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Abstract

From memorizing a musical tune to navigating a well known route, many of our underlying

behaviors have a strong temporal component. While the mechanisms behind the sequential

nature of the underlying brain activity are likely multifarious and multi-scale, in this work we

attempt to characterize to what degree some of this properties can be explained as a conse-

quence of simple associative learning. To this end, we employ a parsimonious firing-rate

attractor network equipped with the Hebbian-like Bayesian Confidence Propagating Neural

Network (BCPNN) learning rule relying on synaptic traces with asymmetric temporal charac-

teristics. The proposed network model is able to encode and reproduce temporal aspects of

the input, and offers internal control of the recall dynamics by gain modulation. We provide

an analytical characterisation of the relationship between the structure of the weight matrix,

the dynamical network parameters and the temporal aspects of sequence recall. We also

present a computational study of the performance of the system under the effects of noise

for an extensive region of the parameter space. Finally, we show how the inclusion of modu-

larity in our network structure facilitates the learning and recall of multiple overlapping

sequences even in a noisy regime.

1 Introduction

From throwing spears in the savanna to the performance of a well rehearsed dance, human

behavior reflects an intrinsic sequential structure. In this light, is not surprising that sequential

activity has been found in the neural dynamics across different anatomical brain areas such as

the cortex [1–4], the basal ganglia [2, 5–10], the hippocampus [11–15] and the HVC area in

songbirds [16, 17]. Moreover, sequential activity is not only present in a wide range of neuro-

anatomical areas but is also associated with an ample repertoire of behaviors and cognitive

processes including sensory perception [18, 19], memory [20–22], motor behavior [23, 24]

and decision making [3, 25]. In our view, the entanglement of sequential activity with

cognitive processes and behavior strongly suggests that sequential activity is an essential com-

ponent of the information processing capabilities of the brain and therefore demands better
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understanding. A plausible hypothesis for the ubiquity of sequential activity is a common

learning mechanism for the construction of temporal representations at the network level.

Inspired by experimental evidence we propose the following constraints and properties for the

neural representations and the underlying network mechanisms: First, the recall dynamics of a

sequence should reflect key temporal features of the input or training signal [26]. Second, the

network should enable temporal scaling, that is, once a sequential representation has been

learned, internal neural network’s mechanisms should suffice to contract or dilate its recall

duration [27, 28]. Finally, as the same neural network circuits have been observed to exhibit

many sequential trajectories accounting for different behaviors [12], it is desirable for the net-

work to posses mechanisms to store and recall multiple and, to some extent, overlapping

sequences [29].

There is evidence that sequential activity can be characterized as a succession of meta-stable

cell assemblies in the cortex [21]. Attractor neural networks have a long standing tradition as

models of sequential activity with meta-stable states corresponding to attractor patterns [30,

31]. Hopfield in his seminal work [32, 33] already noted that an asymmetric connectivity in a

recurrent attractor network was conducive to sequential recall. However, in the most basic

implementation, the asynchronous update dynamics of these Hopfield models resulted in

mixed patterns, thereby gradually diluting sequential recall with time [34]. To overcome such

limitations, temporal traces of the activity were utilized successfully as a mechanism to keep

the meta-stable states active for long enough to ensure a successful transition between the pat-

terns and some models even allow for temporal rescaling of the dynamics [35, 36]. However,

such models are unable to properly integrate the temporal structure of the input due to the dis-

crete nature of their learning rule. A more sophisticated approach relies on systematically con-

sidering all the possible delays of the input and calculate all the resulting cross-correlations

[37, 38]. While in principle these models are able to learn arbitrary variations in the temporal

structure of the input, in practice they are limited by an explosion in the number of parameters

as the connectivity matrix scales with the size of the longest transition. In this work we propose

an attractor model that uses the following properties to overcome the aforementioned prob-

lems: 1) It exploits temporal traces for learning in a probabilistic framework [39]. The tempo-

ral nature of the traces allows us to capture the temporal structure of the input, while avoiding

an explosion in the number of parameters by collapsing the temporal structure into statistical

estimates of the connectivity. 2) The sequence transition mechanism rests on the meta-stability

of the attractor dynamics by means of intrinsic adaptation of the network units coupled with a

competition mechanism that biases the transition in the correct direction. At the same time

the intrinsic adaptation allows for the internal control and rescaling of the recall dynamics. 3)

The use of a modular structure in our network facilitates both flexible learning and recall of

overlapping representations.

Several network models have been proposed to account for sequential activity. While Veliz-

Cuba et al [40] reported that their network could learn the temporal structure of the input, it

required a fine-tuned relationship between synaptic, dynamic and homeostatic parameters.

Additionally, their model lacked a mechanism for temporal rescaling and the question of

learning multiple sequences was not addressed. In a more recent approach by Pereira and Bru-

nel (2018) [41], persistent or sequential activity dynamics could be learned depending on the

temporal structure of the input. However, the proposed network did not solve the problem of

temporal scaling nor the acquisition of multiple sequences. Using spike-time-dependent plas-

ticity (STDP) with heterosynaptic competition Fiete et al. [42] demonstrated the capability of

their model to learn multiple sequences from random activity but handling input with specific

temporal structure was not elaborated in their work. Furthermore, Byrnes et Al [43] addressed

the problem of learning overlapping sequences but their approach did not scale well as it relied
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on a single unique representation for every sequence even if they had overlapping elements.

Finally, Murray et al. [44] proposed an inhibitory network inspired by the basal ganglia that

achieves temporal rescaling by means of the interplay between synaptic fatigue and external

input. In this model, however, the problem of handling multiple sequences could be solved

only by assuming the existence of such representations in an upstream network, which we con-

sider as a strongly limiting factor.

Inspired by our previous modelling efforts to study sequence [39] and word list learning

phenomena [45] we propose here a modular attractor memory neural network model that

learns sequential representations by means of the combination of the Bayesian Confidence

Propagating Neural Network (BCPNN) learning mechanism [46] and asymmetrical temporal

synaptic traces. We proceed by first presenting the network and its dynamics. Then, we derive

analytical formulae for the temporal structure of the recall process in noiseless conditions. We

also describe how learning is accomplished in the network through the use of synaptic traces

and study how the temporal structure of the input is accounted for in the recall dynamics by

means of the BCPNN learning rule. We follow up with a systematic characterization of the

effects of noise on the sequence recall capability of the network. Finally, we elaborate on how

the modularity of the network enables learning overlapping sequences and discuss key

limitations.

