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Simple Summary: Herein, we propose that there should be discussion about the function and effects
of stereotypies in relation to the time during which they are shown. In the first stages, stereotypies
may help animals deal with challenges. However, behavior can potentially alter the brain, impairing
its function due the absence of a diverse repertory, and change brain connections, neurophysiology
and later neuroanatomy. The neuroanatomical changes in individuals showing stereotypies could be
an effect rather than a cause of the stereotypy. As a consequence, studies showing different outcomes
for animal welfare from stereotypy expression could be due to variation in a timeline of expression.
Stereotypies are widely used as an animal welfare indicator, and their expression can tell us about
psychological states. However, there are questions about the longer-term consequences if animals
express stereotypies: do the stereotypies help in coping? During the prenatal period, stereotypic
behavior expressed by the mother can change the phenotype of the offspring, especially regarding
emotionality, one mechanism acting via methylation in the limbic system in the brain. Are individuals
that show stereotypies for shorter or longer periods all better adjusted, and hence have better welfare,
or is the later welfare of some worse than that of individuals that do not show the behavior?

Abstract: Stereotypies comprise a wide range of repeated and apparently functionless behaviors that
develop in individuals whose neural condition or environment results in poor welfare. While stereo-
typies are an indicator of poor welfare at the time of occurrence, they may have various consequences.
Environmental enrichment modifies causal factors and reduces the occurrence of stereotypies, provid-
ing evidence that stereotypies are an indicator of poor welfare. However, stereotypy occurrence and
consequences change over time. Furthermore, there are complex direct and epigenetic effects when
mother mammals that are kept in negative conditions do or do not show stereotypies. It is proposed
that, when trying to deal with challenging situations, stereotypies might initially help animals to cope.
After further time in the conditions, the performance of the stereotypy may impair brain function
and change brain connections, neurophysiology and eventually neuroanatomy. It is possible that
reported neuroanatomical changes are an effect of the stereotypy rather than a cause.
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1. Introduction

Stereotypies constitute a range of repeated and apparently functionless behaviors that
are expressed by individuals whose neural condition or environment results in compro-
mised welfare [1–3] and occur in situations wherein an individual lacks control of their
environment [4,5]. Many factors can be involved in the causation and development of
stereotypies. Moreover, the behavior is apparently functionless at the time of occurrence but
could have positive or negative consequences. Stereotypies were described as a invariant
sequence of movements occurring frequently, in a specific context, which could not be
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considered part of the functional systems of the animal [1]. Furthermore, it is described as
a behavior that develops in an environment that causes poor welfare, is repetitive, does not
vary and apparently has no function. Stereotypies may also occur in individuals with neu-
rological disorders, and one of the definitions is a repeated, relatively invariant sequence
of movements that has no obvious purpose [5,6]. Moreover, studies of the causation of
frequent stereotypies in sows (Sus scrofa domesticus) kept in stalls, crates or tethers [1,7,8]
suggest that bar-biting may start as an escape attempt, drinker-pressing as an effort to
control when food can be obtained and sham-chewing as a replacement for actual eating [6].
However, it is likely that these behaviors soon become functionally divorced from these
aims. At this time, they still indicate that the environment is very negative and that welfare
is poor. The word function is not used in the definition, because an immediate function of
the movement may be apparent, while the long-term purpose is not.

Environmental enrichment can be an efficient strategy to reduce the expression of
stereotypies [9–11], so the changed experience must have an effect on the causal factors
associated with the continuation of these behaviors. Enrichment implies an improvement
that meets the needs of the captive animal species better than without it, so there are
conditions for better biological functioning [9]. If the needs of the animals are met, they
will not show indicators of poor welfare, such as stereotypies. Additionally, the possibility
of interacting with more complex environments is the context in which the motivational
systems have been selected for from an evolutionary perspective.

One of the hypotheses for the causation of stereotypies assumes that their performance
helps the individual to cope with its environment and reduces distress in the animal [12,13].
It is clear that the stereotypy is an attempt to cope, but does it actually help in coping?
While it seems likely that some stereotypies help, some can be damaging to the individual.
Headshaking in domestic fowl (Gallus gallus) is an example of a stereotypy that probably
helps to regulate attentional mechanisms [5] but is an indicator of poor welfare if repeated
too frequently. Several normal and abnormal behaviors can be used to affect motivational
state. The fact that an abnormal behavior is adaptive in the short-term does not mean that
it is not an indicator of poor welfare at the time of occurrence [6].

