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With the advent of the aging era, healthcare and elderly care have become the focus
of medical care, especially the care of the elderly with dementia. Patients’ confidential
data hiding is a useful technology for healthcare and patient information privacy. In
this study, we implement an intelligent healthcare system using the multiple-coefficient
quantization technology in transform domain to hide patients’ confidential data into
electrocardiogram (ECG) signals obtained by ECG sensor module. In embedding
patients’ confidential data, we first consider a non-linear model for optimizing the quality
of the embedded ECG signals. Next, we apply simulated annealing (SA) to solve the
non-linear model so as to have good signal-to-noise ratio (SNR), root mean square
error (RMSE), and relative RMSE (rRMSE). Accordingly, the distortion of the PQRST
complexes and the ECG amplitude is very small so that the embedded confidential
data can satisfy the requirements of physiological diagnostics. In end devices, one
can receive the ECG signals with the embedded confidential data and without the
original ECG signals. Experimental results confirm the effectiveness of our method,
which remains high quality for each ECG signal with the embedded confidential data
no matter how the quantization size Q is increased.

Keywords: multiple-coefficient, transform domain, non-linear model, simulated annealing, dementia

INTRODUCTION

In recent years, most countries around the world are facing the advent of the age of old age.
Healthcare and long-term care have become the focus of medical care, especially the care of the
elderly with dementia. Electrocardiogram (ECG) represents the human heart’s electrical activity,
and hence it can be used as a reference for the analysis of cardiac pathology and cardiovascular
system diagnostics. So, ECG contains a very important bio-information that has to be protected
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and transmitted on the Internet. It is necessary to apply
information hiding technology on the ECG to protect patient
rights and information.

Research on the protection of ECG information by
watermarking or hiding techniques is still an important
issue. Kong and Feng (2001) and Engin et al. (2005) propose a
simple data hiding method for ECG signals, but the method is not
blind. Zheng and Qian (2008) and Zheng et al. (2009) proposed a
wavelet-domain ECG data hiding method in non-QRS complex
frames to ensure the restoration of almost un-distorted ECG
signals. Kaur et al. (2010) presented the safe transmission of ECG
signals in wireless networks by using a blind hiding method.
Ibaida et al. (2010) improved the watermarking technique of
least significant bit (LSB) and applied this improved technique
to hide healthcare information in an ECG signal. Ibaida et al.
(2011) presented a watermarking technique to embed patient
biomedical information into ECG signals so as to ensure
patient/ECG linkage integrity, and is suitable for a wearable
sensor-net health monitoring system. However, the selection of
embedding location is difficult.

In Guo and Zhou (2012) and He et al. (2012), a Haar wavelet
transform with 7 levels decomposition is adopted to transform
the ECG signal, and then the synchronization code combined
with watermark are embedded into the low-frequency sub-band
of level 7 to have good signal-to-noise ratio (SNR) and bit
error rate (BER). However, the quality of all watermarked
ECG signals decreases when the embedding strength increases.
Moreover, Guo and Zhou (2012) presented a model of single-
channel electromyography blind recognition. Dey et al. (2012a)
embedded reversible binary bits to be watermark in the
photoplethysmography (PPG) signal and extracted them by an
error prediction algorithm. Dey et al. (2012b) presented a new
session-based blind watermarking scheme by hiding a binary
watermark image into the ECG signal. However, the methods
in Dey et al. (2012a,b) are not blind. Ayman and Ibrahim
(2013) developed a wavelet-based information hiding technique
to protect patient confidential data by combining encryption
and scrambling. Their method applied wavelet transform to
ECG signal to hide the related patient confidential data and
physiological information. In Chen et al. (2014) and Tseng et al.
(2014), single-coeflicient quantization in transform domain
is applied to the digital watermark encryption technology on
the ECG for protecting patient rights and information. By this
method, the changes in the PQRST complexes and amplitude
of the ECG signal are very small. Jero et al. (2015) and Jero and
Ramu (2016) used curvelet transforms to identify the coefficients
that store the crucial information about diagnosis. The novelty
of their approach is the usage of curvelet transform for ECG
steganography, adaptive selection of watermark location,
and a new threshold selection algorithm. In Swierkosz and
Augustyniak (2018), an original time-frequency watermarking
technique with an adaptive beat-to-beat lead-independent data
container design is implemented. The authors tested six wavelets,
six coding bit depth values, and two types of watermark content
to find the conditions that are necessary for watermarked ECG
to maintain the compliance with International Electrotechnical
Commission (IEC) requirements for interpretation performance.

