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Serous ovarian cancer is the most common and primary death type in ovarian cancer. In
recent studies, tumor microenvironment and tumor immune infiltration significantly affect
the prognosis of ovarian cancer. This study analyzed the four gene expression types of
ovarian cancer in TCGA database to extract differentially expressed genes and verify the
prognostic significance. Meanwhile, functional enrichment and protein interaction network
analysis exposed that these genes were related to immune response and immune
infiltration. Subsequently, we proved these prognostic genes in an independent data
set from the GEO database. Finally, multivariate cox regression analysis revealed the
prognostic significance of TAP1 and CXCL13. The genetic alteration and interaction
network of these two genes were shown. Then, we established a nomogram model
related to the two genes and clinical risk factors. This model performed well in Calibration
plot and Decision Curve Analysis. In conclusion, we have obtained a list of genes related to
the immune microenvironment with a better prognosis for serous ovarian cancer, and
based on this, we have tried to establish a clinical prognosis model.
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INTRODUCTION

In female, ovarian cancer was the third most common cancer and the second leading cause of cancer-
related deaths in 2018, as 295,414 people being diagnosed and 184,799 deaths being reported globally
(Bray et al., 2018). Ovarian cancer is rarely detected early, as its symptoms are often not evident due
to the anatomical location of the disease (Lheureux et al., 2019); therefore, several patients are
diagnosed at an advanced cancer stage, which is associated with high mortality. Epithelial ovarian
cancer accounts for 85–90% of all ovarian cancers and is the most common type of ovarian cancer
with unique genomic characteristics such as mutations in BRCA1 and BRCA2 that encode proteins
involved in DNA damaged repair. Hence, homologous recombination deficiency for DNA damage
improves the precision and effectiveness of therapy (Rebbeck et al., 2015; Lheureux et al., 2019;
Matsumoto et al., 2019). Serous histological subtype is the most common subtype of epithelial
ovarian cancer, among which approximately 90% of cases are of high-grade serous ovarian cancer,
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whereas 10% are of low-grade cancers (Duska and Kohn, 2017).
From a molecular and genetic point of view, serous is classified as
a typical type I (low-grade) and type II (high-grade) ovarian
cancer by the World Health Organization (WHO) (Previs et al.,
2015), and its gene expression profile has molecular diversity.
Overall, differences in clinical outcomes between molecular
subtypes of ovarian cancer (Konecny et al., 2014; Winterhoff
et al., 2016) allow the discovery of new predictors for
individualized treatment.

Gene expression profiling has been widely used in ovarian
cancer to identify distinct molecular subtypes. The Cancer
Genome Atlas (TCGA) project provides gene expression data
and clinical and survival information (Cancer Genome Atlas
Resea, 2008). Ovarian serous cystadenocarcinoma (OV) is the
most common histological subtype of epithelial ovarian cancer
(Biade et al., 2006). In TCGA profile, four gene expression
subtypes were independently identified within OV, including
the immunoreactive, proliferative, mesenchymal, and
differentiated subtype (Cancer Genome Atlas Resea, 2011).
The ICON7 phase III trial revealed that the outcome of
patients with ovarian cancer improved substantially regarding
progression-free survival (PFS) when treated in combination with
bevacizumab (Perren et al., 2011). Moreover, among OV patients
treated with bevacizumab, those with proliferative and
mesenchymal cancer subtypes had the most inferior survival,
but derived a comparably more significant PFS benefit (hazard
ratio [HR] 0.55 [95% confidence interval [CI] � 0.34–0.90], p �
0.016; and HR 0.78 [95%CI � 0.44–1.40], p � 0.41, respectively)
(Kommoss et al., 2017). These two OV subtypes share an
angiogenic gene expression signature and may respond to
antiangiogenic therapy. Thus, molecular subtyping underscores
the significant clinical need for more effective and refined
treatment strategies (Kommoss et al., 2017).

Different gene expression profiles not only provide valuable
clues regarding the molecular subtypes (Klymenko and Nephew,
2018; Ugo et al., 2018), but also the genetic pathways related to
immune infiltration of tumor-associated normal cells (Sato et al.,
2005; Mhawech-Fauceglia et al., 2013). ESTIMATE is an
algorithm that infers tumor purity based on gene expression
data of cancer samples comprising a mixture of stromal cells and
immune cells (Yoshihara et al., 2013), which are essential
components of normal cells in tumor tissues. These cells can
interfere with molecular signals within the tumor
microenvironment and are known to play crucial roles in
cancer biology (Yoshihara et al., 2013) , with increasing
evidence demonstrating the clinical importance of stromal and
immune cells in tumor microenvironment (Liu et al., 2018; Xu
et al., 2019; Mao et al., 2020). The immune microenvironment is
involved in tumorigenesis and homeostasis in body, with tumor-
infiltrating lymphocytes and stromal cells being associated with
clinical prognosis in ovarian cancer patients (Zhang et al., 2003;
Sato et al., 2005). However, only few studies focusing on whether
the differences between the molecular subtypes of ovarian cancer
are related to the tumor microenvironment.

The role of tumor microenvironment in predicting clinical
outcome and efficacy was gradually recognized. Researchers were
trying to find reliable immune-related prognostic genes in

ovarian cancer, including TAP1 (Liu et al., 2020; Wu et al.,
2020; Huo et al., 2021) and CXCL13 (Liu et al., 2020; Wu
et al., 2020; Li et al., 2021). The results were based on
screening for differentially expressed genes between high and
low abundance immune subtypes (Li et al., 2021), ovarian cancer
and normal tissues (Liu et al., 2020), high and low Tumor
Mutational Burden (TMB) samples (Huo et al., 2021), high
and low tumor microenvironment scores (Wu et al., 2020).
However, TAP1 and CXCL13 as main prognostic markers
were primarily carried out using a univariate Cox model (Wu
et al., 2020), without considering the influence of other genes. In
addition, some study included more genes in the prognostic
model, which may increase the difficulty of application (Liu
et al., 2020).