A stereotypy in a mother animal could be either positive or negative in relation to
attempts to cope but could also affect the offspring. The prenatal environment can change
the characteristics of a fetus in ways that persist after birth. In mammals, pregnancy
has a potential role in shaping the ontogenetic development of the organism, once the
environment of the mother may have consequences on the offspring [14–16].

Neurodevelopmental programming can induce alterations that will impact how the
animal will cope with challenges in the postnatal environment [17]. Epigenetic mechanisms
modulate the phenotype by fetal programming, in which the modifications are stable and
cross into further generations. In this context, the effects in the offspring may depend on
the causes and time course of stereotypies in the mother. It could be that the welfare of the
offspring from mothers that show the behavior have different welfare from the ones that
do not show stereotypies. The role of experience during the time-course of stereotypies on
individuals and their offspring is reviewed here.

2. Stereotypies as Animal Welfare Indicators

Stereotypies develop in animals kept in environments where they have little control,
sometimes with few stimuli, physical restraint or exposure to contingencies that cause fear
or frustration [3]. Stereotypies have been described in a wide range of species maintained
in artificial environments. The occurrence of stereotypies suggest frustration related to
the inability to perform highly motivated behaviors, which may be tentatively expressed
even in the absence of appropriate stimuli. However, the expression of stereotypies is
a consequence of an interaction between the control systems of the individual and the
environment that it encounters.

The expression of stereotypies is considered to be an indicator of poor welfare [2–5,18,19].
Since stereotypies occur when individuals have long-term problems, there is usually no
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associated increase in levels of cortisol [6,20,21]. Most scientists would say that there is no
reason to suppose that stereotypies will affect physiological systems associated with stress
response [13]. Situations inducing or exacerbating stereotypies lead to poor welfare [22] and
are often associated with frustration [2,23]. Stereotypies often occur in barren environments,
and the reduced level of stimulation in these conditions leads to boredom-like states [24].
The high predictability of the environment, typical of barren environments, can be a causal
factor triggering stereotypies [25].

Among the neurophysiological markers implicated in these behaviors are endorphins,
and the opioid antagonist naloxone interrupts stereotypies in sows [26,27]. Endorphins
may influence stereotypies that are developing, since stereotypies that have continued for a
long time are not sensitive to naloxone treatment [26]. Moreover, endogenous opioids may
be involved in the positive feedback and could be the reason for the maintenance of the
behavior and inhibition for switching to others, decreasing behavioral flexibility [27,28].
Mice (Mus musculus) in barren housing conditions showed an alternative to stereotypic
behavior, a motionless behavior considered to be a depression-like state [29], similar to that
reported for confined sows and horses [29,30]. These data do not conflict with the idea that
the performance of stereotypies can help animals deal with challenging contexts [12,22,27].
However, the responses to the condition, and their consequences, are likely to change over
time (see Figure 1). In the first stages, stereotypies may help animals cope with challenges,
but later they may not. It is likely that the performance of the behavior can alter the
brain, impairing its function due to the absence of a diverse repertory, and change brain
connections, neurophysiology and eventually neuroanatomy. Some changes in the brain
were described in previous studies [8,31], but it is not clear if it is the cause or consequences
of stereotypy expression.

The frustration triggered by food restriction can initiate oral stereotypic behaviors
in sows [32]. The expression of stereotypies has also been investigated in relation to
some factors, such as the genetic component [33,34], personality predisposition [35,36],
individual variation [37] and susceptibility in relation to sex [38]. Some environmental
variables have more impact on the occurrence of stereotypies than others [39]. The motor
patterns of wheel-running in mice fit the concept of stereotypy, and this may help to explain
the causation of other behaviors [37]. Regarding cognitive bias, mice with higher levels of
stereotypic behavior made more optimistic choices [40].

