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Abstract: Lab safety problems have become an impeding factor that cannot be ignored in normal
teaching and scientific research activities at colleges and universities. As the risk factors of lab
accidents can be conceptualized as occurring at multiple levels, systematically improving and
optimizing lab safety is the crucial route to accident prevention in labs. In this paper, a novel
method that integrates a structural equation model (SEM) and system dynamics (SD) is presented to
dynamically assess lab safety with the characteristics of insufficient data and uncertainty. On the
basis of a questionnaire investigation, the SEM was utilized to determine the influencing factors on
lab safety and acquire the path coefficients among these factors, which were embedded into the SD
model as the weight of the influencing factors. An illustration was carried out to test and validate the
proposed method, and a sensitivity analysis was also conducted to recognize variables contributing
the most to the improvement of lab safety. The results demonstrated that the safety input of human
and management subsystems is the most effective to improve the lab safety; meanwhile, “safety
awareness”, “emergency ability”, “operation skills”, “safety culture” and “safety training” are the
top five contributing factors, which can promote lab safety in the shortest time.

Keywords: lab safety; safety input; influencing factors; SEM; SD

1. Introduction

With the growth of academic institutions, the safety problems of laboratories at
colleges and universities are becoming increasingly prominent [1]. A wide range of hazards,
including chemical, inflammable and explosive materials, etc., are handled in the lab,
making the lab personnel face significant threats at all levels in the dosage, usage and
management of these hazard sources; even slight negligence in the process may cause
accidents. Unfortunately, there is no authoritative and special database established by
relevant parties to record lab accident and near-miss data [2]. However, some insights
into lab accidents can be gained by using the partial statistical or regional data of lab
accidents in open reports and the related literature, which is also enough to prove and
demonstrate the severity of laboratory accident risk. According to statistics, there have
been more than 260 accidents in chemical laboratories in the United States since 2001,
most of which have caused casualties [3]. Recently, a few cases of lab accidents and the
resulting injuries have aroused wide attention. An accident involving fire and an explosion
happened in a laboratory at Tsinghua University on 18 December 2015, resulting in the
death of a postdoctoral student on the spot [4]. Another case occurred in an environmental
engineering laboratory at Beijing Jiaotong University on 26 December 2018; three students
were killed in an explosion that occurred during a scientific research experiment on landfill
leachate treatment [5]. According to the summary of 3 years of supervision of university
laboratory safety organized by the Chinese Ministry of Education in 2015–2017, the 75
universities interviewed all had latent dangers in chemical safety management; 80% of
the universities had hidden dangers in their laboratory water and electricity systems, and
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personal protection problems. The management of instruments and equipment in 76% of
the universities was not standardized, and laboratory safety education and access in 45% of
universities were defective [6]. In accordance with a report released by the Bureau of Labor
Statistics, incidents are 11 times more likely to occur in chemical laboratories than in other
types of laboratories [2]. Compared with industrial production safety, lab safety is not
given top priority due to the perception that the small quantity of materials will not have
a significant hazardous impact on people and the environment. However, the accidents
highlighted above have provided a wake-up call to everybody and clearly highlight the
need to improve accident prevention in laboratories.