Sanivarapu et al. (2020) proposed a wavelet method-based
watermarking scheme for patient information hiding in the
ECG as a QR image. They first converted the 1D-ECG signal to
2D-ECG image using Pan-Tompkins algorithm, and then used a
wavelet transform to decompose the 2D-ECG image. They then
decompose the detail coefficient of wavelet and the QR image
using QR decomposition for embedding data.

In this study, we install ECG sensor module on patients
to obtain their ECG and propose a new information hiding
technology for the ECG. As ECG has high requirements
for accuracy, we rewrite SNR and amplitude-quantization as
performance index and constraint to obtain an optimization
model for embedding patients’ confidential data into ECGs
imperceptibly. The optimization model is then solved by
simulated annealing (SA) algorithms and applied to embed
patients’ confidential data. By network transmission, one can
receive the ECGs embedded with the confidential data in
the other end and extract the confidential data without the
original ECG. In experiments, we evaluated the relation between
embedding strength Q and SNR, embedding strength Q and
root mean square error (RMSE), and embedding strength Q and
similarity. Experimental results confirm the effectiveness of our
method, which remains high quality for each ECG signal with the
embedded confidential data no matter how the quantization size
Q is increased.

The rest of this article is as follows. Section 2 reviews
some preliminaries including ECG principle, discrete wavelet
transform (DWT), discrete Fourier transform (DFT), discrete
cosine transform (DCT), and SA. Section 3 presents the
proposed SA-based quantization embedding method for hiding
patient confidential data into ECG signals. Section 4 shows
experimental results and discussion. Conclusions are finally
drawn in Section 5.

PRELIMINARIES

In this section, we review some preliminaries including ECG
principle, DWT, DFT, DCT, and SA.

Electrocardiogram Signal

The abbreviation ECG denotes the electrocardiogram wave,
named by the Dutch physiologist W. Einthoven (the inventor of
the ECG). As shown in Figure 1, he classified one cardiac cycle
into P, Q, R, S, and T complex waves (Burrus et al., 1998). The
ECG diagnosis mainly depends on the PQRST waves. Therefore,
it is necessary to maintain the shape of these waveforms
when we add information into ECG signals or perform ECG
signals compression.

Discrete Wavelet Transform

The DWT is a technique attained by scales and translates a
mother wavelet {/(x). The normalized scaling functions and
wavelets are defined as,

i .
@in(t) = 22h;p(2't-n)
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FIGURE 1 | ECG signal.

Vint) = 220 (2ten)

where i and »n denote the scale and translation parameters,
and h; and giare the low-pass and high-pass filters, respectively.
It should be noted that orthogonal wavelet basis functions
are adopted to ease the work in calculating coefficients
expansion so that an input signal can be decomposed into
several non-overlapping multi-resolution sub-bands, including
low-frequency sub-bands and high-frequency sub-bands (Oran
Brigham, 1988; Mallat, 1989, 1999).

Discrete Fourier Transform

The DFT converts a finite sequence of equally spaced samples
of a function into a same-length sequence of equally spaced
samples of the discrete-time Fourier transform (DTFT), which
is a complex-valued function of frequency. Since it deals with
a finite amount of data, it can be implemented in computers
by numerical algorithms or even dedicated hardware. These
implementations usually employ efficient fast Fourier transform
(FFT) algorithms, so much so that the terms “FFT” and “DFT”
are often used interchangeably (Rao and Yip, 1990; Oppenheim
et al., 1999).

Discrete Cosine Transform

The DCT expresses a finite sequence of data points in terms
of a sum of cosine functions oscillating at different frequencies.
In particular, a DCT is a Fourier-related transform similar to
the DFT but using only real numbers (Rao and Yip, 1990;
Granville et al., 1994).

Simulated Annealing

Simulated annealing is an artificial intelligent algorithm, which
utilizes probabilistic concept to approximate the global optimum
of a given function. Specifically, It uses a metaheuristic method to

approximate global optimization in a large discrete search space.
In general, SA algorithm works as follows. At each time step, SA
algorithm gives a solution randomly close to the current one,
evaluates its quality, and then decides to move to it or to stay
with the current solution based on either one of two probabilities
between which it chooses based on the fact that the new solution
is better or worse than the current one. During the search, the
temperature is progressively decreased from an initial positive
value to zero, and this affects the two probabilities: at each step,
the probability of moving to a better new solution is either kept as
1 or is changed toward a positive value; instead, the probability of
moving to a worse new solution is progressively changed toward
zero (Bouttier and Gavra, 2019). The implementation of SA
algorithm is easy because of its simple concept and computation.