Stereotypies were considered to be a pathological outcome related to the dysfunctional
activity of the dopaminergic system, resulting from an overproduction of dopamine or a
hypersensitivity in the receptors of this neurotransmitter [41]. Stereotypies may represent
the appetitive phase of the motivational systems, in which the restrictive and barren
environment does not permit the individual to reach the consummatory part of the behavior.
The impossibility to reach the last phase of the motivational system may generate the
repetition that characterizes stereotypies.

Interestingly, voles (Clethrionomys glareolus) showing stereotypies change their prefer-
ences, manifesting a bias for poor environments [42]. Correspondingly, wild voles kept in
laboratory cages presented highly repetitive locomotor stereotypies and showed a prefer-
ence for a less-enriched condition when compared with non-stereotyping voles [42]. One
possible way to elucidate these findings may be the fact that it would be physically easier
to perform stereotypies in a barren environment [42].

Information about stereotypies comes mainly from animals in captivity and from
individuals with neurological disorders. What are the consequences of stereotypies in the
long-term? Male mink (Neovison vison) that showed a longer duration of stereotypies had
lower success in copulation [43]. This comparison was of animals that developed stereo-
typies in environmentally enriched conditions [43]. In this context, the environment could
have impacted the ontogeny, adrenal functioning, reproductive mechanisms regarding
physiology, social behavior or flexibility.
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Figure 1. The consequences of negative environments over time on the stereotypies expression.
Two possible pathways when the individual attempts to cope. Stereotypies could help to cope
initially. In the long-term, it could be detrimental to reinforce the same connections as a habit, making
a ‘scar’ in the brain. Also, in the long-term, it may have evolve into anhedonia. It is possible that
neuroanatomical change types are a consequence, not a cause, of the stereotypy or apathetic behavior.

Opioid antagonists such as naloxone may reduce the frequency of stereotypies. These
findings prompt suggestions that stereotypies increase endogenous opioid activity and
thus induce a degree of analgesia in animals [26]. Nevertheless, this assumption was
questioned [2,23] and was not supported by a study investigating this mechanism in
horses [44]. Moreover, stereotypies in mink are associated with increased hippocampal
neurogenesis [45]. It has been know that, under chronic stressful conditions, neurogenesis
is decreased [46,47]. Taken together, these outcomes could indicate a relation with less
stress response in animals expressing stereotypies. In horses, stereotypies can be associated
with the consequences of an ACTH challenge test, but it is not clear how this relates to
coping strategies [48]. Mink that chew their own tails may also explore more [49], but
this does not tell us that repetitive tail-chewing is good for the mink. Similarly, increased
reproductive output in female mink performing stereotypic behavior [34,50] is not simple to
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interpret. Positive correlations between fertility, incidence of stereotypies and bodyweight
in mink [34] tell us something about the survival strategies of mink in small cages but do
not tell us that welfare is good in these cages. The mink that shows abnormalities other than
stereotypy may reproduce less well, but stereotypy always indicates that the individual has
a serious problem. The welfare of confined sows that show apathy and unresponsiveness
may well be worse than those that show stereotypies, but neither has good welfare.

Some authors have suggested that stereotypy in animals maintained in artificial
environments is related with some level of abnormality which leads to a brain dysfunc-
tion similar to that in schizophrenia and autism spectrum disorder [51]. Tail-biting in
pigs, feather-pecking in poultry and tail-chewing in mink involve some repetition but
are not stereotypies, and both the actions and the consequences are completely different
from stereotypies.

3. Why Environmental Enrichment Reduces Stereotypies

A wide range of studies shows that environmental enrichment reduces the occurrence
of stereotypies [52–54]. The reduction of stereotypy expression is considered the main crite-
rion for interpreting the enrichment successful [29,53]. Correspondingly, environmental
enrichment is considered effective to improve biological functioning and the welfare of the
individual [9]. When an environmental change really is enrichment, it tackles the cause
of the problem by providing the environmental conditions that meet the needs and hence
reaches the motivation of the animals [54]. There are some individual variations about the
benefits of each kind of enrichment, since some individuals will be more prone to have
positive effects from social enrichment, while others need physical or sensory stimulation.