2 Results

2.1 Sequence recall

Following previous work on cortical attractor memory modelling [39, 45] we present here a

network capable of learning, recalling and processing sequential activity. We utilize a popula-

tion model of the cortex where each unit represents a population of excitatory neurons in the

superficial layer of a cortical column. Consistently with the mesoscale neuroanatomical orga-

nization, those units are organized into hypercolumns, where a winner-takes-all (WTA) mech-

anism representing lateral inhibition keeps the activity within the hypercolumnar module

normalized [47]. The topological organization of the model is presented in Fig 1A. The circuit

implements attractor dynamics [48] that leads the evolution of the network towards temporary

or permanent patterns of activity (pattern refers to a particular collection of active units in the

network, see Fig 1A). We refer to these stable or meta-stable states as the stored patterns of the

network. The patterns themselves are defined by self-recurrent excitatory connectivity that

tends to maintain the pattern in place once activated (represented by wself in Fig 1B). The pat-

terns can naturally be thought of as cell assemblies distributed among the hypercolumns in the

network. The WTA mechanism renders the activity of the units mutually exclusive within the

hypercolumns and therefore ensures sparse activity [49]. Sequential activation of patterns can

be induced by feed-forward excitation (represented by wnext in Fig 1B) coupled with an adapta-

tion mechanism whose role is to cease current pattern activity thereby counteracting the pat-

tern retention effects of the self-recurrent connectivity.

We model the dynamics of the units with a population model equation [50]. As described

in Eq 1 the current s changes according to the base rate βj (also called the bias term) plus the

total incoming current from all other N units, 1

H

PN
i wijoi, normalized by the number of hyper-

columns H. The binary activation variable oj represents unit activation and is related to the

current through a WTA mechanism implemented with a max operation as in Eq 2. This mech-

anism selects the unit receiving the maximum current at each hypercolumn and activates it.

We introduce intrinsic adaptation as a mechanism controlled by the variable a in Eq 3 to

induce pattern deactivation. dξ represents additive white noise with variance σ. An extra cur-

rent Ij(t) is used to model external input into the system. For the sake of generality, it is
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important to stress that our current based population model is equivalent to a rate-based for-

malism, as shown in [51].

ts
dsj
dt
¼ bj þ

1

H

XN

i

wijoi � gaaj � sj þ sdxj þ Ij ð1Þ

oj ¼

1; sj ¼ max
hypercolumn

ðsÞ;

0; otherwise

8
<

:

ð2Þ

ta
daj

dt
¼ oj � aj ð3Þ

It has long been recognized that an attractor model with asymmetric connectivity produces

sequential dynamics [52]. In that vein, we explain now how an asymmetric connectivity matrix

coupled with the dynamics of our model brings about sequential activity.

In Fig 2A we show a case of successful sequential recall in the network with the connectivity

matrix depicted in Fig 2D. Here we handcrafted the connectivity matrix to illustrate the

unfolding of the following dynamics. Once the first pattern gets activated (oi = 1) as a result of

an external cue (current input I(t) to all the units belonging to the pattern) the adaptation

Fig 1. Network architecture and connectivity underlying sequential pattern activation. Network architecture and

connectivity underlying sequential pattern activation. (A) network topology. Units uj
i are organized into hypercolumns

h1, . . ., hH. At each point in time only one unit per hypercolumn is active due to a WTA mechanism. Each memory

pattern is formed by a set of H recurrently connected units distributed across hypercolumns. For simplicity and

without compromising the generality we adopt the following notation for patterns P1 ¼ ðu1
1
; . . . ; uH

1
Þ. We depict

stereotypical network connectivity by showing all the units that emanate from unit u1
1
. The unit has excitatory

projections to the proximate units in the sequence (connections from u1
1

to u1
2

and u1
3

and the corresponding units in

other hypercolumns) and inhibitory projections to both the units that are farther ahead in the sequence (u1
1

to u1
4
) and

the units that are not in the sequence at all (gray units). (B) abstract representation of the relevant connectivity for

sequence dynamics. Please note that only connections from P2 are shown.

https://doi.org/10.1371/journal.pone.0220161.g001
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current ai depicted in Fig 2B starts growing and, in consequence, the self-excitatory current si
becomes smaller. At some point, the self-excitatory current si is going to become weaker than

the feed-forward current si+1, which the next pattern in the sequence receives. Then, the com-

petitive WTA mechanism mediates the activation of the next pattern (oi+1 = 1) and suppresses

the current one (oi) by competition. These dynamics are self-sustained and the cycle repeats

until the end of the sequence. We depict the profile of such transitions in Fig 2C. The total

time that the pattern stays activated is defined as the persistence time Tper (as used in [53]) and

depends on the interplay between the connectivity matrix, the bias term and the adaptation.

We present typical values of the network parameters in Table 1.

2.2 Persistence time

Two important characteristics of sequence dynamics are the order in which the patterns are

activated (the serial order) and the temporal structure of those activations (the temporal order)

[54]. In our model the serial order is determined by the differential connectivity between the

units belonging to the currently activated pattern and those of all the other patterns. In general,

the next pattern activated will be the one for which the quantity Δwnext = wself − wnext is smaller.

The persistence time or temporal information of the sequence on the other hand is determined

by the interplay between the connectivity of the network and the dynamical parameters of the

Fig 2. An instance of sequence recall in the model. (A) Sequential activity of units initiated by the cue. (B) The time course of the adaptation current

for each unit. (C) The total current s, note that this quantity crossing the value of wnexto (depicted here with a dotted line) marks the transition point

from one pattern to the next. (D) The connectivity matrix where we have included pointers to the most important quantities wself for the self-excitatory

weight, wnext for the inhibitory connection to the next element, wrest for the largest connection in the column after wnext and wprev for the connection to

the last pattern that was active in the sequence.

https://doi.org/10.1371/journal.pone.0220161.g002
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network. We now proceed to characterize this relationship analytically. From the deterministic

trajectories (see S1 Appendix) we can find the time point at which the currents from two sub-

sequent units are equal, si(t) = si+1(t), as this results in the transition and thus determines the

persistence time, Tper. Solving for t we can estimate the persistence time, Tper, in terms of the

other network parameters:

Tper ¼ ta log
1

1 � B

� �

þ ta log
1

1 �
ts
ta

 !

ð4Þ

B ¼
wself � wnext þ bself � bnext

ga

¼
Dwnext þ Dbnext

ga

ð5Þ

The parameter B in Eq 5 condenses information regarding the connectivity w, bias terms β,

and adaptation strength ga. From Eq 4 we can infer that Tper is defined only for 0< B< 1. This

sets the conditions for how the weights, bias and external input interact with the adaptation

parameters in order for the sequence to be learned and recalled. The straightforward interpre-

tation for B< 1 is that the adaptation has to be strong enough to overcome the effects of

the other currents, while B> 0 sets the connectivity conditions for sequence recall to occur

(wself> wnext). As illustrated in Fig 3A Tper is small for B� 0 and diverges to infinity as B� 1.

This facilitates the interpretation of B as a unitless parameter whose natural interpretation is

the inverse of transition speed, as shown in the examples provided in Fig 3B and 3C.

Controlling the individual persistence times of different patterns (the temporal structure)

through short-term dynamics has been discussed previously in the literature [40]. In our net-

work the temporal structure of the sequence is also controlled by the adaptation dynamics. We

illustrate this in Fig 3D where by choosing specific values for the adaptation gain, ga, precise

control of the Tper is achieved for every attractor.