This study aims to screen the immune-related genes of serous
ovarian cancer from different perspective based on the differences
in the prognosis and immune scores among four molecular types.
Moreover, we establish a new risk classification system based on
two immune-related prognostic genes to predict overall survival,
and propose potential prognostic markers and therapeutic targets
for advanced ovarian cancers.

MATERIALS AND METHODS

Patient Samples
Ovarian serous cystadenocarcinoma gene expression data by
AffyU133a array was obtained from TCGA dataset (https://
tcga-data.nci.nih.gov/tcga/) on June 7, 2020. In TCGA data
portal, we also downloaded gene expression subtype (n � 308)
and clinical data such as age, pathological stage, grade, and
survival information. The level of stromal cells and the
infiltration level of immune cells in OV tissues were viewed
by scores from the ESTIMATE website (https://bioinformatics.
mdanderson.org/estimate/index.html). The gene expression
subgroups were used as the test group, while all TCGA data
of OV were used as the internal verification group for the
survival prognosis of the selected genes. GSE32062 data set(27)
from the GPL6480 platform was downloaded for external
verification.

Differentially Expressed Genes
Package limma (Ritchie et al., 2015) was performed in data
analysis to compare the differential expressed genes. Fold
change (FC) > 1.5 and p-value < 0.05 were set as the cutoff
for screening significant DEGs. Volcanic maps (R package) and
Heatmaps were used to visualize the DEGs. The heatmaps and
clustering were based on an open-source web tool Morpheus
(https://software.broadinstitute.org/morpheus).

Oncomine Analysis
Oncomine (https://www.oncomine.org/) is a database for tumor-
related gene research from GEO, TCGA, and published literature.
The transcription levels of up-regulated genes with prognostic
significance were compared with those of normal control
samples. The statistical method used for comparison was
Student’s t-test.
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GEPIA Dataset
This tool was developed by Tang et al. (2017), for analyzing the
RNA sequencing expression data from TCGA and the GTEx
projects. The expression of up-regulated genes with prognostic
significance in tumor tissues and control ones was carried out by
this dataset (http://gepia.cancer-pku.cn/).

Metascape Analysis
Metascape is a web-based portal (http://metascape.org), which
provided comprehensive gene list annotation and analysis
resources. Gene Ontology (GO) process and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
conducted in functional enrichment analysis. Only terms with
p-value < 0.01, minimum overlap of 3, and enrichment factor of
>1.5 were considered significant. To understand the underlying
interaction, Metascape was also employed to construct protein
network analysis. Molecular Complex Detection (MCODE)
algorithm was applied to identify densely connected network
components. The results of enrichment analysis with prognostic
genes were shown by a bubble diagram using an online platform
(http://www.bioinformatics.com.cn).

Overall Survival Curve
The prognostic significance of differentially expressed genes was
assessed by univariate analysis. p-value < 0.05 was set as a
threshold. Genes with predictive value were verified and
visualized by Prism 7. A forest plot was used to visualize the
verification survival results. These statistical analyses were
performed using R (“survival” package, “forest plot” package).

TIMER Analysis
Differentially expressed genes may play crucial roles in immune
infiltration of tumor microenvironment. TIMER (Li et al., 2017a)
was used to analyze the immune infiltration of DEGs, and gene
modules of TIMER were performed to explore immune infiltrates
through B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells (Summerfield et al., 2001).

Tissue Samples
Fresh ovarian cancer tissues and adjacent normal ovarian tissues
were obtained from the Biobank of Affiliated Kunshan Hospital
of Jiangsu University. These samples were obtained recently from
14 high-grade serous ovarian cancer patients, including two in
stage I, four in stage II, five in stage III, and three in stage IV.
Written informed consent was obtained from each patient and
the protocols were approved by the Ethics Committee of
Affiliated Kunshan Hospital of Jiangsu University (BR2015021).

Quantitative Real-Time Reverse
Transcriptase Polymerase Chain Reaction
Assay
The detailed protocols were well established and described in
our previous studies (Wang et al., 2020). In brief, TRIzol
reagents were added to tissue specimens to obtain total RNA,
which was reversely transcripted to cDNA. Through an ABI
Prism 7900 Fast Real-Time PCR System, qRT-PCR was

performed through the SYBR Green PCR kit. Melt curve
analysis was always performed to calculate the product
melting temperature, and the 2-ΔΔCt method was utilized to
quantify targeted mRNA, with β-actin mRNA examined as the
internal control. All the mRNA primers were provided by
GENEWIZ (Suzhou, China) and the sequences of the primer
were listed in Table1. The experiment was repeated 3 times. The
unpaired t-test was used to compare the difference between the
tumor tissues and normal ones.

cBioPortal Database
The cBioPortal website (https://www.cbioportal.org/) stores
DNA copy number data, mRNA and microRNA expression
data, and other useful information. Samples with mRNA data
(RNA Seq V2) of 585 ovarian cancer data were obtained from the
cBioPortal to further analyze the genetic alterations and Co-
expression of TAP1 and CXCL13. The first 100 co-expressed
genes of CXCL13 and TAP1 were obtained from the cBioPortal
database. The protein-protein interaction network of shared
genes was retrieved from the STRING database (high
confident: 0.7) (https://string-db.org/). The network was
further constructed by Cytoscape software.