PROPOSED INTELLIGENT HEALTHCARE
SYSTEM

This section first shows the proposed amplitude-quantization
hiding technique for confidential data communication and
private information protection in the transform domain of ECGs,
as shown in Figure 2. Next, we provide the architecture of
the proposed intelligent multiple-coefficient quantization hiding
system for patients’ confidential data communication.

Information Hiding
As shown in Figure 2, the information hiding and detection
proposed in this study is introduced as follows. Let S =
{s1, 52, - - -, sn} denote an ECG signal with total length N sample
points. We then perform three transforms, DWT, DCT, and DFT,
independently on the ECG signalS = {s1, 52, - - -, sy}so that the
binary bits B = {m;} can be hidden into the coeflicients of each
transform domain. Finally, the hidden ECG signal is obtained and
denoted byg = {51, 52, - - -, Sy}. The details of the hiding process
for each transform are listed below.

DWT: In the information hiding, we first apply Haar DWT
with orthogonal wavelet bases to decompose an ECG signal into
several non-overlapping sub-bands. In order not to distort or

Original ECG signal

{

Perform transform domain

U

Proposed hiding technique

Patients
confidential &

data

Perform inverse transform
domain

Hidden ECG signal obtained

FIGURE 2 | A flowchart of the proposed method.
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disturb the original ECG as much as possible, we hide the binary
bits B = {m;} into the DWT lowest-frequency coefficients by the
following rule,

N \‘Zfil |Cl|/QJQ+3Q/4, ifm =1
>l =
i=1 \‘Zfil |Cl|/QJ Q-+ Q/4, itm; =0

where {¢;} and {¢;} are the DWT lowest-frequency coeflicients
before and after hiding, respectively; Q is the hiding strength. By
performing the inverse DWT (IDWT), the hidden ECG signal §
is obtained and the information hiding is completed.

DCT: The hiding rule for DCT multiple coefficients is the same
as for DWT. Similarly, we hide the binary bits B = {m;} into the
DCT lowest-frequency coeflicients {ci}, respectively.

DFT: The hiding rule for DFT multiple coefficients is the same
as for DWT. Similarly, we hide the binary bits B = {m;} into the
DFT lowest-frequency coefficients {c;}, respectively.

Theoretically, an ECG signal is modified when embedding
patient confidential information. The modification is usually
called a distortion. In order to reduce the distortion of ECG
signal, we consider the maximum of SNR which is defined as,

N [~ 2
_ (5=
SNR = —101log |:Zz—1 (5i i) /Zf\] , 512]

where {s;} represents the original ECG signal sample points, and
{5} represents the unknown embedded (or modified) ECG signal
sample points. Since we implement the DWT with orthogonal
wavelet bases, the SNR can be rewritten to the form,

SNR = —10log [Zil (&l - |C"|)2/ZALI |Ci|2]

From the point of view on maximizing SNR, we consider to
determine the unknown values of {Ei}fio by using the following
optimization models.

o If the bit b; = 1 is embedded into {c;|1 < i < N}, 3V ||
is modified to Zf\il <i| by,
N = a2
—101log [21:1 (cil — leil) /Zfil |Ci|2]

maximize

N

N 3

subject to Zl leil = \‘Zizl |Ci|/QJ Q+ ZQ

o If the bit b; = 1 is embedded into {c;|]1 <i < N}, Zfil cil
is modified to >N | ] by,

N ~ 2
- i—1 (il = lcil) N
maximize 1010g I:Zl ! /Zizl |Ci|2

i=1

N
subject to Z |G| = \‘val |Ci|/QJ Q+ iQ

Due to the fact that the algorithm of SA is easy to be
implemented by its simple concept and calculation mentioned in

section “Simulated Annealing,” especially for embedded system,
we adopt SA to solve the optimization models approximately.
In other words, we apply SA to obtain the optimal solutions of
{Ei}fi o approximately. At each time step in SA, the algorithm
randomly selects a solution close to the current one, measures its
quality, and then decides to move to it or to stay with the current
solution based on either one of two probabilities between which
it chooses on the basis of the fact that the new solution is better or
worse than the current one. During the search, the temperature
is progressively decreased from an initial positive value to zero,
which affects the two probabilities: at each step, the probability of
moving to a better new solution is either kept as 1 or is changed
toward a positive value; instead, the probability of moving to a
worse new solution is progressively changed toward zero. In this
section, we adopt SA to approach the optimal solution of the
proposed optimization model. The detailed procedure of SA in
solving the proposed optimization model is introduced in the
following steps.