For illustration purposes, Eq 4 is given for the case of orthogonal patterns and a single

hypercolumn. In the general case with multiple hypercolumns it is possible that not all local

transitions within a pattern (in different hypercolumns) occur at the same time. Moreover, as

we recall sequences with non-repeating patterns the adaptation effects are not specified. A full

Table 1. Network’s parameters and quantities.

Symbol Name Values

τs Synaptic time constant 10 ms
τa Adaptation time constant 250 ms
ga Adaptation gain 0 − 2.5 (units of w, control)

tzpre Pre synaptic z-filter time constant 5 − 150 ms

tzpost Post synaptic z-filter time constant 5 ms

τp Probability traces time constant 5 s
σ Standard deviation of s values 0 − 3

Tper Persistence time 50 − 3000 ms (controlled)

Tp Pulse time 100 ms
IPI Inter pulse interval 0 ms
H Number of hypercolumns variable

N Total number of units variable

https://doi.org/10.1371/journal.pone.0220161.t001
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treatment, that handles both the modular effects of non-overlapping elements and adaptation

effects is provided in the supplementary material (see S1 Appendix).

2.3 Learning

So far we have shown that our model can support sequence recall and control of the temporal

structure through the adaptation dynamics. We now show that when the network is subject to

the right spatio-temporal input structure then associative Hebbian learning is sufficient to

induce the learning of the asymmetric connectivity structure characteristic of sequence recall

[52]. Based on previous work [39], we use the BCPNN learning rule in its incremental on-line

version [55] with learning mediated through asymmetric synaptic time traces. The version of

the BCPNN learning rule utilized here is an adaptation of the discrete learning rule (presented

in [46]) to a continuous setting.

tzpre
dzi
dt
¼ oi � zi tzpost

dzj
dt
¼ oj � zj ð6Þ

Fig 3. Systematic study of persistence time Tper. (A) Tper dependence of B. The blue solid line represents the theoretical prediction described in Eq 4

and the orange bullets are the result of simulations. Inset depicts what happens close to B = 0 where we can see that the lower limit is the time constant

of the units τs. (B) An example of sequence recall where Tper = 100 ms. This example corresponds to configuration marked the black star in (A). (C)

example of sequence recall with Tper = 500 ms. This example corresponds to the configuration marked with a black triangle in (A). (D) Recall of a

sequence with variable temporal structure (varying Tper. The values of Tper are 500, 200, 1200, 100, and 400 ms respectively.

https://doi.org/10.1371/journal.pone.0220161.g003
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tp
dpi

dt
¼ zi � pi tp

dpij

dt
¼ zizj � pij tp

dpj

dt
¼ zj � pj

ð7Þ

wij ¼ log
pij

pipj

 !

bj ¼ log ðpjÞ ð8Þ

In the spirit of associative learning the BCPNN rule sets positive weights of recurrent con-

nections between units that statistically tend to co-activate and creates inhibitory connections

(negative weights) between those that do not. This is reflected in Eq 8, where the connections

are determined with a logarithmic ratio between the probability of co-activation (pij) and the

product of the activation probabilities (pi and pj). Note that if the events are independent the

weight between them is zero (pij = pi pj). Nevertheless, basic associative learning can only bind

units that are active simultaneously. In order to bind units that are not simultaneously active

in time we need an extra mechanism of temporal integration [52]. To overcome this we com-

bine the BCPNN learning rule with the introduction of the z-traces in order to create temporal

associations between units that are contiguous in time [56]. The z-traces, defined in Eq 6,

which can be thought of as synaptic traces, are a low-passed filtered version of the unit activa-

tions o and dynamically track the activation as shown in the top of Fig 4B. To approximate the

probabilities of activation (pi and pj) and co-activation (pij) the z-traces are accumulated over

time in agreement with Eq 7, which implements an on-line version of the exponentially

weighted moving average (EWMA). As illustrated in Fig 4A, asymmetry in the connectivity

matrix arises from having two z-traces, a pre-synaptic trace with a slow time constant tzpre and

a fast post-synaptic trace with a fast time constant tzpost [39]. In short, the z-traces work as a

temporal proxy for unit activation that allow us to use the probabilistic framework of the

BCPNN rule to learn the sequential structure of the input.

The training protocol shown in Fig 4B is driven by the temporal nature of the input and

can be characterized by two quantities: the time that the network is exposed to a pattern (this

is implemented by clamping the units belonging to the corresponding pattern through I in Eq

1) called the pulse time, Tp, and the time between the presentations of two patterns referred as

the inter-pulse-interval (IPI). In the following we use a homogeneous training protocol where

the values of the Tp and IPI are the same for every pattern in the sequence.

The network’s weights were learned using a training protocol where the patterns were pre-

sented sequentially for a number of epochs (50 epochs in the example illustrated in Fig 4C–

4G). With every presentation of the stimulus the probability traces p grow accordingly (see Fig

4E), slowly evolving to their steady state value (Fig 4F). While the steady state weight matrix

that results from training reveals asymmetric connectivity (Fig 4D), the sequential structure of

the input is learned as early as during the first epoch, as can be observed in Fig 4G. This dem-

onstrates that the sequential structure of the input has been successfully learned by the

BCPNN rule with the help of the z-traces.

We characterized the relationship between the connectivity matrix (wself, wnext and wprev)

and the training protocol parameters (the pulse time TP, the inter-pulse-interval, IPI, and the

two time constants of the synaptic traces tzpre and tzpost ). We summarize our findings and its

relationship to the persistence time, Tper, in Fig 5. Larger values of Tp lead first to an increase

in the value of wself followed by its stabilization thereafter and to a decrease in the value of wnext

(Fig 5A). This can be explained by the fact that while the ratio between self co-activation and

the total training time remains more or less constant (stabilizing wself) the co-activation

between units becomes a smaller portion of the whole training protocol effectively reducing

the estimating of pij (making wnext smaller). In consequence, the rate of Tper growth becomes

Probabilistic associative learning and temporal sequences
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Fig 4. Sequence learning paradigm. (A) Relationship between the connectivity matrix w and the z-traces. The weight wij from unit i to

unit j is determined by the probability of co-activation of those units which in turn is proportional to the overlap between the z-traces

(show in dark red). The symmetric connection wij is calculated through the same process but with the traces flipped (here shown in dark

blue). Note that the asymmetry of the weights is a direct consequence of the asymmetry of the z-traces. (B) Schematic of the training

protocol. In the top we show how the activation of the patterns (in gray) induces the z-traces. In the bottom we show the structure of the

training protocol where the pulse time Tp and the inter-pulse interval (IPI) are shown for further reference. (C) We trained a network

with only five units in a single hypercolumn for illustration. The first three epochs (50 in total) of the training protocol are shown for

reference. The values of the parameters during training were set to Tp = 100 ms, IPI = 0 ms, tzpre ¼ 50 ms and tzpost ¼ 5 ms. (D) The

matrix at the end of the training (after 50 epochs). (E) Evolution of the probability values during the first three epochs of training. The

Probabilistic associative learning and temporal sequences
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constant with larger Tp giving a logarithmic encoding of time (Fig 5D). In contrast, larger IPIs

lead to monotonic increments and decrements in wself and wnext respectively (Fig 5B). The rea-

son for this is that larger IPIs bring about an overall longer training protocol and after the co-

activation of the units ceases, the product pipi, decreases faster than pii leading to a larger wself.