Nomogram Model
Cox proportional hazards regression model was used for
multivariate analysis of prognostic factors. The heatmap of the
relationship between risk classification and gene expression was
drawn on the sangerbox website (http://sangerbox.com/). The
regression coefficients in the multivariate Cox regression model
were used to generate a nomogram. The performance of the
nomogram was evaluated using the Calibration plot, C index, and
Decision Curve Analysis. All statistical analyses were performed
using R (R version3.5.1; Institute for Statistics and Mathematics,
Vienna, Austria). “rms” package, “survival” package,
“survivalROC” package and “pheatmap” package were installed
and used.

RESULTS

Gene Expression Subtypes Are Significantly
Associated With Immune Score and
Prognosis
Gene expression array and clinical information of all 593
samples were downloaded from TCGA database, including

TABLE 1 | Primers used in the study.

qPCR primers

β-actin Forward 5′-TCAAGATCATTGCTCCTCCTGAG- 3′
β-actin Reverse 5′-ACATCTGCTGGAAGGTGGACA- 3′
TAP1 Forward 5′-CTGGGGAAGTCACCCTACC- 3′
TAP1 Reverse 5′-CAGAGGCTCCCGAGTTTGTG- 3′
CXCL13 Forward 5′-GCTTGAGGTGTAGATGTGTCC- 3′
CXCL13 Reverse 5′-CCCACGGGGCAAGATTTGAA- 3′
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568 primary OV cases, 17 recurrent tumor tissues, and eight
normal tissue samples. The enrolled patients were initially
diagnosed between 1992 and 2013 and were followed up from
2009 to 2015. The array contained 308 OV cases with specific
gene expression subtypes, including 84 (27.27%) cases of
immunoreactive subtype, 85 (27.60%) cases of proliferative
subtype, 69 (22.40%) cases of mesenchymal subtype, and 70
(22.73%) cases of differentiated subtype. Gene expression
types were not statistically significant with pathological
stage (p � 0.092), grade (p � 0.861), new event type in the
course of the disease (p � 0.141), cancer status at enrollment
(p � 0.335), anatomic site (p � 0.577), and initial pathologic
diagnosis method (p � 0.402), but were related to age (p �
0.002) and OS (p � 0.035) (Table 2). It has been shown that
clinical characteristics including the initial pathologic

diagnosis method have little effect on gene expression
subtypes.

ESTIMATE was used to compare the infiltration of immune
cells of the four types. Based on the ESTIMATE algorithm,
stromal scores ranged from -1593.24 to 1837.43, and immune
scores were distributed between −1400.6 and 2774.16. Among the
immune scores of ovarian cancers, the average score of
immunoreactive type was the highest, followed by
mesenchymal and differentiation ones, and proliferative type
had the lowest score (Figure 1A). On the stromal score, the
mesenchymal type got the highest score above the
immunoreactive type, and the lowest score belonged to the
proliferative type (Figure 1B).

The overall survival was further analyzed in the four gene
expression subgroups with the available immune scores.

TABLE 2 | TCGA baseline clinical characteristics of gene expression subtypes and single-factor analysis.

Gene_expression_subtypes

Characteristics Total Differentiated Immunoreactive Mesenchymal Proliferative p value

Age 59.12 ± 10.977 55.14 ± 9.38 58.69 ± 10.99 61.23 ± 11.30 61.06 ± 11.16 0.002*
OS time 949 (442–1579) 1032 (449.5–1488) 1059 (448–1754.5) 787 (481.5–1366.5) 907.5 (369.25–1685.75) 0.574
OS
Live 120 22 44 23 31 0.035*
Dead 183 47 37 46 53
no available 5 1 3 0 1

Stage
I 1 0 0 1 0 0.092
II 21 5 8 1 7
III 242 48 65 60 69
IV 38 16 8 6 8
no available 6 1 3 1 1

Grade
G1 1 0 0 1 0 0.861
G2 35 7 7 11 10
G3 261 61 73 56 21
G4 1 0 0 0 1
GX 4 1 1 1 1
no available 6 1 3 0 2

New event type
locoregional Disease 4 3 1 0 0 0.141
metastatic 1 0 0 1 0
progression of Disease 12 2 2 1 7
recurrence 151 33 39 37 42
no available 140 32 42 30 36

Cancer status
tumor free 69 16 20 13 20 0.335
with tumor 197 49 47 47 54
no available 42 5 17 9 11

Anatomic site
Bilateral 209 52 51 48 58 0.577
Left 36 6 13 7 10
Right 42 11 12 8 11
no available 21 1 8 6 6

Initial pathologic diagnosis method
cytology (e.g., peritoneal or pleural fluid) 27 5 9 10 3 0.402
excisional Biopsy 5 2 1 2 0
fine needle aspiration biopsy 3 0 1 1 1
tumor resection 265 61 70 56 78
other method 8 2 3 0 3

*Statistically significant (p-value < 0.05).
The four gene expression subtypes of OV are differentiated, immunoreactive, mesenchymal, and proliferative types in TCGA.
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Gene expression matrix and clinical information of 308 cases
were extracted to analyze the influence of different gene
subtypes on prognosis. Compared with mesenchymal type
(HR � 0.52, 95%CI 0.33 to 0.82, p-value � 0.00),
differentiation type (HR � 0.59, 95%CI 0.38 to 0.91,
p-value � 0.01), and proliferative type (HR � 0.62, 95%CI
0.40 to 0.95, p-value � 0.03), Kaplan-Meier survival curves
showed that the immunoreactive type had the best prognosis
(p-value � 0.008) (Figure 1C). Subsequently, we combined
the gene subtypes, immune scores, and stromal scores to
further demonstrate the impact on 3 years and 5 years
survival of ovarian cancer through the nomogram. This
figure also suggests that immunoreactive type patients
have a better survival probability (Figure 1D).