Environmental enrichment early in life can “protect” against the later development
of stereotypies [55]. The benefit for the individual is not the reduction in the performance
of stereotypies but reduction in the frustration that triggers the occurrence of stereotypies.
In other words, it has to do with the cause of the stereotypies. Environmental enrich-
ment, in addition to allowing the expression of preferred behaviors, reduces endocrine and
behavioral reactivity to challenging situations [56]. It can also alleviate cognitive and behav-
ioral impairments [57,58], modulate aggressiveness [59], alter HPA axis activity [56,60–63],
increase brain plasticity [11,56,62,64], increase performance of hippocampal mediated
tasks [65–67] and reduce methylation in hippocampal and frontal cortex genes [68].

It is reasonable to assume that chronic stress and environmental enrichment act on
similar mechanisms in the hippocampus, so the enrichment could enhance brain activity
and optimize resilience under chronic stress conditions [69]. For instance, the plasticity in
hippocampal astrocytes when there is environmental enrichment is associated with the
protection in the brain, mitigating cognitive impairments related to age, improving spatial
memory and inducing accurate spatial strategy [70].

Taken together, it is expected that environmental enrichment affects the expression of
genes in the brain, especially those involved in neuronal structure, synaptic signaling and
plasticity [71]. Some of these genes described in previous studies are known to be associated
with learning and memory [72]. Additionally, the positive impacts of environmental
enrichment includes the effects on brain weight, increasing in arborization and the density
of dendritic spines [73], modulates neurogenesis in the hippocampus [74] and can make
cognitive bias positive [10,75]. It also reduces anxiety [11,65,76,77], and enriched animals
are likely to be less emotionally reactive in novel situations, so they can explore their
environment more efficiently [56].

Male mice housed with enrichment after weaning gained less weight, displayed
increased social behavior and presented lower corticosterone concentrations and prefrontal
IL-1β elevations in response to a mild social stressor. Additionally, they exhibited reduced
TNF-α and increased brain-derived neurotrophic factor (BDNF) expression in the pre-
frontal cortex [78]. In pigs, enrichment increased BDNF in blood [79], and BDNF has been
linked with increased stress resilience [80], since enhanced cognitive functions is implicated
in growth, maintenance and plasticity in the brain [81]. In this case, the stress resilience
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is related to a buffer effect promoted by the environmental enrichment when animals are
challenged, which agrees with other studies [75,82,83].

The benefits of sensory stimulation as enrichment [84,85] raise the argument that it is
necessary to stimulate the brain, rather than simply to promote preferred behaviors. It is
reported that environmental enrichment induces several neuroanatomical, neurochemical
and behavioral impacts. Stimuli provided by enriched environments alter brain functioning,
since the brain requires triggers to make or lose connections. This is mandatory for the
healthy functioning of the brain. Losing connections is deleterious, and mechanisms may
have evolved to shape the brain to preserve its functional structure.

4. Are There Consequences in the Offspring?

Could there be transgenerational effects of stereotypies with changes in offspring
phenotype? Pregnancy plays an important role in shaping the organism in mammals, since
the maternal environment may affect offspring development. The “thrifty phenotype Hhy-
pothesis” concerns the neurodevelopmental reprogramming that induces alterations in the
fetus to help cope with early life and additionally anticipate the postnatal environment [17].
This means that the prenatal environment has the potential to modulate the offspring’s
phenotype and to prepare individuals to cope with challenges. The maternal conditions
during gestation may result in changes in multiple offspring factors [14–16,86–92]. By
this mechanism, characteristics such as emotional reactivity, responsiveness to stressors
and cognitive functioning can be shaped by challenges in both prenatal and neonatal peri-
ods [14,93,94]. There is evidence that stressors, for instance, negative interactions with the
handler [14,15,88] and social challenges [14], can alter emotional reactivity, social behavior,
responsiveness to stressors, cognition and memory in offspring. Since sows experience food
restriction during gestation, adding fiber and promoting less hunger affects the offspring
positively, reducing aggressive behavior [16].