The value of wnext, on the other hand, is rendered smaller by larger IPIs as a consequence of

the unit’s activations begin further apart in time. It follows that Tper increases faster with larger

IPIs as both wself and wnext separate farther and farther with growing inter pulse intervals (Fig

5E). The effect of the z-filters time constant τz in the weights can be described as diminishing

the difference between wself and wnext (Fig 5C). The results can be explained by interpreting

the effect of increasing tzpre as spreading more and more the activation in time rendering the

probability values of the pre (pi), post (pj) and joint probability (pij) evolve with every presentation. Note that the same color code is used

in images C, E and F. (F) Long-term evolution of the probabilities with respect to the number of epochs. The values of the probability

traces eventually reach a steady state. (G) Short-term evolution of the weight matrix at the points marked in the first epoch in C. Note

that the colors are subjected to the same colorbar reference as in D.

https://doi.org/10.1371/journal.pone.0220161.g004

Fig 5. Characterization of the effect of training in the connectivity weights and persistent times. The equation on the inset in D relates Tper to

Δwnext = wself − wnext which we show as dashed red lines in each of the top figures (note that here Δβ = 0 as we trained with an homogeneous protocol).

When the parameters themselves are not subjected to variation their values are: Tp = 100 ms, IPI = 0 ms, tzpre ¼ 25 ms, tzpost ¼ 20 ms for all the units.

(A-C) Show how the weights depend on the training parameters Tp, inter pulse interval and tzpre , respectively, whereas (D-E) illustrate the same effects

on Tper. Here we are providing the steady state values of w obtained after 100 epochs of training.

https://doi.org/10.1371/journal.pone.0220161.g005
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co-activations less meaningful overall (co-activation probability drops). This results in a

diminishing value of Tper as the difference between weights Δwnext drops with larger values of

tzpre (Fig 5F). Note here that the point at which tzpre becomes larger than tzpost (marked with a

dashed red line) coincides with wnext becoming larger than wprev as we should expect. The rea-

soning for wpre is analogous to that of wnext with the only difference in synaptic time constant

(tzpost instead of tzpre).

We have shown so far that the temporal structure of the input determines the temporal

structure of the recall (Fig 5D–5F). We now show that the value IPI can change the recall

phase from a sequence regime, where the patterns are tied in time, (Fig 6A) to a regime where

the attractors are learned but not their temporal arrangement (Fig 6B). In this regime the net-

work undergoes an unordered reactivation of the attractors in the recall phase. In general, to

bridge a longer inter-pulse-interval, a longer tzpre is required, as illustrated in Fig 6C. The idea

is that tzpre provides a temporal window of integration withing which patterns can be tied into

a sequence. So, the larger the window is, the longer are the IPIs can be to still ensure the

sequential memory.

Fig 6. Transition from the sequence regime to a random reactivation regime. (A) An example of a sequential (ordered) activation of patterns. (B)

Unordered reactivation of the learned attractors. (C) The two regimes (sequential in blue and random reactivation of attractors in red) in the relevant

parameter space spammed by tzpre and inter pulse interval. The examples in (A) and (B) correspond to the black dot and the star, respectively.

https://doi.org/10.1371/journal.pone.0220161.g006
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2.4 Noise

We also tested whether sequence recall in the network was robust to noise by controlling the

level of noise with the parameter σ in Eq 1. Additive noise manifest itself in stochastic trajecto-

ries where pattern to pattern transitions happens earlier (Fig 7A). This phenomenon is illus-

trated clearly with the red and purple lines in Fig 7A where compared to their deterministic

counterparts (solid lines) the noisy trajectories (thin lines) make the transition as soon as the

variations in s drive them under the transition point (wnext o). Therefore, the persistence time

in a network operating in a noisy regime will be a stochastic variable (denoted Tper,σ) whose

mean will be lower than the persistence time Tper present in the deterministic regime. The

mean value of Tper,σ decays systematically with increasing σ and quickly converges to a com-

mon value independent of the value of Tper for the deterministic regime set by controlling ga
(Fig 7B). To examine whether a sequence with lower values of Tper is less likely to be recalled

correctly under the influence of noise we cued the sequence 1000 times for every value of σ
and estimated the success rate by dividing the number of times that the sequence was correctly

recalled in its entirety by the number of trials (1000). With this information we constructed

the success rate vs noise profile shown in Fig 7C where we can observe that the success rate is

Fig 7. Effects of noise reflected in current trajectories and persistence times. (A) An example of current trajectories subjected to noise. The solid

lines indicate the deterministic trajectories the system would follow in the zero noise case. In dotted, jagged and dashed lines we depict the currents

induce wself, wnext and wrest for reference. (B) Change in the average of the actual value of Tper for different levels on noise. We Shaded the area between

the 25th and the 75th percentile to convey and idea of the distribution for every value of σ (C) Success rate vs noise profile dependence on Tper. We ran

1000 simulations of recall and present the ratio of successful recalls as a function of σ. Confidence intervals from the binomial distribution are too small

to be seen.

https://doi.org/10.1371/journal.pone.0220161.g007
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identical for different values of Tper. We conclude that Tper has no effect on the sensitivity of

the recall process is noise. This facilitates the study of the effect of noise as we can disregard

variations on Tper.

Next we systematically characterized the sensitivity of the network to noise as a function of

the training parameters by calculating σ50 (the value at which the success rate falls below fifty

percent, see Methods). We illustrate the nature of σ50 in Fig 8A, please note that larger σ50

implies that a system is less sensitive to noise and vice versa. Having estimated σ50 for different

values of Tp we conclude that the network becomes less sensitive to noise with longer values of

Tp, as shown in Fig 8B. This can be explained by the fact that training with longer pulses

increases the distances between the weights (and therefore the distance between the currents),

as previously shown in Fig 5A. We can see the same effect by increasing the inter pulse interval

in Fig 8C, where the separation of weights produced by larger IPIs leads to a similar outcome.

The opposite effect is observed with longer values of tzpre where the system becomes more

Fig 8. Sensitivity of network performance to noise for different parameters. The base reference values of the parameters of interest are: Tp = 100 ms,
IPI = 0 ms, tzpre ¼ 25 ms, tzpost ¼ 15 ms, sequence length = 5, #hypercolumns = 1. (A) Two examples of the success vs noise profiles (Tp = 50 ms, 200 ms).
The value of σ50 is indicated in the abscissa for clarity, note that smaller σ50 implies a network that is more sensitive to noise (the success rate decays

faster). (B) σ50 variation with respect to TP. We also indicate the σ50 for the values of Tp used in (A) with stars of corresponding colors.(C) σ50 variation

with respect to the inter pulse intervals. (D) σ50 variation with respect to the value of tzpre . (E) σ50 variation with respect to sequence length. (F) σ50

variation with respect to the number of hypercolumns.

https://doi.org/10.1371/journal.pone.0220161.g008
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sensitive with longer values of tzpre , as shown in Fig 8D. We can appeal again to the structure of

the weights in Fig 5C to explain these results as an outcome of the weights and therefore the

current being less differentiated among themselves leading to failures in sequence recall.