Comparison of Differentially Expressed
Genes Among Gene Expression Subtypes
In this section, we identified the DEGs between the
immunoreactive subtype and other subtypes to reveal the
correlation of survival differences. First, the difference
between gene expression subtypes was analyzed by package
limma. Then, we applied heatmaps to show the differential
gene expression matrix. Hierarchical clustering was used to

cluster different subtypes, and we measured them by the
Euclidean distance method. Compared with the proliferative
group, 607 genes were upregulated, and 356 genes were down-
regulated in the immunoreactive group. 138 genes were
upregulated, and 412 genes were down-regulated when
compared with the mesenchymal group; 276 genes were
upregulated, and 72 genes were down-regulated when
compared with differentiation type. Upregulated and
downregulated genes in each comparison group were
visualized using heatmaps (Figures 2A–C) and volcanic
maps (Figures 2D–F).

Functional Enrichment Analysis and
Protein-Protein Interactions Among
Differentially Expressed Genes Between
Subtypes
To analyze the potential function of DEGs between the
immunoreactive group and other groups, we performed
functional enrichment analysis and protein-protein
interactions. Gene ontology (GO) terms showed the analysis
results through Biological Processes, Cellular Components, and
Molecular Functions. In the immunoreactive vs. proliferative
groups and immunoreactive vs. differentiated groups,

FIGURE 1 | OV gene expression subtypes were significantly associated with immune score and overall survival. “IM” “PR” “ME” “DI” indicated “immunoreactive
type” “proliferative type” “mesenchymal type” and “differentiation type,” respectively. (A) Distribution of immune scores; OV subtypes had significant correlations with
immune scores; represented by the histogram (n � 308, p-value < 0.05); (B) Distribution of stromal scores; OV subtypes had significant correlations with stromal scores;
represented by the histogram (n � 308, p-value < 0.05); (C) The survival relationship between the immunoreactive group and the other groups. Kaplan Meier’s
survival curve showed that the prognosis of the immunoreactive group was better than that of the other groups, as demonstrated by log-rank, p-value < 0.05. (D) The
nomogram showed the 3 years and 5 years survival probability among different subgroups. The immunoreactive subgroup scored higher than the rest ones.
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FIGURE 2 | Comparison of differentially expressed genes (DEGs) among gene expression subtypes. The drawing of the heatmap was based on the Hierarchical
clustering and Euclidean distance measurement method. The volcano map was drawn using online tools (http://sangerbox.com/). Red and blue indicated upregulated
and down-regulated differential genes. Fold change (FC) > 1.5 and p-value < 0.05; (A)Heatmap of DEGs between the immunoreactive group and proliferative group; (B)
Heatmap of DEGs between the immunoreactive group and mesenchymal group; (C) Heatmap of DEGs between the immunoreactive group and differentiation
type; (D) The volcano map between the immunoreactive group and proliferative group; (E) The volcano map between the immunoreactive group and mesenchymal
group; (F) The volcano map between the immunoreactive group and differentiation type.
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functional concentration mainly focused on immune response,
immune regulation, and defense response. While
immunoreactive vs. mesenchymal subtypes primarily

concentrated on the regulation of chemotaxis and cytokine
and the formation of extracellular matrix, blood vessels, and
other tissue structures (Figures 3A,B,E).

FIGURE 3 | Functional enrichment analysis and protein-protein interactions across three lists of DEGs between subtypes. Heatmap of GO terms (A) and KEGG
pathway (C) enriched across three DEGs lists. A network of enriched terms was colored by cluster-ID, where nodes shared the same cluster-ID were typically close to each
other, (B)GO enrichment terms; (D) KEGG pathway enrichment terms. (E) The overlap between three DEGs lists. The outer circle showed each comparison group, and the
inner circle represented the distribution of DEGs in each group. Genes that hit themultigroup list were shown in dark orange and those genes that did not were shown in
light orange. (F) Protein-protein interactions network and MCODE components of the KEGG pathway. The top three elements of MCODE were expressed in detail.
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KEGG analysis concentrated on infection, cancer,
chemokine signaling pathway, cytokine action, phagocytosis,
and the inflammatory response when compared
immunoreactive to proliferative types. Immunoreactive vs.
differentiated groups were focused on infection, cancer, and
inflammatory response. Immunoreactive vs. mesenchymal
groups were concentrated in infection, cytokines, and
inflammation (Figures 3C,D,E).

Metascap uses BioGrid, InWeb_IM, OmniPath databases to
analyze interactions between proteins. Enrichment analysis is a
collection of physically related proteins. If the network contains 3
and 500 proteins, the MCODE algorithm is used to identify the
network components. Figure 3F showed the protein-protein
interaction network analyzed by KEGG pathway enrichment
analysis, and it expressed the first three components of
MCODE in detail.

Prognostic Value of Differentially Expressed
Genes in Overall Survival
Venn diagram was used to explore the common DEGs from three
comparison groups. It was found that 59 common genes were
upregulated, and 14 common genes were down-regulated
(Figures 4A,B). To further investigate the relationship
between these common DEGs and prognosis, we evaluated
each common gene by univariate survival analysis. Among the
59 upregulated genes, 14 genes were associated with better
prognosis of ovarian cancer (HR < 1, p < 0.05), including
CXCL11, TAP1, CXCL13, STAT1, CD38, UBD, ISG20,
LAMP3, CXCL9, PSMB9, GBP1, USP18, HLA-DOB, WARS
(Figures 4C–P).

