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Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and
the fourth leading cause of cancer-related death. The most common risk factor for
developing HCC is chronic infection with hepatitis B virus (HBV). Early stages of
HBV-related HCC (HBV-HCC) are generally asymptomatic. Moreover, while serum
alpha-fetoprotein (AFP) and abdominal ultrasound are widely used to screen for HCC,
they have poor sensitivity. Thus, HBV-HCC is frequently diagnosed at an advanced
stage, in which there are limited treatment options and high mortality rates. Serum
biomarkers with high sensitivity and specificity are crucial for earlier diagnosis of
HCC and improving survival rates. As viral–host interactions are key determinants of
pathogenesis, viral biomarkers may add greater diagnostic power for HCC than host
biomarkers alone. In this review, we summarize recent research on using virus-derived
biomarkers for predicting HCC occurrence and recurrence; including circulating viral
DNA, RNA transcripts, and viral proteins. Combining these viral biomarkers with AFP
and abdominal ultrasound could improve sensitivity and specificity of early diagnosis,
increasing the survival of patients with HBV-HCC. In the future, as the mechanisms that
drive HBV-HCC to become clearer, new biomarkers may be identified which can further
improve early diagnosis of HBV-HCC.

Keywords: hepatitis B, hepatocellular carcinoma, biomarkers, HBV surface antigen (HBsAg), HBV DNA
integration, HBV RNA, HBcr antigen

INTRODUCTION

Chronic infection with the Hepatitis B virus (HBV) is the predominant risk factor for primary liver
cancer, specifically hepatocellular carcinoma (HCC; Bosch et al., 2004; Kew, 2010; Ozakyol, 2017).
Overall, the lifetime incidence of HCC in HBV has been reported to be approximately 10–25%
(McGlynn et al., 2015). Moreover, most cases of HBV-associated HCC occur in cirrhotic liver
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disease, present in 70–90% of cases (Yang et al., 2011). Liver
cancer is the fourth most deadly cancer (Bray et al., 2018), with a
median survival time as short as 11 months (Greten et al., 2005;
Yang and Roberts, 2010). There is also a broad range of indirect
health impacts driven by chronic HBV, including anxiety about
disease progression, stigma and discrimination, and health care
costs associated with treatment (Tu et al., 2020a).

Chronic HBV infection leads to a repeated cycle of liver
damage and regeneration, which promotes tumorigenesis (Wang
et al., 2006). Treatment of the underlying HBV infection can
reduce, but not eliminate HCC risk (Papatheodoridis et al., 2015).
Currently, oral nucleo(s/t)ide analogs (NAs) are used as first-
line therapy for HBV infection. NA therapy targets the reverse
transcriptase of HBV and suppresses HBV DNA replication,
reduces progression to end-stage liver disease and improves long-
term patient survival (Bitton Alaluf and Shlomai, 2016). NAs
suppress viral replication (Ghany and Liang, 2007) but do not
target HBV covalently closed circular DNA (cccDNA; Revill
et al., 2020; Tu et al., 2020b). cccDNA is the template for HBV
replication and expression of viral proteins, so its persistence
plays a crucial role in chronic infection, inflammation, and
cancer formation.

CURRENT CLINICAL DETECTION
OF HCC

Early screening of HBV-infected patients for HCC reduces
mortality (Zhang B.H. et al., 2004). Current AASLD guidelines
advise abdominal ultrasound surveillance for HBV-infected
patients with advanced fibrosis or cirrhosis at 6-month intervals
(Marrero et al., 2018), as marked liver fibrosis is a strong risk
factor for HCC. However, ultrasound can miss HCC at early
stages [sensitivity 63% (Singal et al., 2009)] and is strongly
affected by operator- and patient-dependent factors (Singal et al.,
2009; Pocha et al., 2013). Moreover, HCC can occur at any
stage of liver fibrosis; hence AASLD guidelines recommend
HCC surveillance of people with HBV who are ≥40 (for
males) or ≥50 (for females) years old, regardless of fibrosis
levels (particularly in those of Asian descent) (Xu et al., 2017).
A cohort of studies suggested that liver stiffness measurement
using FibroScan can predict HCC development in HBV patients
with cirrhosis (Jung et al., 2011; Pesce et al., 2012; Adler et al.,
2016) but fails to predict HCC in non-cirrhotic chronic hepatitis
B (CHB) patients with liver stiffness measurement <8.0 kPa as
well as patients with body mass index >28 kg/m2 and waist
circumference ≥102 cm (Foucher et al., 2006; Jung et al., 2011;
Cassinotto et al., 2016).

