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Predicting Diabetes: Our Relentless

Quest for Genomic Nuggets

DIABETES EPIDEMIC The latest
estimates from the Center for Disease
Control and Prevention indicate that in
2010 approximately 26 million American
adults had diabetes and 79 million had
prediabetes (1). African Americans and
other ethnic groups continue to suffer
higher rates of diabetes than whites.
Worldwide, diabetes affects 285 million
adults (2). Type 2 diabetes accounts for
~95% of all cases. The exact reasons for
the diabetes epidemic, and its predilection
for certain ethnic groups, are unknown.
However, interactions between genetic pre-
disposition and environmental triggers (or
accelerants) are generally presumed to un-
derlie the etiology of diabetes (3-5) (Fig. 1).
The best known environmental risk factors
are dietary habits, physical inactivity, and
obesity; interventions that ameliorate these
risk factors prevent the development of
type 2 diabetes (6,7).

By contrast, knowledge of the genetic
basis of diabetes is incomplete, despite
Herculean efforts (8-12). Genome-wide
association studies have accelerated the
discovery of single-nucleotide polymor-
phisms (SNPs) at numerous loci. Com-
parison of the frequencies of these SNPs
in case-control studies has enabled the
calculation of the odds of their association
with specific disease phenotypes. To date,
genome-wide studies have added more
than 4,000 SNPs involving some 200 dis-
eases, including >30 diabetes-related
SNPs (diabetoSNPs). The analysis of dia-
betoSNPs has intrinsic appeal as a tool for
diabetes prediction, and could also yield
potential clues to ethnic disparities in the
susceptibility to type 2 diabetes. Because
the diabetoSNPs individually confer mod-
est effects, investigators have adopted an
approach based on cumulative genetic
risk score (GRS) at several loci to improve
sensitivity (13-16). Using available infor-
mation on the relative odds of diabetes
per risk allele (11,12), investigators can fur-
ther calculate a weighted GRS.

GENETIC PREDICTION 1 this is-
sue of Diabetes Care, Cooke et al. (17),
using such an approach, compared the
cumulative GRS for 17 type 2 diabetes risk
variants in a cross-sectional population

comprising 2,652 African American pa-
tients with type 2 diabetes and 1,393 non-
diabetic control subjects. The authors
found association between type 2 diabetes
risk and cumulative GRS in the unweighted
and weighted data set, and after adjusting
for BMI. Notably, 5 of the 17 risk alleles had
nominally significant association with type
2 diabetes, the strongest effect being ob-
served for the rs7903146 SNP at the
TCF7L2 locus. After controlling for the
latter, the GRS no longer predicted diabe-
tes risk. Thus, the authors concluded
that a GRS based on their panel of 17
European-derived risk variants did not
predict type 2 diabetes status in African
Americans, after excluding TCF7L2 risk
variant 1s7903146.

The present report by Cooke et al. (17)
is signficant in that it replicates the known
association of the rs7903146 SNP at
TCF712 with diabetes in African Americans.
The bulk of genetic risk variants for type
2 diabetes have been derived from popula-
tions of European ancestry (10-14,16,18),
with limited primary or replicative data
for African populations (15,19). A major
strength of the present report is the au-
thentication of African ancestry of the
study subjects using admixture analysis.

The promise of genetic risk scoring for
diabetes can be evaluated in the framework
of three perspectives. First is the potential
for robust prediction of diabetes risk.
Second is the prospect of designing
targeted preventive and therapeutic in-
terventions (personalized medicine).
Thirdly, increased knowledge could pro-
vide genomic clues to ethnic disparities in
diabetes. Regarding robustness of predic-
tion, results from the Framingham Off-
spring Study showed that clinical risk
assessment (using age, sex, family history,
BMI, fasting glucose level, systolic blood
pressure, high-density lipoprotein choles-
terol level, and triglyceride level) per-
formed as well as cumulative genotype
score at 18 loci in predicting incident type
2 diabetes during 28 years of follow-up of
initially normoglycemic subjects (14).
Also, cumulative genotype score at 34
loci did not add significantly to clinical
risk factors in predicting progression
from impaired glucose tolerance to type

2 diabetes among the multiethnic cohort
enrolled in the Diabetes Prevention Pro-
gram (15). One current limitation is the
incomplete framework from which GRS is
constructed. For example, the 17 SNPs
studied in the present report (17) repre-
sent just about half of the >30 diabe-
toSNPs identified to date. Even the latter
do not represent all possible risk loci, and
important information on structural var-
iants that might increase diabetes risk is
often lacking. Thus, current experience
renders the promise of robust genetic
prediction and personalized diabetes
intervention a distant hope.