According to the Oncomine and GEPIA databases, mRNA
expression of these screened genes was compared between
ovarian cancer and normal ovarian tissues. The Oncomine

FIGURE 4 | The prognostic value of DEGs for overall survival in the TCGA database. Venn diagram of common DEGs. It showed the common upregulated (A) and
down-regulated (B) differential genes in the three comparison groups. (C–P) Kaplan-Meier survival curves were used to identify common differential genes with
prognostic significance. The influence of high and low expression of each DEG on overall survival was compared. The red line indicated high expression, and the blue line
indicated low expression. p < 0.05 was considered as prognostic.
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database revealed that expression levels of CXCL11, TAP1,
CXCL13, STAT1, UBD, LAMP3, GBP1, and USP18 increased
in ovarian cancer. Also, the transcriptional levels of CD38, ISG20,

CXCL9, PSMB9, HLA-DO, and WARS had no clear statistical
results (Figure 5A). While in the GEPIA database, the results
indicated that the expression of these genes in tumors was higher

FIGURE 5 | The mRNA expression of up-regulation prognostic genes in ovarian cancer tissues and normal tissues (Oncomine and GEPIA). (A) The mRNA
expression on the Oncomine. (B) The mRNA expression on the GEPIA.
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than that of normal controls, and the expression of CXCL11,
TAP1, CXCL13, STAT1, UBD, LAMP3, CXCL9, PSMB9, USP18,
and WARS was increased significantly in ovarian cancer samples
(Figure 5B).

Functional Enrichment Analysis and
Protein-Protein Interactions Among Genes
With Prognostic Value
Enrichment analysis and protein-protein interactions network
were performed on Metascape again to understand the
interrelationship between these prognostic genes better. Gene
ontology enrichment analysis mainly focused on immune
response, inflammatory response, and protein metabolism
(Figure 6A). KEGG pathway was mostly focused on immune
response and infection (Figure 6B). Protein-protein interactions
network analysis showed only one MCODE component involved
three protein components: CXCL9, CXCL11, and CXCL13
(Figure 6C). The main functions were focused on chemokine

signaling pathway and cytokine-cytokine receptor interaction
(Figure 6D).

Validation in The Cancer Genome Atlas and
GEO Databases
Then the survival significance of these genes was verified in whole
TCGAOvarian Cancer database and another GSE32062 database
containing serous ovarian cancers (Yoshihara et al., 2012; Fan
et al., 2020a; Zhao et al., 2019). We first chose internal validation.
We analyzed the expression data and OS of 568 primary OV cases
in TCGA database. The samples with no survival information and
the survival time within 30 days were both removed. Finally, 548
primary OV samples were included in the statistical analysis
(Supplementary Table S1). We found that all 14 genes with
prognosis were verified with a better prognosis (HR < 1, p-value <
0.05) (Figure 7A). To further confirm whether these genes have
prognostic significance, the GSE32062 data set was used for
external verification (Supplementary Table S1). The gene

FIGURE 6 | Functional enrichment of common DEGs with prognostic value in OV. (A) A bubble plot displaying GO enrichment analysis. The enriched terms were
colored by p-value, which contained more genes that leaned towards having a larger bubble. (B) A bubble plot describing KEGG enrichment analysis. The enriched
terms were colored by p-value, which contained more genes that leaned towards having a larger bubble. (C) One MCODE was formed in the protein-protein interaction
network. (D) The MCODE was described by functional enrichment analysis.
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expression in the two datasets showed a significant positive
correlation (Zhao and Fan, 2019). We extracted serous ovarian
cancers in this data set and found that 11 of the upregulated genes

had better prognostic significance, including CD38, CXCL9,
PSMB9, TAP1, GBP1, CXCL13, UBD, ISG20, CXCL11,
STAT1, and WARS (Figure 7B).

FIGURE 7 | Validation in the TCGA and GEO databases. The prognostic verification results of each gene were displayed through the forest plot. (A) Internal
verification by TCGA database. (B) External validation by GSE 32062 profile. These genes were sorted by p-value.
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Correlation Between Verified
Prognosis-Related Differentially Expressed
Genes and Immune Cell Infiltration
Functional enrichment of these common differential genes with
prognostic significance was conducted. We found that the focus
was mainly on chemokine, cytokine, antigen processing and
presentation, infection related to inflammatory responses, and
immune responses. Therefore, we further analyzed the immune
cell infiltration mediated by these genes. The scatterplots were
generated and displayed on the TIMER website, as the purity-
corrected partial Spearman’s rho value and statistical
significance were showed. The results showed that DEGs
were negatively correlated with purity, and these validated
prognostic genes were all positively correlated with six kinds
of immune-related cells: B cell, CD8+ T cell, CD4+ T cell,
macrophage, neutrophil, and dendritic cell, though ISG20
and UBD were negatively correlated with macrophage
infiltration (p-value > 0.05). Among them, six immune cells
infiltration were significantly associated with the expression of
STAT1, CXCL11, CXCL13, PSMB9, and GBP1, but no
macrophage cell infiltration was found statistically significant
(p-value < 0.05) for the remaining six genes: CD38, CXCL9,
TAP1, WARS, ISG20, and UBD (Table 3).