We also report two relevant noise effects not related to the connectivity. First, we show in

Fig 8E that the network becomes more sensitive to noise for longer sequences. This can be

explained by considering each pattern-to-pattern transition as a possible point of failure. Natu-

rally, adding more links to the chain makes the recall of the sequence more likely to fail at

some point (i.e. not recall all patterns in the right order). Finally, in Fig 8F we observe a scaling

effect in how robust the network is with the number of hypercolumns. This can be explained

using the fact a network with more hypercolumns posses a higher degree of recurrent connec-

tivity. Every time there is a mis-transition in any of the units the recurrent connectivity chan-

nels the currents of the units where the transition occurred correctly as an error correction

mechanism assuring the successful completion of the sequence more often than not. In a more

abstract language the more hypercolumns the network possess, the less likely it is for enough

transitions to occur such that the network state is pushed out of the basin of attraction of the

next pattern. Therefore, the more hypercolumns the network possess, the more robust it is to

noise and hence the observed scaling.

2.5 Overlapping representations and sequences

Previous work with attractor models has shown that it is possible to store attractor states with

overlapping representations (i.e. patterns that shared a unit activation in some hypercolumns)

[55, 57]. We test here whether our network is able to store and recall overlapping patterns suc-

cessfully when they belong to sequences and are recalled as such. This is desirable to increase

the storage capacity of our network and to enrich the combinatorial representations that our

network can process.

Our aim is to characterize the capabilities of our network to store and successfully recall

sequences containing patterns with some degree of overlap. As sequences can contain more

than a pair of overlapped patterns we propose the following two parameters as a framework to

systematically parameterize the problem: 1) the first parameter quantifies the level of overlap

between the representation of two patterns and is therefore a spatial measure of overlap, we

call this parameter representation overlap. 2) the second parameter is a temporal metric of

overlap and quantifies how many patterns between two sequences possess some degree of rep-

resentational overlap; we call this parameter sequential overlap. A schematic illustration of the

general idea is presented in Fig 9A1, where the two parameters, the representational overlap

and the sequential overlap, are shown in black and grey, respectively. To be more precise, the

representational overlap between two patterns is defined as the proportion / ratio of hypercol-

umns that share units between the two patterns. We define the sequential overlap between two

sequences as the number of patterns in the sequences that possess some degree of overlap (e.g.

in Fig 9A1 the sequential overlap is 4). In order to illustrate these concepts we present a

detailed example in Fig 9B. The example consists of two six-pattern sequences (i.e. of length

six) whose patterns are distributed over three hypercolumns (for example, the first pattern P1a

of sequence a consists in the activation of the unit 10 in each of the three hypercolumns). The

two sequences have two pairs of patterns that have some degree of overlap (pairs P3a − P3b and

P4a − P4b) and therefore the two sequences have a sequential overlap of 2 as indicated by the

gray area in Fig 9B. If we look at patterns P3a = (12, 3, 3) and P3b = (3, 3, 3) we can observe that

they have the same unit activation in the last two hypercolumns (hypercolumns 2 and 3) and

therefore the pair has a representational overlap of 2

3
. The units in the hypercolumns responsi-

ble for the representational overlap between the pair are highlighted in black in Fig 9B. Note
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that the representational overlap is a parameter between 0 and 1, whereas the sequential over-

lap is an unbounded parameter as sequences can be arbitrarily long.

The limit case when representational overlap is equal to 1 is the domain of sequence

disambiguation. We show a schematic of the disambiguation problem in Fig 9A2 where a

representational overlap of 1 can be interpreted as the equivalence of both patterns in the

sequential overlap section. In this regime the sequential overlap corresponds to the size of

the disambiguation window that the network has to bridge to correctly disambiguate the

sequence (i.e. ending in P8 a if you started in P1 a in Fig 9A2). Solving sequence disambigua-

tion in the most strict sense requires the network to be able to store the contextual

Fig 9. Overlapping representations and sequences. (A1) Schematic of the parameterization framework. Black and gray stand for the representational

overlap and the sequential overlap respectively (see text for details) (A2) Schematic of the sequence disambiguation problem. (B) An example of two

sequences with overlap. Here each row is a hypercolumn and each column a pattern (patterns P1x, P2x, P3x, P4x, P5x, and P6x). The single entries

represent the particular unit that was activated for that hypercolumn and pattern. (C) The superposition of the recall phase for the sequences in (B).

Each sequence recall is highlighted by its corresponding color. We can appreciate inside the gray area that the second and third hypercolumns

(sequential overlap of 2) have the same units activated (depicted in black). This reflects the fact those patterns have a representational overlap of 2

3
(two

out of three hypercolumns).

https://doi.org/10.1371/journal.pone.0220161.g009
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information required to solve correctly the bifurcation at the end of the overlapping section.

That is, the network requires to hold the information of what pattern was activated before the

disambiguation window for as long as the time it takes for the sequential dynamics to reach

forking point.

In general we should expect that sequences with higher representational and sequential

overlaps would be harder to process for the network. To characterize these difficulties system-

atically we tested for correct sequence recall for sequences in the zero noise condition for all

the possible combinations of representation overlap as well as sequential overlap that the

network allowed. As can be see in Fig 10A the network can successfully recall overlapping

sequences over a wide range of sequential and representational overlaps. The exception to this

Fig 10. Sequence recall performance for different overlap conditions. The base line values of the parameters of interest are Tp = 100 ms, ΔTp = 0 ms,
tzpre ¼ 25 ms, tzpost ¼ 5 ms, sequence length = 10, H = 10 and Tper = 50 ms. (A) Success rate for pairs of two sequences with different sequential and

representation overlaps. We show here the performance over the parameter space. Success here is determined by correct recall of both sequences. Note

that the white corner in the top-right is undefined as it corresponds to a degree of sequential overlap that would include either the first or the last

pattern in the sequence (B) Success rate vs noise level for the sequences with configurations marked as 1, 2, 3, 4 in A. The values of σ50 are marked for

illustration purposes. (C) σ50 as a function of the sequential overlap. The values of σ50 are calculated over the sequences with configurations given in the

green horizontal line in A. (D) σ50 as a function of the representation overlap. The values of σ50 are calculated over the sequences with configurations

given in the blue vertical line in A. (E) max disambiguation as a function of Tper. The network loses disambiguation power with long lasting attractors as

the memory of the earlier pattern activation reflected in the currents fades. (F) Success rate vs noise profile in the disambiguation regime. The three

curves correspond to overlapping sequence configurations marked with x, y, and z in A. Shaded areas correspond to 95% confidence intervals (1000

trials).

https://doi.org/10.1371/journal.pone.0220161.g010
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is the disambiguation regime in top of Fig 10A where we see a failure to recall both sequences

when overlapped patterns are identical. Next we studied the recall of sequences with overlap-

ping patterns in the presence of noise. First, we examined the dependence of the success rate

on the noise level for a wide array of sequential and representational overlaps (1, 2, 3 and 4 in

Fig 10A). The results, as shown by the curves in Fig 10B, illustrate that the success rate vs noise

profiles are very similar despite different degrees of sequential and representational overlap.