Fortunately, lab safety has been focused on increasingly by laboratory researchers,
governmental agencies, industries, universities and relevant parties in recent years. To
explore the risk factors influencing laboratory safety and prevent laboratory accidents,
many accidents’ causes and analysis models can be used to identify laboratory hazards.
HAZOP (hazard and operability analysis) is the common and original method of lab safety
management, which can help to allocate the measures according to the relative importance
of risks [7–11]. Additionally, FMEA (failure mode effect and criticality analysis) [12,13],
FTA (fault tree analysis) [14,15], ETA (event tree analysis) [16,17] and Bayesian networks
(BNs) [3,13] have also been introduced into laboratory risk assessments. These various
methods provide more options for risk identification from different perspectives [18–20].
However, hazards in the lab have different inherent characteristics compared with industry,
e.g., high turnover of collaborators, students not being trained well for lab work, freedom
of research, equipment often in the development stage and the difficulty of obtain accident
statistics, etc. Hence, the risk analysis techniques commonly used as aforementioned in
industry cannot directly migrate to the laboratories of colleges and universities [21,22].
Moreover, none of these approaches enable a dynamic and holistic analysis, thus failing to
describe the variations in laboratory safety, which is a natural characteristic of laboratory
safety management [23]. In addition, these models cannot provide predictions about safety
states during the entire life cycle under different risk control measures, which is required for
optimizing the risk control strategies [24]. As the risk factors of laboratory accidents can be
conceptualized as occurring at multiple levels, how to systematically improve and optimize
laboratory safety management effectiveness is the crucial route to accident prevention in
laboratories [25]. Actually, a laboratory development can never be completely safe, but the
degree of inherent safety can be increased by selecting the optimum design in terms of the
human factors, equipment factors, environment factors and organizational management
factors. However, although research on risk perception in laboratory safety has been paid
more and more attention, as described above, to the best of our knowledge, there have
been far fewer studies about implementing safety improvements in laboratories from the
perspective of safety input–output. This is because the most challenging part of dynamic
simulations for safety risks lies in the following: (1) identification of safety risk factors and
their causal relationships, and (2) quantification of the variations in safety risk factors over
the time.

To identify the influencing factors for laboratory safety and explore their contribution
to laboratory safety improvement over time, in this paper, a methodology by integrating
SEM and SD is proposed to measure the dynamic relationship between the influencing
factors and laboratory safety levels from the perspective of safety input–output.

2. Materials and Methods
2.1. Framework of Proposed Method

SD is a methodology and mathematical modeling technique that was put forward by
Forrester for understanding and discussing complex issues and problems over time [26].
This method is a combination of theory and computer science, which has been used
extensively to aid in maritime [27], project construction [28], education [29], resource
and environment management [30], transportation planning [31] and many other fields.
Owing to its outstanding advantages in simulating a dynamically complex system with
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internal feedback loops [32–34], it provides a path to solving the dynamic relationship
between laboratory safety inputs and safety levels. Meanwhile, SD is based on a feedback
loop, which is not sensitive to most non-key parameters in the model. As long as the
estimation of the parameters is within a reasonable range, the model results will not show
an unreasonable deviation. Therefore, the utilization of SD is helpful for overcoming
the problems of risk uncertainty and insufficient data in laboratory safety assessments.
Nevertheless, it is challenging to determine and quantify the variables and equations in
the construction of an SD model. To address this challenge, a SEM model that is widely
used for explaining the relationship between variables was introduced for the construction
of an SD model. Compared with traditional multivariate regression models, SEM is more
capable of testing the intrinsic structural relationships among variables in the model, and
expressing these relationships in terms of causal models and path diagrams through factor
analysis, path analysis and covariance analysis [35,36]. While SEM is a static research
method, it is possible to build an SD model based on the correlations identified by the SEM.
Therefore, an SD model based on the SEM was built in this paper to quantitatively predict
the development trend of laboratory safety levels, as well as the degree of influence of the
factors on laboratory safety.

As shown in Figure 1, this study was arranged into 3 steps. The first step involves
the SEM modelling process, which includes definition of the latent variables and observed
variables, the questionnaire survey and data verification, construction of the SEM model,
and the output of path coefficients. Firstly, the key variables, including the latent variables
and observed variables for indicating laboratory safety levels were identified based on
expert interviews, accident analyses and a literature review. Secondly, a questionnaire
based on the design variables was adopted to analyze the influencing factors for laboratory
safety levels and their associated impact. Thirdly, after testing the validity and reliability
of the questionnaire data, the SEM model was constructed by Amos software for factor
analysis and correlation analysis. Finally, the path coefficients between the factors were
produced as output after evaluating the goodness of fit of the initial SEM model.
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Figure 1. Framework and process of the proposed method.