Step 1: Setting the initial value for parameters including initial
solution Cp, initial temperature Ty, final temperature Ty,
cooling rate r, and number of iteration D for each temperature
T,where Tp < T < Tf.

Step 2: For each d = 1,...,D in a temperature T, do the
following repeatedly:

(1) Produce a new solution C”={|c],|c}], -, |c)l}
randomly and calculate the difference AE=E (C”) —

" 2
B(c)= | -1010g| Zia (41 =16 /o ] -
2
(10108 21 (e = 160/ ]| veween
current solution C' = {|c’1|, [c5], s |c’n|} and the new
solution (neighbors)C” = {|c’1/|, r4 I rodt |}.

(2) The probability of making the transition from the
current solution to a new solution (neighbors) is
specified by an acceptance probability function
P (AE, T) that depends on AE and T.

1, ifAE<0
P(AE,T) =1 (=at
e( T),zfAE>O

In case AE <0, the probability function P (AE, T) is equal
to 1 indicating that the current solution § is replaced by new
solution §’. In case AE > 0, the current solution S is replaced
by the new solution S” when probability function P (AE, T) =

—AE

e(T) is greater than a threshold H € (0, 1).

Step 3: When step 2 is finished, the temperature T is decreased
by a cooling rate r to a new temperature T = rT.

Step 4: Check if temperature T reaches the final temperature
Ty to stop SA.

After applying SA to embed patients’ essential body functions
into ECG signal S, we obtain an embedded ECG signal
S, respectively.
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Information Detection

In the information detection, similar to the information hiding
mentioned earlier, we first perform the transforms, DWT, DCT,
and DFT on the test ECG signals, respectively. Next, we detect
binary bits {m}} from the hidden coefficients {¢;} of the DWT,
DCT, and DFT by the following rule:

1 if YN8 - inl |Ei|/QJ Q= Q/z
0. it XX, ¢ - | Zhilal /g | @ < 9

Architecture of the Proposed System

Figure 3 shows the architecture of the proposed intelligent
multiple-coeflicient quantization hiding system for patients’
confidential data communication. First, we install ECG-sensor
module, including electrode patch, AD8232 ECG sensor, and
Arduino, on patients or dementia patients to obtain their ECG.
As the ECG-sensor module shown in the upper left corner of
Figure 3, three electrode patches are installed on patient body and
connected to AD8232 ECG sensor. At the same time, AD8232 is
connected to Arduino which outputs the ECG data to a computer.
Next, as in subsections “Information Hiding” and “Information
Detection,” we hide the patient’s information into the ECG signal
in the transform domain by performing DWT/DFT/DCT and
IDWT/inverse DFT (IDFT)/inverse DCT (IDCT). At the other
end, the embedded patients confidential data are extracted after
the hidden ECG is received through wireless communication
and we perform transform domain DWT/DFT/DCT on the
hidden ECG.

EXPERIMENTS AND DISCUSSION

In experiments, we apply the ECG data obtained from ECG
sensor module to test the proposed method on each ECG
signal with length 4,096 samples represented by 16-bit. To have
more embedding capacity, we set N to 2. The evaluation of
experimental results and discussion are listed in section 4.1.
Limitation and future research plan are listed in section 4.2.

Experimental Results and Discussion
Without generality, the performance of the proposed scheme is
evaluated by SNR, similarity, and RMSE, which are formulated as
follows:

SN Gi- sl-)z)
N 2 >
PINEES

YL s
N ~°
PINENKF

SNR = —10log,, (

Similarity (S, S) =

N
1 ~ 2
RMSE = | — Si—si),
N El i —si)

where s; and §; denote original ECG signal sample point and
hidden ECG signal sample point, respectively.

The proposed method provides good quality for each hidden
ECG signal. For example, Figures 4A,B show the original ECG
signal and hidden ECG signal using DWT lowest-frequency
coefficients in 5-level decomposition for dataset ID 1. They look
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FIGURE 4 | Comparison between original electrocardiogram (ECG) signal and hidden ECG signal for dataset ID 1. (A) Original ECG signal. (B) Hidden ECG signal.
(C) Waveform comparison between 0.09 and 1.09 s.

almost indistinguishable. As shown in Figure 4C, the purple
curve represents the original ECG signals, and the blue curve
represents the hidden ECG signals using DW'T and quantization
size Q = 4000.