Second, for a fix value of representational overlap (0.5), we calculated σ50 for all the possible

values of sequential overlap (green horizontal line in Fig 10A). We also calculated the values of

σ50 for a fix value of sequential overlap (5) and all the possible values of representational over-

lap (blue vertical line in Fig 10A). The results (Fig 10C and 10D) show that the network is

robust to noise across the spectrum of possible overlaps except when we get close to the

sequence disambiguation regime (right part of Fig 10D), where the network becomes more

sensitive. Those results together suggests that our neural network can consistently recall

sequences correctly over a broad set of overlap conditions.

In the disambiguation regime with no noise (gray line in Fig 10A) the network is able to

solve the disambiguation problem successfully up to disambiguation windows of size 8. The

disambiguation capabilities of the network are due to memory effects on the dynamics (here

capacitance effects mediated by τs). In fact, we show in Fig 10E that the longer the persistence

times (and therefore the more time for the memory to fade) the smaller is the disambiguation

window that the system can resolve. Contrary to the results above the network is brittle in the

sequence disambiguation regime. In particular, the success rate decays extremely fast in the

presence of noise as show in Fig 10F. However, an interesting resonance phenomena occurs

for low sequential overlaps (blue curve) where the success rate actually increases with noise.

This can be explained with the fact that the noise effectively reduces the mean persistence

time Tper,σ (as shown before in Fig 7B) which leads to the increased disambiguation power (c.f.

9E). In other words, by reducing the attractors life-time with noise, the network is able to

leverage the short-lived information provided by the synaptic traces to successfully perform

disambiguation.

3 Discussion

We have evaluated a Hebbian-like BCPNN learning rule with asymmetrical temporal synaptic

traces as a sufficient principle underlying robust sequence learning in an attractor neural net-

work model. The results have revealed the potential of the network to successfully encode and

reliably recall multiple overlapping sequential representations even in the presence of noise. In

this context, we have systematically studied the effect of network modularity as well as the role

of key temporal parameters of the synaptic learning rule. We have also stressed that our net-

work has the capability to control the temporal structure of the sequential pattern recall by

means of an intrinsic adaptation mechanism.

Overall we have found that for a wide range of parameters the network learns sequences

with no requirement of fine-tuning (see Fig 5). There exist two regimes where the network

fails to learn sequences: 1) when the value of tzpre is too small compared to the inter-pulse-

interval (IPI) which is the case when the attractors are learned but not linked in time (see Fig

6B) and 2) when the value of tzpre is so large that the structure of the network gets diluted as the

weights connecting a pattern to its successor become larger than the self-excitatory weights

(wself< wnext). The other parameters just modulate this process. This fact coupled with a grace-

ful degradation of the network performance with noise (c.f. Fig 8) shows that the sequence

learning capabilities of our network are robust to learning and require no fine tuning of the

parameters involved.
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3.1 Comparison with similar models

Previous models have also utilized some of the key components of our model such as the use

of temporal traces for hetero-association, competition and the use of adaptation or facilitation

to ensure pattern transition [40, 44, 58]. While some of such models provide a study of individ-

ual aspects of sequence learning such as the control and characterization of persistence time

[40, 44], the analysis of sequence recall under noise [40], or the storage and recall of sequences

with some degree of overlap [58], to the best of our knowledge, our approach represents the

first systematic treatment of all the aforementioned phenomena under the same framework. In

particular, we find that the problem of learning multiple sequences has received scant attention

so far. A naive implementation of asymmetric Hebbian learning leads to weights that do not

reflect the adequate transition statistics (in the Markov chain sense) of the patterns present

during training (see Fig 11A). The BCPNN learning rule that we employ in this work learns

the transition statistics by keeping a history of the overall pattern activity in the form of p-

traces (see S2 Appendix). It is important to state that most sequence learning models do not

implement a naive version of Hebbian plasticity but enhance their plasticity rules with compe-

tition motifs (competition among the weights) such as LTD or diverse forms of heterosynaptic

plasticity to introduce competition and enhance robustness [41, 42, 58]. However, it is not

clear how such competition mechanisms can be balanced to learn temporal associations

between patterns that occur with varying frequencies due to their participation in multiple

sequences. Such balance that account for this heterogeneous distribution of pattern activation

probabilities is offered by the BCPNN as units are automatically connected accordingly to

their activation probability history (see Eq 8).

Fig 11. The BCPNN weights temporal co-activations against overall activations. The significance of temporal associations. (A) Here we compare

naive simple Hebbian learning with the BCPNN in terms of relative weighting of different temporal associations. In the presented example there are

three associations E! F, E! G, and H! G that have been observed 99, 1, 1 occasions respectively. Simple Hebbian learning weights just the

frequency of the associations and, as a consequence, E! G and H! G end up with the same association weight. The BCPNN, on the other hand,

differentiates the weights as it takes into account the total activation probability of each unit, rendering the temporal association H! G more

significant than E! G.

https://doi.org/10.1371/journal.pone.0220161.g011
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3.2 Previous work and biological context

Here we have followed the modelling philosophy aimed at distilling the architecture of the net-

work to its essential characteristics that support and control the phenomenon of interest

(sequence learning). In the previous models of particular relevance to our work, complex spike

based dynamics and rich biological detail were promoted to provide insights into the biophysi-

cal underpinnings of sequence learning in the cortex [39] and as a model of memory consoli-

dation [59]. While the aforementioned contributions provide a more direct mapping between

biology and the network, our approach, which reduces the network to its essential characteris-

tics, necessarily dilutes that mapping. Nevertheless, some key design principles emerging from

biology are preserved. Below we discuss in more detail the main aspects of the relationship

between the dynamical as well as structural properties in our network and the biological sub-

strate that inspired them in the first place.

Local competition, often mediated by lateral inhibition and operating as a normalization

mechanism [60], is one of the canonical computational motifs in cortex [47]. In our network

competition is modelled locally within each hypercolumn with a hard-wired WTA mecha-

nism, which is not a biologically plausible solution. Douglas and Martin [47] suggested that

such a competition mechanism could be implemented by basket or chandelier cells. In the

spiking counterparts of our attractor neural network model [39, 59, 61], this computational

principle was implemented by means of fast inhibitory basket cells with fixed connectivity and

produced compatible outcomes. It is important to point out that the idea of using diverse

forms of local competition to achieve pattern selection in sequence recall has been examined

previously and extensively in the sequence learning literature [43, 44, 62].