ETHNIC DISPARITIES—Asnoted by
Cooke et al. (17), risk information on all
17 SNPs was obtained from European de-
scendants. The replication in an African
American population is informative;
however, allelic variation is always a con-
cern when applying the SNP panel to per-
sons of African and other non-European
ancestry (18,19). It is plausible that as
more risk alleles from diverse populations
are added to the panel, novel markers
could emerge. For example, putative
rare alleles with major effects that currently
remain unrecognized could come to light.
Until such new discoveries are made, what
we know is that numerous previous reports
together with the present report (17) con-
vincingly identify the rs7903146 polymor-
phism in TCF7L2 as a major genomic
marker for type 2 diabetes in human
beings. The individual association of other
SNPs with diabetes is rather modest, barely
grazing nominal statistical significance in
many instances. Thus, chance associations
become increasingly likely regarding
marginal SNPs, particularly in studies of
limited sample size. Other limitations in-
clude the near-universal lack of informa-
tion on gene-gene interactions among the
risk genotypes and limited data on gene-
environment interactions (20,21) that
could modify diabetes risk. Also lacking
is information on correlative physiologi-
cal measures, such as insulin sensitiv-
ity and B-cell function, which could
provide a hint into underlying mecha-
nisms of the diabetes risk conferred by
these alleles.
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Figure 1—Schematic of the pathogenesis of
diabetes. Genetic and environmental factors,
acting via complex immunological mecha-
nisms, result in B-cell destruction that leads to
type 1 diabetes. Gene-environment interac-
tions also underlie susceptibility to type 2
diabetes, the pathophysiological hallmarks of
which include insulin resistance and B-cell
dysfunction.

SURPRISING PATTERNS Despite
these limitations, Cooke et al. (17) report
nominally significant diabetes associa-
tions for five SNPs at ADAMTS9, WFSI,
CDKALI, JAZF1, and TCF7L2 among their
African American subjects. The ADAMTS9
gene has been implicated in tumorigenesis;
WEFS1 encodes wolframin, a transmem-
brane protein that is expressed in pan-
creas, brain, and insulinoma 3-cell lines;
CDKALI encodes a methylthiotransferase
of unknown function; and JAZF1I encodes a
zinc finger nuclear protein that functions
as a transcriptional repressor. TCF7L2,
the gene most strongly associated with
type 2 diabetes, encodes a transcription
factor in the Wnt signaling pathway that is
involved in B-cell survival (22). Carriers of
the TCF712 risk allele have been reported
to show decreased glucose-stimulated in-
sulin secretion and defective insulin pro-
cessing (20). Several other diabetoSNPs
have functional implications that cluster
around pancreatic growth, cell survival,
insulin gene expression and protein pro-
cessing (23). Remarkably, with a few ex-
ceptions, SNPs along the insulin signaling
pathways have not featured prominently
among the diabetes-associated risk alleles.
Thus, genomic clues to the prevalent phe-
notype of increased insulin resistance, par-
ticularly among African Americans, have
been largely elusive in genome-wide scans
for diabetoSNPs.

Another surprising finding from
studies in ethnically diverse populations
(15,18-20) has been the lack of major

ethnic-specific risk alleles that would ex-
plain the disparities in the prevalence of
type 2 diabetes. Data from the Diabetes
Prevention Program (15) indicate that
the allelic frequencies of the TCF7L2 poly-
morphism are roughly similar in whites (TT
11%, Tc 45%, cc 44%) and blacks (TT
10%, Tc 43%, cc 47%). Such genomic con-
cordance between the races underscores
the importance of environmental factors
(Fig. 1) in the etiology of ethnic disparities
in type 2 diabetes. Thus, efforts to under-
stand and address those factors (and
unravel how they interact with genetic pre-
disposition) constitute a dominant strategy
for containing the diabetes epidemic while
simultaneously assuaging ethnic disparities
(24,25).

In conclusion, genome-wide studies
have added valuable scientific data to our
repertoire of diabetes knowledge. However,
there have been few genomic nuggets that
enable a more robust prediction of diabetes
than is achieved by using common envi-
ronmental risk factors and none that clarify
the peculiar ethnic proclivities of type 2
diabetes. The latter realization ought to
temper enthusiasm for the indiscriminate
use of genetic testing for diabetes.
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