The second step relates to the SD modeling process. In the process, based on the
interactions among the variables, the causal loop that can help in understanding the
interdependencies and feedback in laboratory safety was developed firstly. Secondly,
the causal loop diagram was converted to a stock and flow diagram by using Vensim
software, then the initial parameters and equations were assigned to the corresponding
variables. Note that the normalized path coefficients of the latent variables and observed
variables calculated in the SEM were converted to the weight of the factors in the SD model.
Thirdly, the appropriateness of the linkages among variables was checked by a model
validation test.
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The third step was the application of the SEM-SD model. Different scenarios were
benchmarked to measure the influence of different safety inputs on laboratory safety levels
in the dynamic simulation process.

2.2. Structural Equation Model (SEM)
2.2.1. System Variables and Hypothesis

Regarding laboratory safety management as a system, the subsystems influencing
the laboratory safety level can be summarized as the human subsystem, the equipment
subsystem, the environment subsystem and the management subsystem, as determined by
the related accident analysis and literature review. These subsystems were deemed to be
latent variables in the structural model, and the corresponding observed variables were
identified as influencing factors by 2 rounds of expert interviews, which involved laboratory
teachers, managers and related safety experts. As a result, a total of 17 influencing factors
as observed variables for the latent variables were obtained, and their symbols are listed
in Table 1.

Table 1. Latent and observed variables in the SEM.

Latent Variable Observed Variable Symbols

Human subsystem

Operation skills X11
Safety awareness X12
Emergency ability X13

Psychological quality X14

Equipment subsystem
Safety protection devices X21

Personal protective equipment (PPE) X22
Fire control facilities X23

Environment subsystem

Space layout X31
Sanitary conditions X32

Warning signs X33
Ventilation X34

Management subsystem

Equipment maintenance X41
Safety culture X42
Safety training X43

Management of hazardous chemicals X44
Safety checks X45

Access management X46

In this study, it was assumed that the human subsystem, the equipment subsystem,
the environment subsystem and the management subsystem would have a significant
impact on the laboratory safety level, but the correlation between these variables would
be low. According to this hypothesis, the structural model concerning the influencing
factors of the laboratory safety level is plotted as shown in Figure 2. In the Figure 2, e1~e17
represent the residual terms of the corresponding observed variable; e18–e21 express the
residual terms of the corresponding latent variables. In the initial SEM, the regression
weight of one variable in a group of variables was set to 1 first, so as to facilitate and
support the SEM model’s operation [35].
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Figure 2. Initial SEM for laboratory safety level.

2.2.2. Questionnaire Survey and Data Verification

• Questionnaire survey

Based on the above definition of the latent variables and observed variables, a survey
questionnaire involving each observation variable was developed to collect the data, which
involved a variety of statements scored by the respondents on a 5-point Likert scale. As
the questionnaire concerned the ranking of importance of the 17 observed variables in the
SEM, the Likert scale method was used to measure the importance of different observed
variables under the same latent variable, from low to high, earning scores of 1, 2, 3, 4,
or 5. Respondents included students, teachers, technicians and administrators. In total,
180 questionnaires were distributed, of which 151 valid questionnaires were collected,
giving rise to a response rate of 83.9%, which satisfied the investigation’s requirements.
The characteristics of the effective sample are shown in Table 2, and the results of the
questionnaire survey are summarized in Table 3.

Table 2. Basic information of questionnaire respondents.

Name Category Number of People Percentage

Gender Man 101 66.89%
Woman 50 33.11%

Position Student 60 39.74%
Teacher 31 20.53%

Technician 35 23.18%
Manager 24 15.89%

Age 20–30 65 43.05%
31–40 42 27.81%
41–50 31 20.53%
51–60 13 8.61%
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Table 3. Summary of the results of the questionnaire survey.

Score Score

Item 1 2 3 4 5 Item 1 2 3 4 5

X11 2 10 11 73 55 X33 4 9 22 67 49
X12 2 10 30 53 56 X34 4 25 48 44 30
X23 1 11 23 49 67 X41 4 53 65 9 20
X14 1 8 18 57 67 X42 1 8 23 67 52
X21 0 5 35 62 49 X43 1 8 24 70 48
X22 2 27 52 34 36 X44 5 12 38 67 29
X23 2 38 49 35 27 X45 1 8 36 60 46
X31 0 19 32 57 43 X46 4 7 32 59 49
X32 4 3 22 75 47

