean � standard deviation.
The probability distribution of each parameter was checked using
the KolmogoroveSmirnov 1-sample test for goodness of fit.

Python programming language (version 3.9.13) was used for
developing models. Keras open-source software library (version
2.7.0) was used as an interface to the TensorFlow library (version
2.7.0).

Sample size calculation was done using NumPy (Numerical
Python) which is the core scientific computing library in Python.
We implemented NumPy t test for 2 independent samples. A
sample size of � 223 subjects was necessary for each group (effect
size ¼ 0.25, alpha error ¼ 0.05, power ¼ 0.75).

The independent samples t test was used to analyze parameters
with normal distribution, while the Wilcoxon rank-sum test was
used for nonparametric data to determine whether the data were
significantly different between groups. For all analyses, P � 0.05
was considered statistically significant. The NBC was selected as a
widely used machine learning algorithm to address this binary
classification problem for SP A1, CBI, and TBI as this model is
simple yet effective in dealing with different types of input data.
The simplicity of NBC can effectively minimize the risk of over-
fitting on relatively small datasets (as is the case in our external
validation subset). In addition, as NBC is quite simple, it typically
converges quicker than discriminative models like logistic
regression.20

Area under the curve was calculated to validate the probability
score estimate using a Python-based fast implementation of
DeLong’s algorithm and was also used for computing the statistical
significance of comparing 2 AUCs.21 The optimum cutoff point for
the probability index was calculated using Youden’s J statistic. J
lies within a range from �1 to þ1. A diagnostic test can be
considered to yield reasonable results for positive values of J.
Higher values indicate better performance of the diagnostic test.
The pairwise correlation was calculated using the Spearman rank
correlation coefficient. Deep-learning computations were per-
formed on a single graphics processing unit.
Results

A total of 734 eyes (358 right eyes and 376 left eyes) of 734
patients with KC and normal participants were included.
Table 1 shows the baseline characteristics of the study
participants. Considering the KC population in Datasets 1
and 2, there was a statistically significant difference
between mean keratometry, maximal keratometry, CCT,
Belin-Ambrósio enhanced ectasia total deviation index,
and SP A1 values. This difference ensures the presence of
sufficient variability in the external validation subset
(Dataset 1) for a better assessment of model robustness in
extracting characteristic features from unseen data.

The mean time needed for individual video preprocessing
(including cleaning) to develop each type of 2D array was
44.32 � 1.6, 44.80 � 1.3, and 44.59 � 2.1 seconds for the
first (original), second (applanation), and third (concavity)
arrays respectively. This time can be reduced by pre-
processing the first 75 frames used in the studied
5



Table 1. Demographic Characteristics of the Study Groups

Parameter

Dataset 1 Dataset 2

P* PyNormal Keratoconus P Normal Keratoconus P

N 101 131 N.A. 259 243 N.A.
Race, n N.A. N.A
White 58 64 240 225
Mixed 22 29 - -
African 6 18 - 2
Asian - 2 2 4
Unreported 15 18 17 12

Eye (right/left) 45/56 59/72 0.941 123/136 131/112 0.151 0.616 0.102
Gender (male/female) 56/45 52/79 0.017 102/157 124/119 0.009 0.006 0.036
Age (years) 0.096 0.075 0.102 0.090
Median 28 27 29 28
IQR 8.0 9.5 9.0 8.0
Range 19, 49 18, 52 22, 52 19, 50

Km (D) < 0.001 < 0.001 0.063 < 0.001
Median 43.2 48.5 43.6 49.6
IQR 2.08 3.44 1.84 5.35
Range 41.2, 47.2 44.2, 55.5 40.7, 47.7 45.9, 54.2

Kmax(D) < 0.001 < 0.001 0.082 0.035
Median 44.8 51.7 44.6 50.6
IQR 3.06 5.80 2.98 6.70
Range 40.8, 47.2 46.2, 58.4 40.2, 46.8 54.3, 45.6

IOP (mmHg) < 0.001 0.002 < 0.001 0.025
Median 17 14 14 15
IQR 3.50 4.50 3.25 4.42
Range 13, 22 10, 19 11, 22 9, 23

CCT (mm) < 0.001 < 0.001 < 0.001 < 0.001
Median 518 453 529 465
IQR 37.00 46.75 32.25 58.32
Range 464, 602 378, 531 457, 593 390, 494

BAD-D < 0.001 < 0.001 0.014 < 0.001
Median 0.65 7.80 0.55 6.18
IQR 0.58 3.02 0.42 3.55
Range �0.24, 1.45 1.78, 13.08 �0.11, 1.51 1.66, 12.33