Establishment of Risk Score Formula
To further evaluate the prognostic value of these screened genes, we
usedCox proportional-hazardsmodel to evaluate the impact of these
gene expression on the prognosis. This analysis yielded a risk score.
Based on this score, the OV samples in TCGAwere divided into two
parts: the high-risk group and the low-risk group (Figure 8A). The
dot plot showed the survival status of these patients (Figure 8B). The
following heatmap also showed the expression levels of these genes at
different risk levels (Figure 8C). For high-risk patients, the
expression level of these genes was decreased, while the
expression level in the low-risk group was generally higher.
Time-dependent ROC analysis was used to assess the predictive
ability of these genes. The AUC was 0.50 (95% CI 0.42–0.58), 0.59
(95% CI 0.54–0.64), and 0.60 (95% CI 0.55–0.65) for 1 year,
3 years, and 5 years (Figure 8D). Kaplan Meier survival analysis
described a poor prognosis for patients at high-risk status (log-rank

test, HR 2.72, 95% CI 1.80–4.11, p-value � 0.00011) (Figure 8E),
while TAP1 andCXCL13were statistically significant inmultivariate
cox regression analysis (TAP1: p-value � 0.04520; CXCL13: p-value
� 0.00287). Further, we set up a risk score formula based on the two
genes, risk score � TAP1*(−1.2281) + CXCL13 *(−0.8237).

Genetic Alterations and Co-expression of
TAP1 and CXCL13
TAP1 and CXCL13 were risk factors that affect the prognosis of
ovarian cancer. The high protein expression of TAP1 and
CXCL13 in ovarian cancer was observed in the Human
Protein Atlas (HPA) database (https://www.proteinatlas.org/)
(Figure 9A). Meanwhile, TAP1 mRNA and CXCL13 mRNA
levels were significantly elevated in ovarian cancer tissues
compared to normal ones (Figure 9B). On the other hand, the
genetic alterations, correlations, and co-expressed genes of TAP1
and CXCL13 were calculated using the cBioPortal. It showed that
the alteration rate of these two genes in 300 mRNA data was 11%,
including amplification, deep deletion, mRNA high, and mRNA
low (Figures 9C,D). The Pearson correlation was 0.54 in positive
correlation (Figure 9E). Subsequently, the top 100 genes related
to TAP1 and CXCL13 were intersected to construct a network for
frequently altered neighbor genes. CTLA4, IFNG, and PRF1 had
higher degree values (Figure 9F).

Construction and Verification of a
Prognostic Risk Model for Advanced
Ovarian Cancer Patients
We developed a model to assess survival in advanced ovarian
cancer based on the risk score. We considered some
clinicopathological factors such as age, stage, and grade in
advanced ovarian cancer patients (stage III–IV) (Figure 10A).
Then, we verified this result through the Concordance index
(C-Index), Calibration plot (Figure 10B), and Decision Curve
Analysis (DCA) (Figures 10C,D). The C-index in 1 year, 3 years,
and 5 years were all 0.632. Corrected lines in 1 year and 3 years
were close to the ideal curve, but the deviation was larger in
5 years. Further, the DCAwas used to verify the 1 year and 3 years
results. The 1 year survival curve was very close to the two

TABLE 3 | The correlation between prognosis-related DEGs and immune cell infiltration.

Gene Purity B Cell CD8+ T Cell CD4+ T Cell Macrophage Neutrophil Dendritic Cell

partial.cor p partial.cor p partial.cor p partial.cor p partial.cor p partial.cor p partial.cor p

CXCL11 −0.35 * 0.27 * 0.36 * 0.22 * 0.12 * 0.47 * 0.40 *
TAP1 −0.30 * 0.27 * 0.34 * 0.20 * 0.00 >0.05 0.43 * 0.38 *
PSMB9 −0.31 * 0.33 * 0.44 * 0.19 * 0.12 * 0.50 * 0.46 *
CXCL9 −0.48 * 0.20 * 0.40 * 0.27 * 0.03 >0.05 0.34 * 0.39 *
UBD −0.38 * 0.21 * 0.30 * 0.24 * −0.05 >0.05 0.36 * 0.36 *
CD38 −0.36 * 0.21 * 0.37 * 0.28 * 0.09 >0.05 0.42 * 0.40 *
GBP1 −0.35 * 0.25 * 0.34 * 0.19 * 0.02 * 0.44 * 0.37 *
CXCL13 −0.43 * 0.11 * 0.34 * 0.31 * 0.06 * 0.37 * 0.36 *
WARS −0.29 * 0.16 * 0.23 * 0.19 * 0.05 >0.05 0.37 * 0.38 *
ISG20 −0.17 * 0.05 >0.05 0.14 * 0.15 * −0.01 >0.05 0.26 * 0.16 *
STAT1 −0.21 * 0.19 * 0.25 * 0.12 * 0.16 * 0.33 * 0.25 *

*Statistically significant (p-value < 0.05).
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extreme curves, and the 3 years survival curve was far from the
two extreme curves.

DISCUSSION

As a potential treatment option, tumor immunotherapy has made
great progress in recent years (Xu et al., 2021). Due to the
molecular heterogeneity of serous ovarian cancer, the clinical

prognosis of patients with the same stage may be very different.
Prognostic evaluation based on immune characteristics is
essential for appropriate treatment decisions. In this study, we
screened the immune-related genes of serous ovarian cancer from
a different perspective and discovered the importance of TAP1
and CXCL13 as independent prognostic and predictive markers
for serous ovarian cancer. Moreover, the expression of TAP1 and
CXCL13 were indeed increased in ovarian cancer tissues through
experimental verification. Further, we have constructed an

FIGURE 8 | TAP1 and CXCL13 were significantly related to the OS of OV patients through multivariate cox regression analysis in TCGA. Risk score distribution (A),
survival status (B), and validation DEGs expression (C) for multivariate analysis for patients in high-risk and low-risk groups. (D) Time-dependent ROC curve analysis.
AUCs were set at 1 year, 3 years, and 5 years to evaluate the accuracy of the prognosis. (E) Kaplan-Meier curve analysis of OS in the low- and high-risk groups. The
log-rank test was used to calculate the p-value.
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immune-related risk model based on TAP1 and CXCL13 for the
first time to predict the prognostic response of advanced serous
ovarian cancer.