• Reliability and validity verification

Reliability refers to the degree of consistency of the different respondents’ answers
within the same questionnaire [37]. Cronbach’s alpha tests are widely used to assess the
reliability of the scale items. The value of the Cronbach’s alpha coefficient is between 0
and 1. The higher the coefficient is, the more reliable the questionnaire is. Therefore, the
Cronbach’s alpha coefficient was utilized to test the consistency of the latent variables in
the questionnaire; the formula for its calculation is as follows [38]:

α =
k

k− 1
×

1−

k
∑

i=1
Z2

i

Z2
T

 (1)

where k refers to the total number of items in the questionnaire, Z2
i denotes the variance

within the score of the ith question and Z2
T represents the variance of the total scores of all

questions.
Validity is the correctness and quality of the questionnaire data, which refers to

the degree to which the scale can be accurately measured. Validity analysis is generally
expressed by the Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of sphericity [39]. KMO
is used to test correlations between variables by comparing the correlation coefficients and
partial correlation coefficients, and Bartlett’s test of sphericity is used to test whether the
correlation coefficient matrix is the unit matrix. When the value of KMO is close to 1 and
the significance probability of Bartlett’s test of sphericity is less than 0.05, this indicates
that the survey data are suitable for factor analysis. The KMO can be calculated by the
following formula [40]:

KMO =

∑ ∑
i 6=j

r2
ij

∑ ∑
i 6=j

r2
ij + ∑ ∑

i 6=j
p2

ij
(2)

where rij denotes the correlation coefficient between variable i and variable j, and pij refers
to the partial correlation coefficient between variable i and variable j.

In the present study, SPSS was used to test the reliability and validity of the mea-
surement items in the SEM, with the analysis results being summarized in Table 4. It can
be seen in the table that the reliability and validity of the present scale are acceptable for
factor analysis.
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Table 4. The reliability and validity results.

Cronbach’s α KMO of Sampling Adequacy
Bartlett’s Test of Sphericity

Approx. Chi-Square Sig.

Standard
>0.9 as excellent >0.9 as excellent

NA <0.050.7–0.8 as acceptable range 0.6~0.8 as acceptable range

Results 0.726 0.652 1039.175 0.000

2.2.3. SEM Fit Evaluation

After verification of the scale data, it was necessary to conduct a goodness of fit
evaluation between the theoretical SEM and the data, aiming to ensure that the model
had statistical operability and could output stable and reasonable results. Different fit
indices can test the theoretical model from the perspective of model complexity, sample
size, absoluteness and relativity, so a goodness of fit evaluation of a SEM cannot merely
depend on a certain fitting index [41]. To this end, in this paper, the fit indices containing
the absolute goodness of fit and the relative fitting index were utilized in combination
to assess the initial model. The evaluation criteria of the goodness of fit are recapped
in Table 5.

Table 5. Fit index evaluation standards [35].

Index Name Statistical Test Standard or Critical Value of Fit

Absolute goodness of fit
χ2/df (CMIN/DF)

3 ≤ χ2/df < 5 as acceptable range
χ2/df ≤ 3 = model fitting degree is excellent

RMSEA (estimated root mean square) 0.05 ≤ RMSEA ≤ 0.1 as acceptable range
RMSEA < 0.05 height fitting model

Relative fitting index

NFI (normal fit index)
NFI > 0.8 as acceptable range

NF1 > 0.9 = model fitting degree is good

IFI (incremental fit index)
IFI > 0.8 as acceptable range

IFI > 0.9 = model fitting degree is good

CFI (comparative fit index) CFI > 0.8 as acceptable range
CFI > 0.9 = model fitting degree is good

After the raw survey data were imported into Amos software, the maximum likelihood
estimation method was adopted to solve the SEM. The initial path correlation coefficients
are depicted in Figure 3, and the corresponding goodness of fit indices used to test the
fitting degree of the model structure are summarized in Table 6.

Table 6. Initial SEM fit results.