SP A1 < 0.001 < 0.001 0.003 < 0.001
Median 111.00 72.77 113.09 63.57
IQR 20.15 22.17 19.28 27.12
Range 91.14, 140.76 25.16, 112.36 87.33, 152.76 28.14, 107.33

CBI < 0.001 < 0.001 0.16 0.582
Mean � SD 0.05 � 0.03 0.95 � 0.03 0.09 � 0.07 0.92 � 0.06
Range 0.00, 0.51 0.42, 1.00 0.00, 0.62 0.44, 1.0

TBI < 0.001 < 0.001 0.454 0.622
Mean � SD 0.09 � 0.07 0.99 � 0.00 0.07 � 0.05 0.99 � 0.01
Range 0.00, 0.35 0.96, 1.0 0.00, 0.45 0.85, 1.0

BAD-D ¼ Belin-Ambrósio enhanced ectasia total deviation index; CBI ¼ Corvis biomechanical index; CCT ¼ central corneal thickness; D ¼ diopter; IOP
¼ intraocular pressure; IQR ¼ interquartile range after removing outliers; Km ¼ mean keratometry; Kmax ¼ maximal keratometry; N ¼ number of subjects;
N.A. ¼ not applicable; SD ¼ standard deviation; SP A1 ¼ stiffness parameter at first applanation; TBI ¼ tomography and biomechanical index.
The bold type signifies P � 0.05.
*Between Dataset 1 normal and Dataset 2 normal subgroup.
yBetween Dataset 1 keratoconus and Dataset 2 keratoconus subgroup.
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pseudoimage slice to 23.61 � 0.9 and 23.31 � 0.2 seconds
for the first and second array, respectively. As the calcula-
tion of the third array mandates the identification of the first
frame featuring the cornea at maximum concavity, this
whole video preprocessing time can be reduced by pre-
processing the first 95 frames to 29.95 � 1.2. Inference time
per pseudoimage slice for the adopted model was 47.2 � 3.3
ms in our single graphics processing unit.
6

The training progress and confusion matrix for model
performance on the test subset is shown in Figure 6. The
model accuracy on the test subset was 0.89. The ROC
curve analysis showed an AUC of 0.94 and the Youden
index was highest with 0.86 at the threshold of 0.585
which yielded the best separation between N (< 0.585)
from KC (> 0.585) eyes (Figure 7). At this threshold,
the sensitivity, specificity, precision, and F1 scores were



Figure 6. Epoch accuracy/loss during model training/validation (Dataset 2 training/validation subset with data augmentation). The confusion matrix shows
the performance of the trained model on the test subset (Dataset 2 test subset).
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0.96, 0.82, 0.84, and 0.90 for the N group, respectively,
and 0.82, 0.96, 0.95, and 0.88 for the KC group,
respectively.

Tables 2 and 3 show the predictive accuracy and pairwise
AUC comparisons of SP A1, CBI, and TBI NBC(s) and the
adopted model using the external validation subset (Dataset
1), performed using Delong’s method. Figure 8A, B show
Figure 7. A, Receiver operating characteristic (ROC) curve for binary (keratoc
(Dataset 2 test subset) with an area under the curve (AUC) of 0.942. The ROC
point. B, Plot showing probability score at the cut-off point and Youden Index
the ROC and detection error tradeoff curves and confusion
matrices of the NBC(s) compared to model performance.

Youden index was highest with 0.810 at the threshold of
0.521 with a cut-off value of 0.521 to discriminate N (<
0.521) from KC (> 0.521) which yielded the best separation
between N and KC cases in the external validation subset.
The TBI had the highest predictive accuracy. The
onus vs. normal) classification task by the trained model on the test subset
curve is marked by a red dot at the site closest to the perfect classification
.
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Table 2. External Validation (Dataset 1) Classification Accuracy, Precision, Recall (sensitivity), F1 Score, and Receiver Operating
Characteristic Analysis with the AUC for the SP A1 Parameter, CBI, and TBI Using Naive Bayes Classifier and for the Processed

Pseudoimage Slices Using the Adopted DenseNet 121 Model

Parameter Class Recall Specificity Precision F1 Score Accuracy Mean AUC ± SE

DenseNet121 Normal 0.98 0.78 0.82 0.89 0.88 0.934 � 0.026
Keratoconus 0.78 0.98 0.98 0.87

SP A1 Normal 0.92 0.83 0.84 0.88 0.88 0.954 � 0.020
Keratoconus 0.83 0.92 0.91 0.87

CBI Normal 0.90 0.97 0.97 0.93 0.94 0.982 � 0.010
Keratoconus 0.97 0.90 0.91 0.94

TBI Normal 1.0 1.0 1.0 1.0 1.00 1.000 � 0.000
Keratoconus 1.0 1.0 1.0 1.0

AUC ¼ area under the receiver operating characteristic curve; CBI ¼ Corvis biomechanical index; SE ¼ standard error; SP A1 ¼ stiffness parameter at first
applanation; TBI ¼ tomography and biomechanical index.
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performance of the model was comparable to SP A1 NBC
with no statistically significant difference in AUC
comparison.