Moreover, as shown in Table 1, the proposed method applies
SA to optimize the quality of each hidden ECG signal and then
improve the drawback that the quality of each hidden ECG signal
is greatly reduced as the quantization size Q is increased. In
other words, our method remains high quality, with good RMSE
and SNR, for each hidden ECG signal under sufficient hiding
capacity no matter how the quantization size Q is increased.

In addition, both DFT and DCT also have the same effect
on RMSE and SNR.

Limitation and Future Research Plan

There are some limitations in the proposed system. The two
limitations in our system are that the ECG signals embedded with
patients’ confidential data are transmitted to the receiver with an
upload speed with a limit of 75 Mbps and a download speed with a
limit of 300 Mbps. In future research plan, we will reduce the size
of the sensor module and the computer and have a waterproof
case without affecting the function.
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TABLE 1 | Experimental results for the three transforms: discrete wavelet transform (DWT), discrete cosine transform (DCT), and discrete Fourier transform (DFT).

ID Method Domain Q Amplitude similarity SNR RMSE Interval RMSE in ECG
PR QRS ST QT
1 Chen et al., 2014 DWT (Level 5) 500 1 40.26 36.86 0 0 0.028 0
2000 1 32.74 69.64 0 0 0 0
10000 1 20.75 126.13 0 0 0 0
DFT 500 1 61.13 3.74 0 0 0 0
2000 1 50.09 7.49 0 0 0 0
10000 0.99 38.11 29.79 0 0 0 0
DCT 500 0.99 26.62 198.90 0 0 0 0
2000 0.98 17.85 434.41 0 0 0 0
10000 0.81 4.73 1964.4 0 0 0 0
Proposed DWT (Level 5) 500 0.99 38.46 50.92 0 0 0 0
2000 0.99 38.44 50.99 0 0 0 0
10000 0.99 38.55 50.41 0 0 0 0
DFT 500 1 33.74 91.61 0 0 0 0
2000 1 31.73 110.41 0 0 0 0
10000 1 32.09 106.01 0 0 0 0
DCT 500 1 46.08 2117 0 0 0 0
2000 1 45.70 22.10 0 0 0 0
10000 1 45.58 22.41 0 0 0 0
2 Chen et al., 2014 DWT (Level 5) 500 1 40.78 35.95 0 0.002 0.002 0
2000 1 31.67 72.57 0 0 0 0
10000 1 20.31 141.47 0 0 0 0
DFT 500 1 60.01 3.72 0 0 0 0
2000 1 51.56 7.35 0 0 0 0
10000 1 38.33 30.03 0 0 0 0
DCT 500 0.99 25.68 204.19 0 0 0 0
2000 0.98 16.94 443.70 0 0 0 0
10000 0.78 2.94 1982.1 0 0 0 0
Proposed DWT (Level 5) 500 1 32.59 92.49 0 0 0 0
2000 1 32.71 91.01 0 0 0 0
10000 0.99 32.29 95.49 0 0 0 0
DFT 500 0.99 31.36 106.28 0 0 0 0
2000 0.99 31.76 101.53 0 0 0 0
10000 0.99 32.19 96.61 0 0 0 0
DCT 500 1 35.13 68.85 0 0 0 0
2000 1 35.33 67.26 0 0 0 0
10000 1 35.27 67.53 0 0 0 0
3 Chen et al., 2014 DWT (Level 5) 500 0.99 43.10 34.84 0 0 0 0
2000 0.99 35.05 69.96 0 0 0 0
10000 0.99 20.46 265.70 0 0 0 0
DFT 500 1 62.52 3.72 0 0 0 0
2000 1 51.49 7.45 0 0 0 0
10000 1 39.42 29.95 0 0 0 0
DCT 500 0.99 28.02 197.89 0 0 0 0
2000 0.99 19.42 423.11 0 0 0 0
10000 0.87 5.43 1886.2 0 0 0 0
Proposed DWT (Level 5) 500 1 34.25 96.58 0 0 0 0
2000 1 34.23 96.84 0 0 0 0
10000 1 32.83 113.84 0 0 0 0
DFT 500 0.99 27.32 302.95 0 0 0 0
2000 0.99 26.54 331.65 0 0 0 0
10000 0.99 27.61 293.19 0 0 0 0
DCT 500 1 28.27 169.43 0 0 0 0
2000 1 28.36 167.42 0 0 0 0
10000 1 28.54 166.77 0 0 0 0