Alpha-fetoprotein (AFP) is the most widely used serum
biomarker for the diagnosis of HCC (Marrero et al., 2018).
However, elevated serum AFP is only found in 60–70% of HCC
patients (Luo et al., 2019). Lectin-reactive AFP (AFP-L3) and des-
gamma-carboxy prothrombin (DCP) have also been proven to be
useful biomarkers for HCC (Li et al., 2001; Volk et al., 2007) and
increase the sensitivity compared to using AFP alone (Marrero
et al., 2009; Wang et al., 2020). Unfortunately, considering the
low sensitivity (55%) of AFP-L3, HCC detection (particularly

in early stages) is still suboptimal (Choi et al., 2019). DCP
has a poorer diagnostic power for small HCC compared to
AFP, but is better at detecting intermediate and advanced HCC
(Nakamura et al., 2006).

Therefore, more sensitive, non-invasive biomarkers for better
HCC diagnosis are needed. Here, we review the current
knowledge on circulating viral biomarkers to screen for HCC,
which may improve detection rates in combination with existing
host-derived markers.

HBV Structure, Natural History, and
Replication Cycle

Hepatitis B virus is the prototypic member of the Hepadnaviridae
family. The HBV virion contains a ∼3.2 kbp double-stranded
DNA genome contained in a nucleocapsid composed of
hepatitis B core antigen (HBcAg) subunits. The majority
(∼90%) of virions contain a relaxed-circular DNA (rcDNA)
genome, while a minority contain a double-stranded linear
(dslDNA) form of the viral genome (Venkatakrishnan and
Zlotnick, 2016). This nucleocapsid is enveloped in a host-
derived lipid bilayer studded with hepatitis B surface antigens
(HBsAg).

Infection with HBV itself is not cytopathic and the initial
infection is usually asymptomatic, despite the production of high
levels of virus antigen and viral particles by the liver. After
decades of infection, HBV can trigger the immune response,
though this is generally insufficient to clear all HBV-infected
liver cells and subsequently causes chronic inflammation and
liver damage progression. These two phases can be broadly
divided serologically by the presence of circulating HBV e
antigen (HBeAg, marking a status prior to extensive immune
recognition) or antibodies against HBeAg (anti-HBe, present
after antiviral clearance of the majority of infected cells).
According to EASL 2017 Clinical Practice Guidelines (European
Association for the Study of the Liver, 2017), chronic HBV
infection can be separated into five clinical phases (Table 1):
HBeAg-positive chronic HBV infection, previously termed
“immune tolerant”; HBeAg-positive CHB with serum HBeAg
positive, high HBV DNA and elevated ALT, termed “immune
clearance phase”; HBeAg-negative chronic HBV infection,
formerly known as the “inactive carrier” state; HBeAg-negative
CHB with positive anti-HBe, persistent or fluctuating levels of
HBV DNA and elevated ALT; HBsAg-negative phase, termed
“occult HBV infection.”

On a cellular level, the infection of hepatocytes begins
with attachment of the virion to the sodium taurocholate co-
transporting polypeptide (NTCP), the entry receptor of HBV
(Yan et al., 2012, 2014; Ni et al., 2014; Figure 1). After
binding and receptor-mediated endocytosis, viral nucleocapsids
are transported through the cytoplasm (Yan et al., 2014) to the
nuclear membrane, where uncoating and entry of the HBV DNA
genome into the nucleus occurs.

Nuclear HBV rcDNA is converted into the HBV cccDNA form
using host cell DNA repair enzymes (Königer et al., 2014; Qi
et al., 2016). HBV cccDNA is an episomal “mini-chromosome”
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TABLE 1 | Natural history of patients with chronic HBV infection.