Figure S9 shows the Spearman rank correlation analysis
of SP A1, CBI, TBI, and KC probability score with age,
CCT, and bIOP. The KC probability score had a
significant correlation with CCT, SP A1, CBI, and TBI in
the KC group. In the N group, the correlation of the KC
probability score with CCT and TBI was not significant.
The linear relationship of the KC probability score with
TBI and CCT in KC cases compared to a nonlinear
relationship in N cases may reflect the bidirectional noise
inherent to the probability score of the N group. In
addition, the relation between corneal thickness and the
biomechanical properties of the cornea is not essentially
linear in the N group, especially considering the wider
range of CCT (464e602 mm) in the N population in
Dataset 1. The TBI was the only index that was
independent of the bIOP in both the N and KC groups.

In Figure 10A, we present 6 examples of CAMs
generated by the adopted model on test subset samples
that were correctly classified as N. The CAMs appear to
carry plausible spatial clinical inference and overall close
similarity. Horizontally, the most important inferential
regions were limited to the central and paracentral cornea
(the 3 central squares roughly correspond to the central
3.5 mm of the scanned cornea according to
Table 3. External Validation (Dataset 1) Receiver Operating Character
TBI Using Naive Bayes Classifier and for the Pr

Parameter (Pairwise Comparison) Mean D AUC ± SE

SP A1 and DenseNet121 0.020 � 0.024
CBI and DenseNet121 0.048 � 0.021
TBI and DenseNet121 0.066 � 0.026
SP A1 and CBI 0.028 � 0.013
SP A1 and TBI 0.046 � 0.020
CBI and TBI 0.018 � 0.010

D AUC ¼ difference between the area under the curve; CBI ¼ Corvis biom
characteristic; SE ¼ standard error; SP A1 ¼ stiffness parameter at first applan
The bold type signifies P � 0.05.
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preprocessing). Vertically, the highlighted areas represent
the earlier frames at the time of A1 (secondefourth
squares roughly correspond to the 11the43rd frames) with
lesser weights assigned to frames afterward. Accordingly,
we may infer that the most important parameter that
guided the model for high N class probability was the
regular occurrence of the A1 in an expected
morphological and chronological pattern. Figure 10B
represents 6 examples of CAMs generated by the adopted
model on test subset samples that were correctly classified
as KC. The model appears to use more peripheral corneal
regions compared to those used for classifying the N
group (outside the 3 central squares), with the corneal
apex persistently appearing as a cold spot, especially in
latter frames. Vertically, there was variable activation
along most frames without clear relevance of certain
frame sequences for classification in contrast to the N group.
Discussion

Noncontact ultrahigh-speed corneal imaging with a
Scheimpflug camera has allowed a new perspective for the
analysis of the corneal deformation process using advanced
image processing techniques10 that can capture changes in
tangent modulus values of the cornea reported to occur in
softer ectatic corneas.25,26 These changes can be identified
istic Curves and AUC Analysis for the SP A1 Parameter, CBI, and
ocessed Pseudoimages Using DenseNet 121

95% CI Z Statistic P Value

0.0432, 0.0832 0.83 0.198
0.0020, 0.0980 2.28 0.013
0.0211, 0.1108 2.53 0.006
0.0130, 0.0690 2.15 0.016
0.0115, 0.0804 2.30 0.009
0.0007, 0.0352 2.00 0.021

echanical index; CI ¼ confidence interval; ROC ¼ receiver operating
ation; TBI ¼ tomography and biomechanical index.



Figure 8. A, B, Receiver operating characteristic (ROC) curves, detection error trade-off curves, and confusion matrices for binary (keratoconus vs. normal)
classification task of the external validation subset (Dataset 1) by 3 Naive Bayes classifiers, trained on Dataset 2 stiffness parameter at first applanation (SP
A1), Corvis biomechanical index (CBI), and the tomographic and biomechanical index (TBI), compared to the performance of the trained adopted
DenseNet121 based model on the cropped resized external validation dataset (Dataset 1) pseudoimages.
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Figure 10. A, Selected examples of normal group class activation maps (CAMs) showing the areas of the cornea and frame sequence that are most
important for the model classification decision. All were correctly predicted with prediction probability entitled. B, Selected examples of keratoconus group
CAMs showing the areas of the cornea and frame sequence that are most important for the model classification decision. All were correctly predicted with
prediction probability entitled.
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by emerging deep learning approaches to discriminate be-
tween N and KC eyes. To the best of our knowledge, this is
the first study that has used this technique for the detection
of KC in Corvis ST corneal deformation videos. In this
study, we attempted to use deep learning to design a com-
plementary KC probability index using only Corvis ST
videos without using corneal topography or tomography
data for the detection of KC.