Index χ2/df RMSEA NFI IFI CFI

Results
2.597 0.103 0.725 0.811 0.807

excellent unacceptable unacceptable acceptable acceptable

As shown in Table 6, the RMSEA and NFI results of the initial SEM did not meet the
model fitting requirements shown in Table 5. Therefore, it was necessary to modify the
model according to the modification indices (M.I.) and parameter changes (Par Change), to
improve the fitness of the model. In this paper, by adding the path relationships between
the residual terms e3 and e15, between e4 and e12, between e15 and e17, and between
e16 and e17, the modified standardized estimation results were eventually obtained, as
shown in Figure 4; the modified SEM fit results are summarized as shown in Table 7, which
indicates that the present model’s goodness of fit indices all satisfy the reference standard.
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Table 7. Modified SEM fit results.

Index χ2/df RMSEA NFI IFI CFI

Results
1.916 0.078 0.804 0.896 0.893

excellent acceptable acceptable acceptable acceptable

2.2.4. Standardized Regression Coefficients

The normalized weights of the latent variables and observed variables were converted
from the correlation path coefficients obtained from the modified SEM, which was used
to establish following SD model, and the conversion results are listed in Table 8. Among
the latent factors, the weight of the human subsystem is the largest, followed by the
management subsystem, the environment subsystem and the equipment subsystem.

Table 8. Standardized regression coefficients and corresponding normalized weights.

Path Relation Standard Regression Coefficient Weight

Laboratory safety level→ Human subsystem 0.58 0.43
Laboratory safety level→ Equipment subsystem 0.09 0.07

Laboratory safety level→ Environment subsystem 0.21 0.15
Laboratory safety level→Management subsystem 0.48 0.35

Human subsystem→ X11 0.71 0.27
Human subsystem→ X12 0.87 0.33
Human subsystem→ X13 0.86 0.32
Human subsystem→ X14 0.23 0.08

Equipment subsystem→ X21 0.24 0.12
Equipment subsystem→ X22 0.85 0.43
Equipment subsystem→ X23 0.89 0.45

Environment subsystem→ X31 0.31 0.13
Environment subsystem→ X32 0.79 0.34
Environment subsystem→ X33 0.75 0.32
Environment subsystem→ X34 0.48 0.21
Management subsystem→ X41 0.39 0.11
Management subsystem→ X42 0.93 0.25
Management subsystem→ X43 0.92 0.25
Management subsystem→ X44 0.40 0.11
Management subsystem→ X45 0.55 0.15
Management subsystem→ X46 0.48 0.13

2.3. System Dynamics (SD)
2.3.1. Development of the Causal Loop

A causal loop diagram is composed of one or more feedback loops, which reflect the
relationship between the input and output of the factors in the system, on the one hand,
and the relationship between the external environment and the input and output of the
system on the other hand [42]. Safety input plays an important role in laboratory safety
level. If the safety level is low, we should increase the laboratory safety input to improve
the factors affecting safety. On the contrary, if the safety level is high, we can appropriately
slow down the input into safety. In the present study, the internal causal relationships
and evolution process among the influencing factors for laboratory safety were analyzed
from the perspective of safety input–output. Based on the SEM, laboratory safety input
was introduced to establish a causal loop that reflected the laboratory safety management
process, as shown in Figure 5. It can be seen that laboratory safety input can promote
the safety level of subsystems such as human factors, equipment factors, environmental
factors and management factors, so as to improve the overall laboratory safety level. When
the safety target level is reached, the laboratory safety input will be reduced through the
feedback of the laboratory safety level to avoid wasting resources.
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2.3.2. Formation of the SD Diagram and Model Check

Once the causal loop was built, the stock and flow diagram could be created. Every
causal loop in SD model should have at least one stock; otherwise, there will be no
accumulation [43]. Only the flow can change the value of a stock, because all variables in
the SD model change over time. On this basis, according to the causal loop diagram and
the defined variables, the stock and flow diagram of the SD model for laboratory safety
levels was obtained as shown in Figure 6, which includes 4 level variables, 4 rate variables,
21 auxiliary variables and 26 constants.
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Figure 6. Stock and flow diagram of the SD model.