Overall, four gene expression subtypes of serous ovarian
cancers, which comprised 308 cancer samples from TCGA
database with an exact genotype were found to have different
immune and stromal scores. Mao et al. reported that the stromal
score was related to the tumor microenvironment and it was an
essential factor for the prognosis of gastric cancer (Mao et al.,
2020). Moreover, Santoiemma et al. reported that the
accumulation of tumor-infiltrating lymphocytes (TILs) in
ovarian cancer can inhibit tumor progression, whereas high

numbers of immunosuppressive regulatory T cells are
associated with poor prognosis (Santoiemma and Powell,
2015). In the present study, the immunoreactive subtypes
showed significant differences in OS when compared with the
other three groups (immunoreactive vs. proliferative, p � 0.0264;
immunoreactive vs. mesenchymal, p � 0.0009; immunoreactive
vs. differentiated, p � 0.0123), which agrees with the results
reported by an Australian study (Verhaak et al., 2013). The
prognosis of the immunoreactive type was better (Konecny
et al., 2014) primarily because of the infiltration of the tumor
tissue by lymphocytes, whereas the mesenchymal type was
characterized by more stromal hyperplasia and was associated

FIGURE 9 | Protein expression and mutation analysis of TAP1 and CXCL13 in ovarian cancer. (A) Protein expression on the Human Protein Atlas. “N”was normal
tissue, “T” was tumor tissue. (B) TAP1 mRNA and CXCL13 mRNA by qRT-PCR in ovarian cancer tissues and surrounding normal tissues (n � 14). *p < 0.05. (C, D)
Genetic alterations on the cBioPortal. (E) Correlation between TAP1 and CXCL13. (F) Network of most frequently altered neighbor genes (combined score >0.7). The
thickness of the connecting line indicated the level of combined-score, the higher the score, the thicker the line.
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with a poorer prognosis (Verhaak et al., 2013). Shilpi et al. also
described survival differences between these four gene expression
subtypes in the GEO database (overall p-value < 0.001) (Shilpi
et al., 2019).

Next, based on the superiority of immune score and survival,
gene expression differences were assessed via GO and KEGG
functional enrichment analysis between the immunoreactive and
other types. Overall, these differential genes were primarily
involved in immune response and stromal components
according to GO analysis, and the KEGG pathway also
revealed that they were primarily involved in infection,
inflammation, and cancer, further confirming their close
relationship with the tumor microenvironment. Di et al.
reported that the DEGs between high and low immune-score
groups in glioblastoma were primarily contributing to immune
response and matrix formation, which were the essential factors
in the tumor microenvironment (Jia et al., 2018). Upon further
analysis of 16 public cohort datasets (Hao et al., 2018), ovarian

cancer with low immune scores were found to usually lacked
chemokine and interferon-γ pathway genes. Moreover, a high
immune score of ovarian cancer was substantially associated with
BRAC1/2 mutation status and outstanding response to
immunotherapy (Hao et al., 2018). Yoshihara et al. also
revealed that the level of immune activation genes was
positively related with the overall survival of high-grade serous
ovarian cancer (Yoshihara et al., 2012).

Herein, DEGs shared by the three OV groups were revealed
via a Venn diagram, among which 14 genes were found to be
associated with better prognosis in ovarian cancers by univariate
survival analysis (HR < 1, p-value < 0.05). These genes with
prognostic significance mainly focused on immune response,
inflammatory response, and protein metabolism. Protein-
protein interaction analysis showed that chemokine family
members CXCL9, CXCL11, and CXCL13, which are important
mediators of leukocyte migration to inflammatory sites
(Palomino and Marti, 2015), formed the only MCODE

FIGURE 10 | Construction of prognostic risk model and nomogram for genes with prognostic value. (A) The nomogram predicted overall survival in stage III-IV OV
patients; (B) The calibration curves of nomogram evaluated OS showing the outcome of 1 year, 3 years, and 5 years; x-axis represented the nomogram prediction
survival possibility, and y-axis represented the actual survival possibility; (C, D) Decision Curve Analysis evaluated the clinical utility of the nomogram. The x-axis
represented the threshold possibility, and the y-axis represented the net benef.
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component. Long-term inflammatory responses, such as
chemoattraction to T cells and NK cells, as well as the
recruitment of B cells to tumors are essential for immune
infiltration and the formation of tertiary lymphoid structures
that can provide an ideal microenvironment for antitumor
immunity (Tian et al., 2017; Hao et al., 2018; Kazanietz et al.,
2019; Kerdidani et al., 2019; Workel et al., 2019).