Our preprocessing pipeline could achieve dimensionality
reduction of video data to 2D space which would offer a
great chance for implementing various machine learning
algorithms to analyze and extract more numeric features that
can be used as summarized novel biomechanical indices for
KC diagnosis. Another study is already in progress to
evaluate this possibility.

The use of the Belin-Ambrósio enhanced ectasia total
deviation index as an inclusion criterion revealed the
potentially similar robust sensitivity and specificity profiles
of this metric and the TBI as previously demonstrated by
other studies.9,27e29

Following the training and testing of the adopted model
on Dataset 2, its diagnostic capability to discriminate be-
tween N and KC eyes was assessed on the external vali-
dation subset (Dataset 1) to avoid overfitting and to reassess
the optimum cut-off value of the KC probability score in a
different dataset. The model showed high sensitivity and
specificity with an AUC of 0.93 in the external validation
subset, suggesting a reasonable generalization to unseen
videos and confirming the diagnostic capability of our
model.

In the external validation dataset, NBCs based on CBI
and TBI outperformed our CNN. This could be explained by
the fact that several DCR parameters besides the pachy-
metric parameter Ambrósio’s Relational Thickness,
contribute to CBI calculation, and additional tomographic
parameters are involved for TBI derivation. Meanwhile, our
model is based on only numeric monitoring of the corneal
dynamic response extracted from a limited number of
frames (75 frames per slice).7e9,27e30 Nevertheless, SP A1
was the parameter with the closest matching NBC perfor-
mance to the adopted network. This was not surprising as
the development of the SP A1 involves the calculation of the
time and position of the A1.6 These parameters are expected
to be well represented in the calculated 3D array slices used
in model training and were featured in the model CAMs.

The significant correlation of the KC probability score
with the SP A1, CBI, and TBI in the KC group is interesting
as these parameters are not directly calculated from defor-
mation response imaging as in our approach but involve the
use of numerical simulations and machine learning algo-
rithms.6,7,9 So, this association highlights the validity of our
simpler but consistent approach and supports the possible
correlation of this score with the severity of KC. It also
suggests possible validity to diagnose patients with
subclinical KC (sub-tomographic ectasia) similar to other
DCR parameters, which is a subject of another follow-up
progressing study.31,32 The comparative analysis of the
CCT with the bIOP of the N group showed no significant
correlation, demonstrating the established ability of the
bIOP correction algorithm to compensate for corneal
thickness as an important confounding factor.33

In our approach, we opted to use pseudoimage slices
rather than the whole 3D array to allow comparison with the
SP A1. Stiffness parameter at the first applanation is
considered the single DCR parameter of the highest sensi-
tivity and specificity to diagnose KC compared with any
other DCR parameter value6 (in contrast to CBI and TBI,
which are summary indices derived based on several other
parameters). This parameter is calculated in relation to the
time and position of the A1, which should be featured in
the selected part of the 3D array.7,9,28,32 In addition,
limiting the number of frames was required in
preprocessing to shorten model inference time, making our
approach more practical for clinical application. Operating
a high-performance graphics processing unit or a multi-
threaded central processing unit may further reduce this time
to allow near real-time video classification during recording
by integrating this model in future Corvis ST machines.

Our preprocessing technique encompassed many basic
steps needed in video classification architecture. It allowed
data conversion (video to frames), enhancing/smoothing,
noise removal, image segmentation, and feature extraction,
paving the way for feature matching and feature classifica-
tion by the adopted CNN model. This problem-solver
approach was designed specifically for Corvis ST videos,
exploiting the consistency of the video time steps and the
temporal/spatial profile of the air puff.6 Herber et al31 used
linear discriminant analysis and random forest algorithms to
develop classification and staging models for KC using
DCR and corneal thickness-related (pachymetric) parame-
ters calculated by Corvis ST. Our approach cannot be
directly compared with this study as we have utilized raw
Corvis ST videos without using established DCR parame-
ters, corneal topography, or tomography data.