Asymmetric temporal traces have been proven successful to achieve the effect of sequence

learning [37, 38, 40, 41, 63, 64]. In our model we have utilized the temporal asymmetric z-

traces as the basis of probabilistic learning with the BCPNN learning rule. The degree of asym-

metry of the z-traces and its effects on the connectivity matrix have been studied through vari-

ations in tzpre (Fig 5C). In this framework lower values of tzpre would correspond to fast AMPA

dynamics [65] while longer values of tzpre would correspond in turn to slower NMDA dynam-

ics [66]. Consistently with these observations, throughout this work we have restricted the val-

ues of tzpre to the 5 − 150 ms range. A biological account of the z-traces and their connection to

the biochemical cascades that underlie synaptic learning have been presented in a more

detailed way by [56].

It is important to point out that synaptic connections learned in our network with the

BCPNN learning rule violate Dale’s law, i.e. projections emanating from the same unit can

mediate both excitatory and inhibitory effects on the target units. To address this issue, we pro-

pose a different interpretation for positive and negative synaptic weights. In the former, they

can be straightforwardly interpreted as the conductance between two units, whereas in the lat-

ter case we interpret them as a disynaptic connection through an inhibitory interneuron. The

argument for the biological plausibility of this arrangement using double bouquet cells as the

inhibitory interneurons in this architecture is developed further by [67].

3.3 Control of the temporal structure of the sequence

We have shown that the persistence time, Tper, of our attractors can be quite effectively con-

trolled through the use of the adaptation gain ga and less effectively by means of the adaptation

time constant τa (see Fig 3 and Eq 4). The range of Tper values for the attractor patterns in our

network model is within the 10 ms and 3.5 s range. This in turn means that the duration of our

sequences corresponds to the milliseconds to minutes interval (considering sequential lengths
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of 10 to 100). This range of values is consistent with the variation in sequence duration that

[68] found for biological sequences in the hippocampus. While the mechanisms for temporal

phenomena under the millisecond scale (inter-aural-scale, [69]) and over the minute scale

(circadian rhythms, [70]) are already well understood, the nature and origin of temporal phe-

nomena at the intermediate time scales is still a matter of debate [71]. We believe our work

contributes to this debate by offering an intrinsic model of time [72] capable of both, using the

taxonomy of [71], the production and reproduction of temporal patterns within the discussed

range.

Similarly to previous work [40] we found a logarithmic relationship (Eq 4) between the per-

sistence time, Tper, and the network parameters. In their model, Veliz-Cuba et al. (2015) [40]

find that by training the network with the right combination of parameters (such as time con-

stants and maximum facilitation), the precise timing of different patterns can be exactly repli-

cated. In our model, we are able to reproduce this effect with only one parameter ga for the

case of orthogonal patterns (see Fig 3D). The case with patterns that share some overlap is

more complicated, as it requires adjusting the adaptation gains, ga, more selectively to preserve

the duration of all the patterns that contain those units. As far as we know, a firing rate model

that is able to adjust its parameters automatically during learning with unsupervised local

learning (instead of fixing it by hand) is yet to be found in the literature and remains a matter

of future work.

In the work of Murray et al. [44] the control of the temporal structure (Tper) is accomplished

by means of input from an external network. Although the ability of our network to control

the temporal structure rests on internal mechanisms, we could also exploit external input for

this purpose. By adding external input to our differential equation during recall and solving

the resulting expression (see S1 Appendix) we obtain an expression for the parameter B in the

following form B = (Δwnext + Δβnext + ΔI(t))(ga)−1 where ΔI(t) = Iself(t) − Inext(t) is the differen-

tial input between the consecutive units in the sequence. By controlling this differential input,

the persistence time of attractor states in a given sequence can be modulated. This could be

used to build a framework where a generalist network learns the sequential structure of the

input and a specialized control network adjusts the temporal structure of the sequence recall

suitable for the task at hand.

3.4 Sequence disambiguation and overlapping representations

Sequence disambiguation or using past context to determine the trajectory of a sequence has

been deemed one of the most important problems that a sequence prediction network should

solve [73]. While some networks [74–76] have addressed the problem in their generality, their

reliance on supervised learning and lack of biological plausibility remain a matter of concern.

There have been a few attempts at the problem of sequence disambiguation in the attractor

network framework but most of them rely on non-local learning rules or require an infeasible

large number of parameters [52, 77, 78]. Minai et al. [79] proposed an alternative approach

using the activity in a random network (what now is called a reservoir) as a source of context

information for disambiguation. In their network, activity in the reservoir evolved in a path-

dependent way, and inter-network connectivity between the disambiguation network and the

reservoir conveyed the necessary information from the latter to the former thus allowing for

successful disambiguation. While effective, such networks require another complete layer to

keep a dynamical memory, an approach judged to be inefficient. To address this issue, context

codes with less overhead have been proposed where, instead of a network, the state of a unit or

a collection of units is determined by the dynamical history of the system and that state is then

used for disambiguation [80, 81]. In our network, disambiguation can be achieved by building
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cell assemblies containing a subset of units that are preferentially connected to the subsequent

assembly in the sequence. By preferential connectivity we mean that those units posses strong

excitatory connections to the units of the subsequent pattern and strong inhibitory connec-

tions to the rest. To put it more concretely, the BCPNN learning rule, following its probabilis-

tic nature, will ensure that the non-overlapping parts in a sequence are connected in such

fashion by creating excitatory connections between the units in the non-overlapping parts and

the subsequent units in the sequence (as they are the only ones that actually appeared together)

and strong inhibitory connections between the non-overlapping units and all the units belong-

ing to any other pattern (as they never appeared together). In virtue of the aforementioned

connectivity, activation of the units in the non-overlapping part of the assembly (context

units) guarantees a transition to the subsequent (correct) pattern. As shown in Fig 10D, the

proposed mechanism is very robust to the size of the cell assembly that gets connected prefer-

entially (the non-overlapping part); degradation of the performance under noise only becomes

evident when the size of the context code becomes less than 20% of the cell assembly. This is

consistent with some experimental evidence of neurons in the hippocampus that fire in such a

trajectory dependent fashion [82].

Even in the absence of context units, i.e. with fully overlapping (the same) assemblies in

competing sequences, our network can still solve a disambiguation task for sequences sharing

two consecutive states in their trajectories (see the resonance phenomena in Fig 10F). While

this phenomena allows the network to statistically solve sequence disambiguation for disam-

biguation windows of size 2, it does not generalize for longer sequential overlaps. One way to

handle the problem in a more robust, consistent and transparent fashion is to use a mechanism

that preserves the network’s dynamical history in a dynamical variable. In our future work we

intend to add such mechanism to the network in the form of currents dependent on the z-

traces that facilitate the longer maintenance of the information about past activations and thus

support the disambiguation of sequences with more challenging overlaps.