In Figure 6, the variables and corresponding equations that describe the system’s struc-
ture and govern their interrelationships among the various variables can be determined.
Since the variables in the model are all qualitative, they were measured in dimensionless
units. Noted that the SD equation of the latent and observed variables in SEM was edited
with the weight of each factor as the coefficient. The mathematical expressions between the
variables used in SD model are displayed in Table 9.
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Table 9. Variables and functions in the SD model.

Variable Type Symbol Function

Laboratory safety level Auxiliary LSL LSL = 0.43×HSSL + 0.07 × EqSSL + 0.15 × EnSSL +
0.35×MSSL

Laboratory safety goal level Constant LSGL NA
Laboratory safety input Auxiliary LSI LSI = LSGL − LSL

Human subsystem safety level Level HSSL HSSL = INTEG (IRH − DRH, HSSL0)
Decay rate of the human subsystem safety level Constant DRH NA

Increase rate of the human subsystem safety level Rate IRH IRH = 0.27 × X11 + 0.33 × X12 + 0.32 × X13 + 0.08 × X14
Human factors’ safety input Auxiliary HFSI HFSI = LSI × HFIR

Human factors’ safety input increase rate Constant HFIR NA
Conversion rate to X1i, i = 1, 2, 3, 4 Constant CRX1i NA

X1i, i = 1, 2, 3, 4 Auxiliary X1i X1i = CRX1i × HFSI
Equipment subsystem safety level Level EqSSL EqSSL = INTEG (IREq − DREq, EqSSL0)

Decay rate of the equipment subsystem safety level Constant DREq NA
Increase rate of the equipment subsystem safety level Rate IREq IREq = 0.12 × X21 + 0.43 × X22 + 0.45 × X23

Equipment factors’ safety input Auxiliary EqFSI EqFSI = LSI × EqFIR
Equipment factors’ safety input increase rate Constant EqFIR NA

Conversion rate to X2i, i = 1, 2, 3 Constant CRX2i NA
X2i, i = 1, 2, 3 Auxiliary X2i X2i = CRX2i × EqFSI

Environmental subsystem safety level Level EnSSL EnSSL = INTEG (IREn − DREn, EnSSL0)
Decay rate of the environmental subsystem safety level Constant DREn NA

Increase rate of the environmental subsystem safety level Rate IREn IREn = 0.13 × X31 + 0.34 × X32 + 0.32 × X33 + 0.21 × X34
Environmental factors’ safety input Auxiliary EnFSI EnFSI = LSI × EnFIR

Environmental factors’ safety input increase rate Constant EnFIR NA
Conversion rate to X3i, i = 1, 2, 3, 4 Constant CRX3i NA

X3i, i = 1, 2, 3, 4 Auxiliary X3i X3i = CRX3i × EnFSI
Management subsystem safety level Level MSSL MSSL = INTEG (IRM – DRM, MSSL0)

Decay rate of the management subsystem safety level Constant DRM NA

Increase rate of the management subsystem safety level Rate IRM IRM = 0.11 × X41 + 0.25 × X42 + 0.25 × X43 + 0.11 × X44 +
0.15 × X45 + 0.13 × X46

Management factors’ safety input Auxiliary MFSI MFSI = LSI ×MFIR
Management factors’ safety input increase rate Constant MFIR NA

Conversion rate to X4i, i = 1, 2, 3, 4, 5, 6 Constant CRX4i NA
X4i, i = 1, 2, 3, 4, 5, 6 Auxiliary X4i X4i = CRX4i ×MFSI

In the above equations, HSSL0, EqSSL0, EnSSL0, and MSSL0 indicate the initial
values of the human subsystem’s safety level, the equipment subsystem’s safety level,
the environment subsystem’s safety level and the management subsystem’s safety level,
respectively. After determination of the equations, the next step was to check the SD model,
including an operation check and a unit check, which were used to verify the rationality
of causality, the accuracy of the equation and the consistency of the units. Through the
function of the running check and the unit check in Vensim software, it was concluded that
the SD model runs well.