Recently, Tan et al33 used corneal contour data points
extracted from each Corvis ST video frame to calculate
the CCT, the time to the A1, corneal radius of curvature
at the highest concavity, and distance between the initial
position of the corneal apex and the nadir at the highest
concavity. Then, the calculated parameters were used to
train a feed-forward neural network for distinguishing N
and KC eyes. Compared to our studied population, they
used different inclusion criteria and included coethnic
(Chinese) participants of a proportionally lesser sample size
that included some bilateral eyes. Additionally, other than
age, no other characteristics of the participants were pro-
vided, making the generalization of their findings chal-
lenging. Our approach differs technically from this study.
We used a CNN model to exploit the extracted 3D images
directly without extracting any single parameter that may
bias the analysis while Tan et al extracted 4 parameters and
then used simple neural network models to identify KC.

In this study, CAMs were useful to provide insight into
discriminative pseudoimage regions used by the model. It
was observed that the model consistently used clinically
meaningful corneal regions and video frames related to the
11
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time and position of the A1 for identifying the N class.
However, there was not a clear activation pattern that can
highlight the frame sequence used for KC classification.
This pattern loss may represent a by-product of data
augmentation techniques used during model training,
resulting in model confusion and lower sensitivity for the
KC group which can be improved by avoiding this tech-
nique in case of availability of larger datasets.11,13

Our study had several limitations too. We did not assess
the diagnostic potential of using different slices or the whole
of 3D arrays or the component 2D arrays. The preprocessing
ignored the possible use of available corneal thickness data
in the imaged horizontal profile. However, we primarily
intended to propose a purely biomechanical method to
detect KC. Adding extra tomographic parameters may
improve detection scores and accuracy but goes beyond the
scope and goals of this work.

In addition, we did not analyze corneal vibrations imaged
during the deformation process. The characteristic changes
in corneal vibration were analyzed in other studies using
dedicated image processing methods to develop character-
istic parameters for early detection of KC.34

Another limitation is using traditional image data
augmentation techniques that may introduce biases due to
difficulty in identifying safe, label-preserving trans-
formations in this pseudoimage domain that may have
constituted a source of model confusion, especially
considering the rigorous arrangement of the 3D array ele-
ments. This may be improved by adhering to data-specific
augmentation at a distortion magnitude well below label-
changing levels.35 However, the rationale for using
traditional data augmentation on these finely calculated
arrays with precise spatial and temporal relations is that
the component 2D arrays monitor the corneal
biomechanical response from different geometric
perspectives so that features embedded in 1 array are not
strictly registered with the others. So, biases introduced by
augmentation in 1 2D array may not be relevant for the
others, resulting in overall maintained robust
representations in the mother 3D array. That was an
important motive to use the concatenated 3D array instead
of analyzing a single 2D array type as a grey-scale
pseudoimage.

Also, we decided to exclude subclinical KC cases from
the dataset to create the KC probability score. However, the
12
distinction between N and KC eyes can be accomplished by
standard topography or tomography and a population with
very asymmetric ectasia with normal topography (subclini-
cal KC) would have been the best population to test the
capabilities of the KC probability score.7e9 Unfortunately,
patients with very asymmetric ectasia are rarely found in the
analyzed records, and building repositories of scarce data-
sets is further restricted by patient privacy concerns.36,37

In this respect, the developed index needs further
refinement and validation to be a clinically useful
diagnostic tool in the industry. We hope that the model
performance can be improved using a larger dataset that is
populated with cases of subclinical KC. Additionally, to
overcome issues of imbalanced datasets and patient privacy,
generative artificial intelligence can hopefully provide
generative video models such as variational autoencoders,
generative adversarial networks, diffusion models, flow-
based models, and transformer-based models. Each model
has its own strengths and limitations.38 These models may be
used to synthesize new videos similar to a modest-sized
training dataset of subclinical KC Corvis ST videos to help
overcome class scarcity and allow the widespread availability
of such data. Finally, the Corvis ST analyzes deformation
videos of only 1 corneal section. Because of this limitation, it
may be unable to detect potentially significant asymmetric
biomechanical abnormalities exhibited across the nonimaged
corneal sections of patients with KC.
Conclusions

Our study introduces the KC probability score as a novel
add-on DCR index developed by advanced image process-
ing with the implementation of deep learning for KC diag-
nosis from Corvis ST videos. This index has shown high
sensitivity and specificity on both the test subset and
external validation dataset from another continent. These
findings suggest the potential use of the preprocessing
pipeline for machine learning algorithms and propose the
integration of the model in future multi-modal models to
augment the current KC diagnostic armamentarium. Future
work using additional independent datasets is required to
validate the KC probability score as an add-on parameter to
other DCR indices within other population characteristics,
especially in the subclinical KC domain.
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