(Continued)
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TABLE 1 | (Continued)

ID Method Domain Q Amplitude similarity SNR RMSE Interval RMSE in ECG
PR QRS ST QT
5 Chen et al., 2014 DWT (Level 5) 500 1 40.56 36.07 0.002 0.002 0 0
2000 1 33.65 63.48 0 0 0 0
10000 1 19.05 270.75 0 0 0 0
DFT 500 1 62.23 3.74 0 0 0 0
2000 1 52.16 7.53 0 0 0 0
10000 0.99 38.22 29.77 0 0 0 0
DCT 500 0.99 27.27 209.75 0 0 0 0
2000 0.99 19.62 450.70 0 0 0 0
10000 0.85 3.76 1980.2 0 0 0 0
Proposed DWT (Level 5) 500 1 26.21 258.11 0 0 0 0
2000 1 26.95 238.72 0 0 0 0
10000 1 26.78 253.62 0 0 0 0
DFT 500 0.99 28.32 156.43 0 0 0 0
2000 0.99 28.54 157.12 0 0 0 0
10000 0.99 28.61 156.37 0 0 0 0
DCT 500 1 34.17 94.74 0 0 0 0
2000 1 34.11 95.42 0 0 0 0
10000 1 34.25 94.08 0 0 0 0
6 Chen et al., 2014 DWT (Level 5) 500 0.99 41.56 37.21 0.051 0 0 0
2000 0.99 34.20 68.96 0 0 0 0
10000 0.99 20.67 260.17 0 0 0 0
DFT 500 1 62.46 3.76 0.697 0.019 0.019 0
2000 1 53.47 7.50 0 0 0 0
10000 0.99 40.45 29.62 0 0 0 0
DCT 500 0.99 27.84 202.645 0 0 0 0
2000 0.99 19.26 431.98 0 0 0 0
10000 0.86 3.41 1897.0 0 0 0 0
Proposed DWT (Level 5) 500 0.99 26.16 317.65 0 0 0 0
2000 0.99 26.34 327.15 0 0 0 0
10000 0.99 26.76 322.48 0 0 0 0
DFT 500 0.99 27.18 166.33 0 0 0 0
2000 0.99 27.09 167.05 0 0 0 0
10000 0.99 27.46 166.46 0 0 0 0
DCT 500 1 31.41 134.54 0 0 0 0
2000 1 32.26 129.75 0 0 0 0
10000 1 32.18 128.96 0 0 0 0
7 Chen et al., 2014 DWT (Level 5) 500 1 41.96 33.04 0 0 0 0
2000 1 35.15 68.28 0 0 0 0
10000 0.99 20.75 284.63 0 0 0 0
DFT 500 1 64.46 3.70 0 0 0 0
2000 1 55.37 7.47 0 0 0 0
10000 1 41.24 30.21 0 0 0 0
DCT 500 0.98 29.58 205.58 0 0 0 0
2000 0.99 19.76 450.82 0 0 0 0
10000 0.88 5.43 2092.6 0 0 0 0
Proposed DWT (Level 5) 500 1 28.83 283.36 0 0 0 0
2000 1 28.39 297.09 0 0 0 0
10000 1 28.56 291.09 0 0 0 0
DFT 500 0.99 25.96 160.33 0 0 0 0
2000 0.99 25.74 161.05 0 0 0 0
10000 0.99 25.36 161.46 0 0 0 0
DCT 500 1 46.58 29.02 0 0 0 0
2000 1 46.00 31.05 0 0 0 0
10000 1 46.22 28.54 0 0 0 0
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CONCLUSION

Based on the proposed optimization model and SA algorithm, we
apply multiple-coefficients quantization technology to propose
a new method for embedding patients’ confidential data into
ECG signals in the transform domain. After testing ECG data
sets by using the proposed embedding method, the difference
between the embedded ECG signal and the original one is very
small and negligible for physiological diagnostics. In addition,
the proposed method improves the drawback that the quality of
each embedded ECG signal is greatly reduced as the quantization
size Q is increased. At the end devices, the embedded patients’
confidential data are extracted after the embedded ECG is
received through internet transmission and we perform DWT on
the embedded ECG.
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