3. Results and Discussions
3.1. Model Test

In this section, the developed methodology model was tested on Vensim software.
The parameters of the established SD model can be divided into two categories: one is the
initial value of the level variable; the other is the constant used for sensitivity adjustment.
The initial value in the SD model can be determined by the expert scoring method. In terms
of the level variables’ initial values, according to the 1–100 scoring system, the laboratory
safety level was ranked as excellent (≥90), good (80–89), medium (70–79), passing (60–69)
or poor (<60), which were used as the scoring standards. A survey was then carried out on
15 professionals, including professors, associate professors, managers of laboratories and
safety research experts. As a result, the initial value of the human subsystem safety level,
the equipment subsystem safety level, the environmental subsystem safety level and the
management subsystem safety level were determined by the experts’ judgements, which
were 70, 75, 75 and 70, respectively. In terms of the constants in the SD model, to perform
the sensitivity analysis, the decay rates were set at 0.001, the safety input increase rates
were set at 0.3 and the conversion rates were set at 0.1. The above equations and parameters
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were substituted into the established SD model, the simulation time was set to 200 units of
time, and the laboratory safety goal level was set to 90. After that, the simulation results
were obtained by running Vensim software. The dynamic relationship between laboratory
safety level and safety input is displayed in Figure 7.
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Figure 7. Dynamic relationship between laboratory safety level and safety input.

In Figure 7, under the given conditions of laboratory safety input, the initial value of
laboratory safety level is about 71.1. With the effect of safety input on the human factors,
equipment factors, environmental factors and management factors, the overall laboratory
safety level increased rapidly and then slowed down, coming close to the target safety
level of 90 by the 140th unit of time. If the laboratory safety level does not reach the safety
goal level, the SD model will adjust the safety input according to the deviation between the
laboratory safety target and the actual safety level. With improvement in the laboratory
safety level, the corresponding safety input will gradually reduce. When the laboratory
safety level reaches the target level, its growth is not zero, which is due to the time delay
between the laboratory safety input and the laboratory safety level.

3.2. Scenario Simulation and Sensitivity Analysis

In this section, the established SD model was utilized to simulate the contribution
of the laboratory safety subsystems and the corresponding influencing factors to the
laboratory safety level. Firstly, to observe the contribution of different safety inputs of the
laboratory safety subsystems to laboratory safety level, the increase rates of safety input
were set as shown in Table 10; the corresponding results of laboratory safety level under
different input increase rates for each subsystem are depicted in Figure 8.

Table 10. Different safety input scenarios.

Scenario HFIR EqFIR EnFIR MFIR

Scenario 0 0.3 0.3 0.3 0.3
Scenario 1 0.6 0.3 0.3 0.3
Scenario 2 0.3 0.6 0.3 0.3
Scenario 3 0.3 0.3 0.6 0.3
Scenario 4 0.3 0.3 0.3 0.6
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Figure 8. Laboratory safety level with different safety input increase rates.

As can be seen from Figure 8, increasing the safety input of any subsystem will improve
the laboratory safety level, but the response rate of laboratory safety level is different.
Among the subsystems, the safety input into the human factors presented the largest
growth rate for improving the laboratory safety level, followed by management factors.
To perform the sensitivity analysis and recognize the most highly contributing factors
in laboratory safety, the contribution rate (CR) was defined in this paper; the CR for the
influencing factors for laboratory safety management were calculated with Equation (3).

CR(Ai) =
LSL(Xi)− LSL(X0)

LSL(X0)
(3)

where LSL(X0) denotes the average laboratory safety level affected by the influencing
factor X before changing it and LSL(Xi) refers to the average laboratory safety level after
changing the influencing factor X.

As provided in Equation (3), CR refers to the average increased percentage of the
laboratory safety level when one factor increased by a certain value while the other factors
remain unchanged. Compared with the weight of factors, the CR can quantitatively
express the contribution that the changes in a certain factor make to the laboratory safety
level, which can better provide evidence for decision-making regarding laboratory safety
inputs. Based on the simulation results, the CR for each subsystem in laboratory safety
management could be worked out with Equation (3), as shown in Figure 9. The CRs
of “Human subsystem safety level” and “Management subsystem safety level” were
apparently higher than those of the other two subsystems regarding laboratory safety
under the same safety input increase rate, indicating that these two subsystems are the
most critical aspects contributing to improvement of the laboratory safety level.
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Figure 9. CR results of the subsystems on laboratory safety levels.