3.5 Learning rule stability, competition and homeostasis

The stability of the learning dynamics of a firing rate network subject to associative learning

tends to be accomplished by introducing weight dependent terms into weight updates [83].

This constrain is usually motivated and biologically interpreted as a homeostatic mechanism.

Sequence learning models are not exempt from this necessity. One of the simpler approaches

amounts to combining STDP with hetero-synaptic plasticity [42]. However, it is not straight-

forward how these two forces should be balanced. There are a plethora of models that rely on

weight clipping with arbitrarily handpicked upper and lower limits [40, 44, 62]. While this

approach is analytically transparent, fine tuning between potentiation and depression is usually

required. In a similar vein, Byrnes et al. [43] introduced a combination of subtractive and mul-

tiplicative normalization as a mechanism of weight stabilization, which also has to be arbitrarily

tuned. Verduzco-Flores et al. [58] proposed a more complex approach that combines hetero-

synaptic competition with a mechanism that limits both the total value of the weights and the

total incoming current to a unit in order to achieve stability [41], on the other hand, resorted to

a combination of synaptic normalization and multiplicative homoeostasis to avoid runaway

excitation. While these two learning rules are able to prevent runaway instabilities and have

varying degrees of biological plausibility, the number of parameters involved, and the complex-

ity of the model are excessively high. As opposed to this complexity, the probabilistic nature of

our BCPNN learning rule automatically accounts for weight competition during learning lead-

ing the network to a stable regime of sequential or attractor dynamics without requiring extra

parameters or balancing different forces (as discussed more thoroughly elsewhere [56]).
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3.6 Limitations and further work

Although multiple studies of the cortical micro-circuitry have revealed distance dependent

connectivity profiles [84, 85], we have ignored this design principle in our model. Previous

spiking implementations of this model architecture have included to some degree both dis-

tance dependent effects in connectivity and distance dependent delays [39, 59, 61], which had

impact on the network’s temporal dynamics. In our non-spiking network model the expected

implications of such spatio-temporal diversity would be prolonged (temporally spread)

attractor reactivation and transition processes. Still there should be no qualitative functional

changes in the network’s behaviour as the key mechanisms would not be compromised

(although see [86] for a sequence production mechanism that arises itself from asymmetries in

the spatial profile of connectivity). Due to the mesoscale nature of our model and interest in

network phenomena, we obviously do not account for any dendritic related phenomena in

sequence processing such as as the capacity of single neurons to work as sequence recognition

devices through spatial effects [87] and the use of distal dendritic inputs to prime sequential

activations [88].

In the presented work there are some phenomena that we have not systematically character-

ized in their generality. For example, in most simulations we exploited temporally homoge-

neous training protocols. To test the performance of our network under the conditions of

varying pulse time, Tp, and inter-pulse-interval, ΔTp, across patterns, we have ran preliminary

tests and obtained promising results. We intend to conduct a more comprehensive characteri-

zation of the network’s behaviour subject to highly variable training protocols (temporal pat-

tern heterogeneity) in our future work.

4 Methods

4.1 Training and recall protocol

For our training protocol we created a time series s(t) to represent the input. s(t) encodes the

information about Tp and IPI (Fig 4B). We then performed off-line batch learning of the

parameters using the integral formulation of the dynamic equations presented above (Eqs 6

and 7).

To avoid the ill-defined case for p = 0 we set the lower bound of � = 10−7 for the argument

of the logarithm. That is, if the value of p is less than � we equate it to �.

For training the two sequences with the overlapping representations we created the

sequences in succession but separated among them by 1s. This ensured that the sequences in

the training protocol were uncoupled from each other.

We consider a pattern to be active if the corresponding units are active for longer than τs
(the smallest time constant in the system). The sequence is considered to be correctly recalled

if by activating the first pattern all the others patterns in the sequence are subsequently acti-

vated in that given order. Given that for many possible tasks it suffices that the network state

ends in the correct pattern or that only a part of the sequence is recalled correctly our success

criteria is rather conservative.

4.2 Control and estimation of persistence time

In order to estimate the Tper for a pattern P during recall we calculated the difference between

the time t1 at which pattern P was activated and the time at which the next pattern was acti-

vated t2. Tper = t2 − t1.

As shown in Eq 4, Tper depends on both the weight and bias differences, Δwnext = wself −
wnext and Δβ = βself − βnext, respectively, and the adaptation gain ga. This offers flexibility in
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controlling the duration of patterns activations by adjusting the adaptation gain ga as follows:

ga ¼ Dwnext þ Dbð Þð1 �
ts
ta
Þð1 �

ts
ta
� e

Tper
ta Þ
� 1

. We use this adjustment to control Tper during

recall in order to decouple the effects of training from the recall process.

4.3 Noise

Noise was included in our simulations as additive white noise with variance s2
in in the differen-

tial equation for the s variable. The current s, however, behaves almost as an Ornstein–Uhlen-

beck (OU) process and therefore its standard deviation is given by s2
out ¼

ts
2
s2

in. Based on this

fact we characterized the effects of noise with the size of σout instead of σin The rational behind

this choice is that σout will be closer to the standard deviation of the variable s in Eq 1 and

therefore comparable in magnitude to the value of currents in the network. It is important to

say that thanks to the separation of times scales (τs� τa) the dynamics of s behaves mostly as

an OU process and it is only the WTA mechanism around the transition points that induces

deviations.

The incorporation of noise to the network makes the trajectories and, thereby, the recall

process stochastic. To quantify the recall performance under noise (probability of successful

recall at a given level of noise) we averaged the number of correct recalls in a given number of

trials. The estimated probability of successful recall p follows from a Bernoulli process and we

can therefore quantify the uncertainty of our estimates with the Wald method to provide 95%

confidence intervals (Ntrials = 1000):

p̂ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ
Ntrials

s

ð9Þ

In order to systematically characterize how different parameters of our training protocol

affect the sensitivity of the resulting network to noise, we estimated σ50 as the value of noise

variance σ for which the probability of correctly recalling a given sequence is 0.5. Finding

such σ is an instance of the Stochastic Root Finding Problem [89]. To estimate this we used

the naive bisection algorithm for deterministic functions by using the averages as estimates

of the actual values. We stopped the algorithm as soon as the success rate corresponding

to our estimate of σ50 was contained in the Wald confidence interval given in Eq 9. We find

that our method was consistently able to find solutions to the root finding problem (see

S1 Fig).

Supporting information

S1 Fig. Calibration of σ50 estimation. (A) two success rate vs noise profiles for Tp = 50 ms and

Tp = 200 ms. The values of p50 are annotated for reference. (B-F) We show the values of p50

obtained after running the algorithm in Fig 8. For every value we see that the values of the

found roots (p50, blue lines) was within confidence bounds (here blue shaded) of the expected

value (0.5, horizontal lien in gray).

(PDF)

S1 Appendix. Complete treatment of the persistence time.

(PDF)

S2 Appendix. Sequence transition as probabilistic inference.

(PDF)
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