Finally, all 14 genes identified herein were found to have
prognostic value, as confirmed by internal validation. Using an
independent GEO cohort of 260 high-grade serous ovarian
cancer samples, 12 genes showed significant correlations
between gene expression and overall survival. TIMER showed
that these validated genes were positively correlated with TILs
and inversely proportional to tumor purity. Similar results were
reported by Rhee et al. (2018). To date, immune marker genes
have been emphasized as potential targets for immunotherapy,
with accumulation of TILs being a positive survival prognostic
indicator in ovarian cancer (Tsiatas et al., 2009; Hamanishi et al.,
2011; Le Page et al., 2012; Li et al., 2017b). A meta-analysis
comprising 2,903 ovarian cancer patients showed that
intraepithelial CD3+ and CD8+ TILs are closely related to
improved PFS, disease-free survival, and OS (Li et al., 2017b).
Other reports showed CD4+ TILs also have prognostic value in
ovarian cancer (Tsiatas et al., 2009; Hamanishi et al., 2011; Le
Page et al., 2012). Moreover, a study of 199 ovarian cancer
patients showed that the presence of CD20 + B cells could
improve patient survival (Milne et al., 2009), as B cells can
promote the production of cytokines to induce the local
lymphoid structure of the tumor, thereby stimulating the
persistence of CD8+ TILs that will promote tumor cell lysis
(Nielsen and Nelson, 2012).

Among the herein validated genes, TAP1 and CXCL13 were
identified as positive risk factors through the Cox proportional-
hazards model. TAP1 encodes a transporter that is responsible for
presenting tumor antigens in major histocompatibility complex I
or human leukocyte antigen complexes (Tabassum et al., 2021).
Hence, TAP1 mutation may be used as a target for
immunotherapy in cancer patients (Tabassum et al., 2021).
Anka et al. showed that TAP1 was overexpressed in breast,
lung, and ovarian cancer, with the frequency of TAP1
alterations in ovarian cancer being the highest among the four
types of cancers (Tabassum et al., 2021). CXCL13 is a chemokine
ligand produced by follicular dendritic cells (Li et al., 2020). Fan
et al. analyzed the correlation between CXCL13 and the immune
invasion and TMB in ovarian cancer, revealing that CXCL13 was
related to high TMB (Fan et al., 2020b). To date, some studies
have shown the significance of TAP1 or CXCL13 as reliable
immune-related prognostic genes in ovarian cancer (Liu et al.,
2020; Wu et al., 2020; Huo et al., 2021; Li et al., 2021). Li et al.
found that CXCL13 combined with CCL18, HLA-DOB, HLA-
DPB2, and TNFRSF17 is associated with better overall survival in
ovarian cancer between high and low abundance immune
subtypes (Li et al., 2021). Huo et al. identified 10 immune
microenvironment genes including TAP1 related to the
prognosis of ovarian cancers (Huo et al., 2021). Although the
positive correlation between TAP1 and CXCL13 was weak in
ovarian cancers according to the cBioPortal database, some

studies still screened that they can be both used as prognostic
markers of ovarian cancer (Liu et al., 2020; Wu et al., 2020).
Different from the univariate Cox analysis (Wu et al., 2020), Liu
et al. eliminated the interference of other genes and 10 OS-related
prognostic genes were extracted from the DEGs between ovarian
cancer and normal tissues (Liu et al., 2020). In this study, we try to
use a more concise way to predict the OS of ovarian cancers. We
have found two immune-related genes, just TAP1 and CXCL13,
which can be used as independent prognostic factors for ovarian
cancer.

As the frequently altered neighbor genes of TAP1 and
CXCL13, the immune-related genes CTLA-4, IFNG, and PRF1
were found to have the higher interconnected nodes according to
the protein-protein interaction network. CTLA-4 has served as
targets of immunotherapy by immune checkpoint pathways (Yap
et al., 2021), whereas IFNG and PRF1 are both cytotoxic genes
positively correlated with CXCL11 expression (Cao et al., 2021).
Interestingly, IFNG was also reported to have a critical role in
chimeric antigen receptor T cell-mediated endogenous immunity
induction (Alizadeh et al., 2021). As an important prognostic
factor, PRF1 was associated with immune infiltration in head and
neck cancer (Fan et al., 2021).

Herein, the Tumor-Node-Metastasis staging system was used
to evaluate the survival outcome of patients; however, patients
with the same anatomical distribution were classified into the
same stage without considering other variables, such as genetic
differences or histology (Balachandran et al., 2015).
Nomograms are widely used as a prognostic tool in oncology
(Cho et al., 2008). One of the main advantages of nomograms is
that it can help estimates individualized risks based on specific
characteristics of patients and the disease, thereby aiding clinical
decisions from different perspectives (Kattan et al., 2002; Wang
et al., 2008; Gold et al., 2009; Zivanovic et al., 2012). Based on
risk factors and clinically relevant characteristics, a nomogram
model was established using a large number of TCGA samples
to determine whether additional treatment was needed. First,
the calibration curve evaluated the prediction probability.
Overall, the predicted probabilities of 1- and 3 years were
consistent with current reports, but the 5 years survival rate
was lower than the actual value. Second, the concordance index
was further used to evaluate the prediction accuracy. The
concordance index is 0.638, illustrating the model has some
accuracy. Third, DCA was the simple method used herein to
assess clinical prediction models when considering the clinical
utility of specific models (Vickers and Elkin, 2006). The 1 year
Nomogram was found to have a narrower threshold probability
with less clinical utility, whereas the 3 years nomogram may
have clinical utility.

In general, this study highlights the differences in immune
scores and survival prognosis between the immunoreactive and
other gene expression types in serous ovarian cancers. In
particular, the common differential genes with prognostic
significance were determined, and their correlation with
immune infiltrating cells was described. Finally, a nomogram
model for advanced ovarian cancer based on TAP1 and CXCL13
was established for the first time. Although the accuracy of this
nomogram model was verified. Its predictive effect still needs to
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be further investigated in the basic experiment and large-scale
multicenter clinical trials.
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