Different conversion rates of the influencing factors are related to the laboratory risk
control measures. To further analyze the contribution of different control measures on
the laboratory safety level, likewise, each conversion rate increased by 50% in turn, while
the other variables remained unchanged (the initial value was 0.1). The response of the
corresponding laboratory safety level is shown in Figure 10.
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According to Figure 10, the same increase in the conversion rates of the influencing
factors could improve the laboratory safety level at different rates. For example, in terms of
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the human factors subsystem, an improvement in the conversion rate of “Safety awareness”
and “Emergency ability” could promote the laboratory safety in the shortest time.

The sensitivity of each factor to laboratory safety level was also determined according
to Equation (3). The CR results of each influencing factor regarding the laboratory safety
level are provided in Figure 11. It can be concluded that “Safety awareness”, “Emergency
ability”, “Operation skills”, “Safety culture” and “Safety training” are the top five con-
tributing factors to the laboratory safety level, namely, an increase in the conversion rate
of these influencing factors would make the greatest contribution to the improvement of
laboratory safety levels. Therefore, although the safety input of the human and manage-
ment subsystems is the most effective means to improve the laboratory safety level, as
the results in Figure 9 show, the conversion rate of these factors should deserve enough
attention at the same time when making laboratory safety input decisions. This is because
improving the conversion rate of these factors in the human and management subsystems
can promote better laboratory safety levels in the shortest time.
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3.3. Comparison with Other Similar Studies

The value of this paper is in the development of an approach combining SEM and
SD models to address the dynamic relationships of laboratory safety management ele-
ments within a single framework. Although there are a few studies on laboratory safety
improvements from the perspective of safety input–output, several studies on laboratory
safety risk assessment can be used for comparative analysis. From a statistical perspective,
improper storage and handling comprised the most frequent human cause for laboratory
incidents (27%), followed by procedure violations (7%) [2]; these two human factors can
be considered as aspects of “Operation skills” in the present study. Lack of professional
knowledge and not receiving professional training were recognized as the most important
events in the laboratory explosion accidents by using FTA [17], which consistent with the
results in the present study. In a smaller survey on 85 respondents, the results showed
that 9% did not know how to handle an emergency in the laboratory fire and explosion
accidents [44], which indicates that emergency ability is also a crucial factor in improving
laboratory safety. Furthermore, the most important reason for the existence of these perva-
sive risk factors in the laboratory is the lack of strong safety awareness and a positive safety
culture [1]. Different from industry, the barrier to establishing and boosting a laboratory
safety culture is academic freedom, which is often raised as an objection to safety practices
in the laboratory.
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4. Conclusions

An integrated model based on SEM and SD was proposed in this paper to identify
the factors affecting laboratory safety effectiveness, and to measure the contribution to
laboratory safety improvements over time from the perspective of safety input–output.
The main conclusions are summarized as follows:

(1) The proposed model was proven to be an effective method for laboratory safety
assessments. With this model, the dynamical evolution of the laboratory safety level
over time can be simulated under different scenarios.

(2) The influencing factors of laboratory safety were analyzed from four aspects, includ-
ing the human subsystem, the equipment subsystem, the environment subsystem and
the management subsystem. The responses to safety inputs into the four subsystems
of the laboratory safety level are different: the human and management subsystems
are the most effective for improve the laboratory safety level.

(3) “Safety awareness”, “Emergency ability”, “Operation skills”, “Safety culture” and
“Safety training” were demonstrated to be the top five factors contributing to the
laboratory safety level, which can promote a better laboratory safety level in the
shortest time.

The simulation results in the present study have reference value for laboratory safety
risk assessment and management. Meanwhile, since the best laboratory safety input scheme
can be determined by adjusting the safety devotion and conversion rate of the influencing
factors, the proposed model may have guiding significance for making laboratory safety
input and management decisions. As the human and management factors are the most
effective for improve the laboratory safety level, in the future, potential work should be
devoted to investigating the causal relationships between laboratory safety and human
and organizational factors, and to establishing effective measures for alleviating human
and organizational failures in the laboratory at colleges and universities.
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