Contingencies in the early life can shape their phenotype and promote changes in their
biological functioning. Prenatal environments are critical for fetal development, including
the organization of the central nervous system. When mothers are stressed, there can be a
wide range of effects on offspring physiology and behavior, since the systemic physiological
stress response of the mother has connection to the offspring that is in development in
the uterus. The environment of the mother can provide important signals to the fetus,
enabling some later adjustments to the environment that will be encountered [68,94–96].
Confined captive animals may give harmful cues to the fetus due to the inadequacies of
the environment that imposes a dysfunctional and extreme lifestyle, in which for instance,
commonly, the environment makes it impossible for the animal to perform very basic
activities, such as to locomote [14,15,97].

On the other hand, prenatal stress may generate changes that are not necessarily
pathological. However, an excess of glucocorticoids can negatively affect brain structures
and generate disruptive effects in the offspring [14,15,88]. The effects of glucocorticoids on
the fetus are less well known [98,99], although they play an important role in adults. The
consequences of glucocorticoid exposure can vary greatly depending on the gestational
age, severity and duration of exposure [99]. Effects in early and mid-gestation depend
on the level of stress experienced by the mother. The hypothalamic–pituitary–adrenal
(HPA) activity of the mother can also affect the glucocorticoid permeability of the placenta.
Later in gestation, when the fetal HPA axis has developed functionally, fetal glucocorti-
coid concentrations can have effects independent of maternal levels [99]. Additionally,
glucocorticoids act in a non-linear “U-shape function”, so the concentrations can have
negative effects on emotionality and learning [100]. Glucocorticoids act directly on the
development of the central nervous system, for example, in the hippocampus, a region of
the brain characterized by high plasticity and having an important role in behavior and
welfare [101].

One of the key protectors of the fetus during gestation is the placenta, once it can
modulate the consequences of stressful events experienced by the mother and ultimately
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act as a buffer [102]. In the placenta, the 11β-hydroxysteroid dehydrogenase enzyme type
2 (11βHSD2) oxidizes the biologically active form of cortisol [102,103], helping the placenta
to act as a protector barrier to deal with high levels of cortisol from the maternal organism
exposed to a stressor. However, in the long-term, chronic stressful situations have the
potential to inhibit the capacity to upregulate the type 2 enzyme activity. In other words,
previous exposure to chronic stress affects the protective capacity of the placenta impacting
11βHSD2 activity [104].

The effects of prenatal stress may generate changes in offspring emotionality, since they
impact negatively some brain structures such as the hippocampus and amygdala [96,105].
In order to evaluate the emotionality of non-human animals, tests have been validated [106].
These include the open-field test and the novel object test [14,106–108], in which behaviors
such as activity, exploration and vocalization can be used as indicators of emotionality [109].
Interestingly, one specific type of stereotypy in sows expressed during the gestational
period is related to decreased fear responses in their offspring [90,91], indicating that the
sows expressing it were more adjusted and had a more organized environment for the
development of their offspring. Moreover, the cortisol in non-stereotyper sows was higher
compared with the sows performing stereotypy [90].

In rats (Rattus norvegicus), maternal enrichment increased exploratory behavior in both
male and female offspring [68]. Positive prenatal experiences decrease global methylation
levels in the hippocampus and frontal cortex, affecting the ontogenetic development in
the offspring [68]. Sows maintained in a simple enriched environment during gestation
(provision of straw in the final third) resulted in impacts in the offspring, such as modulation
in the HPA axis and behavioral changes related to emotionality, indicating improved
welfare [92]. The enrichment during gestation reduced aggressiveness, nosing behavior
and the concentration of salivary cortisol in the offspring [92]. During fear tests, the
difference in the behaviors was sex-specific: females whose mothers were maintained in
an enriched environment explored more and showed less fear of a novel object compared
with those kept in a conventional farming environment [92], while the males did not show
a difference.

It could be that the changes in offspring behavior were not a direct effect of the prenatal
environment, because the effects of that environment on the mother–infant relationship and
early social context have been demonstrated [88,93,110,111]. Enrichment during gestation
may change the mothers’ behavior or even alter traits such as anxiety, impacting the
maternal behavioral repertory. The consequences in the offspring could then be related to
the mothers’ behavior during lactation instead of an impact related to prenatal exposure.

5. Epigenetic Processes Driving Fetal Programming

With the increasing knowledge of epigenesis, it is possible to consider dynamic
changes in DNA expression, since the individual and the environment form a constant
and dynamic cause-and-effect relationship. What would be the consequences of an indi-
vidual performing stereotypic behavior to cope with the environment for a long period of
time? The interactions between motivational systems, including frustration, and emotions
must significantly change the epigenome. Epigenetics can chemically modify chromatin
and affect genomic transcription. Epigenetic modifications can be stable and cross gen-
erations, and they are also dynamic, changing in response to environmental signals and
stimuli [112]. There are three main epigenetic mechanisms: DNA methylation (the co-
valent modification of cytosine with a methyl group), histone modification (acetylation,
methylation, phosphorylation, ubiquitination) and microRNA (small non-coding RNAs
that post-transcriptionally regulate gene expression) [112].

The epigenetic modification of chromatin is a key regulator of gene expression, growth
and differentiation in all tissues, including the central nervous system [95,113–118]. DNA
methylation at the sites of CpG dinucleotides, at selected genomic loci, might affect social
cognition [119], learning and memory [120,121], as well as adrenal responses [112,122,123].
Nevertheless, transcriptional silencing is considered mainly to be an outcome of the hy-
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permethylation of gene promoter regions [124]. Hypermethylation is associated with
dysfunctional gene expression in a wide range of psychiatric disorders [122,125–127], such
as autism spectrum disorder [97,118], schizophrenia [97], depression and Alzheimer’s
disease [58,128,129].

From an evolutionary perspective, epigenetic changes give the organism a mechanism
for instantaneous adjustment. In the brain, each modification requires epigenetic activity,
which can be transient because of fluctuations in neurotransmitters, or persistent because of
alterations in dendritic morphology or synaptic pruning [95]. Heritable epigenetic changes
facilitate rapid adaptation to adversities but can also lead in a mismatch of physiological
profiles to later-life challenges, thus enhancing disease risk [112]. The consequences of
prenatal stress on brain structures such as the limbic system are changes in offspring
emotionality [96,105]. There could also be effects on males during sperm generation that
alter the offspring. It is now clear that epigenetic processes, such as DNA methylation, are
mechanisms involved in normal and pathological brain function [118,123,130,131].

One of the mechanisms by which the phenotype has been changed, regarding stereo-
typy expression during gestation, is by alterations in the methylation patterns in the brain
of the offspring. Environmental enrichment reduces stereotypies and changes the neu-
roepigenome in the offspring (Tatemoto, in press). Stereotypies expressed by the mother
during the prenatal period changes methylation patterns in several genes that are in-
volved in neuroplasticity and psychiatric disorders, specifically in the limbic system of
the offspring. The pathways are involved in basic cell functions, increasing the effects on
neurophysiological mechanisms and disease risk (Tatemoto, in press). There are already
some data elucidating the transgenerational effect of environmental enrichment on gene
expression in the brain of the offspring [68], so it would be interesting to know more about
the effects of enrichment on stereotypy reduction during prenatal programming.

6. Conclusions

Stereotypies are widely used as animal welfare indicators, especially because the
expression of the behavior can signal psychological states. However, there are questions
about the longer-term consequences if animals express stereotypies: do the stereotypies
help in coping? Can these individuals be better adjusted or is their later welfare worse
than that of individuals who do not show the behavior? Some of the answers to those
questions relate to studies showing that environmental enrichment reduces stereotypic
behavior, providing for some needs and improving the welfare of the offspring. Going
further in the timeline of stereotypy expression, during the prenatal period, stereotypies
expressed by the mother can change the phenotype of the offspring, especially regarding
emotionality. We propose that one of the mechanisms changing the phenotype of the
offspring in response to enrichment and stereotypies is epigenetic changes in the limbic
system of the brain. Responses, such as stereotypy, change over time. In the first stages
of the response, stereotypies may be helping animals cope with challenges. However, it
could have detrimental effects in a long-term. The neuroanatomical changes in individuals
showing stereotypies could be an effect rather than a cause of the stereotypy. In this context,
it would be interesting to design studies aiming to understand the stereotypies effects on
the epigenome, across time. Additionally, it would be beneficial to combine stereotypy
behaviors with other welfare indicators in a timeline to elucidate if the impact, as well as
the capacity to help deal with challenges, changes depending on the time of expression.
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