Phases New name Old name HBs Anti-HBs HBe Anti-HBe HBV DNA
titers

ALT levels Cirrhosis
rate

HCC risk (incidence)a

Phase 1 HBeAg-positive
chronic infection

Immune
tolerance

+ − + − Very High Normal Very Low 0.04–0.5
(Fattovich et al., 2008)

Phase 2 HBeAg-positive
chronic hepatitis

Immune
active

+ − + − High Elevated Low 0.5–3 (Chu et al., 2004;
Lin S.M. et al., 2007;
Fattovich et al., 2008)

Phase 3 HBeAg-negative
chronic infection

Inactive
carrier phase

+ − − + Low to
Undetectable

Normal Low/Mid 0.02–0.2
(De Franchis et al., 1993;
Hsu et al., 2002;
Manno et al., 2004;
Raffetti et al., 2016)

Phase 4 HBeAg-negative
chronic hepatitis

Immune
re-activation

+ − − + Moderate to
High

Elevated Mid/High No cirrhosis 0.3–0.6
(Fattovich et al., 2008)

Cirrhosis 2.2–3.7
(Fattovich et al., 2008)

Phase 5 HBsAg-negative
phase

Clearance or
occult HBV
infection

− ± − + Undetectable
to low

Normal Low No cirrhosis 0.3
(Kim et al., 2015)

Cirrhosis 3
(Kim et al., 2015)

a Incidence per 100 person years.

and acts as a stable template for the 5 viral mRNAs. Each of
these transcripts has different 5′ transcription start sites but
a common 3′ polyadenylation signal. These mRNAs include
the 3.5-kb pregenomic RNA (pgRNA), the 3.5-kb precore
RNA, the 2.4-kb/2.1-kb surface mRNAs, and the 0.7-kb X
mRNA (Blondot et al., 2016). Moreover, post-transcriptional
modification of 3.5-kb species can produce spliced HBV RNA
variants (Candotti and Allain, 2017).

The functions of pgRNA are both as the template for
reverse transcription and the translation of viral polymerase
and core protein. The newly translated viral polymerase
binds to the 5′-epsilon region of pgRNA, and is packaged
together as sub-viral core particles (Jones and Hu, 2013).
Reverse transcription occurs within the HBV nucleocapsid
through a series of complicated mechanisms, resulting
in the synthesis of rcDNA (major pathway) or dslDNA.
These mature nucleocapsids are then enveloped by HBsAg
and secreted into the blood at multi-vesicular bodies
(Blondot et al., 2016).

Nuclear dslDNA genomes follow separate pathways: these can
form replication-defective cccDNA (Yang and Summers, 1998) or
integrate into the host cell genome (Yang and Summers, 1999; Tu
et al., 2017). While the integrated HBV genome is replication-
deficient, but still acts as a template viral antigen expression (e.g.
HBsAg and HBx) (Wooddell et al., 2017).

A broad range of components generated by virus-infected cells
have been investigated as potential biomarkers for predicting
HCC occurrence (summarized in Table 2) and recurrence
(summarized in Table 3). For each major serum viral marker
that has been investigated, we provide in the next section
a description, the mode of quantification, their molecular
association with HCC, and their predictive power for HCC
occurrence and recurrence.

SERUM VIRAL BIOMARKERS FOR HBV
RELATED HCC

HBV DNA
Description
Hepatitis B virus DNA, the genomic nucleic acid of the virus,
reflects active viral replication and secretion. There are two forms
of HBV genome: rcDNA and dslDNA (as mentioned in the
HBV replication cycle) (Lee et al., 2004; Blondot et al., 2016).
Quantitative PCR for serum HBV DNA detects both forms of
the virus genome and is used as a clinical marker to measure the
efficacy of antiviral therapy in people with CHB.

Quantification
Using real-time PCR quantification assays for HBV DNA
detection is strongly recommended by EASL (European
Association for the Study of the Liver, 2017) and is generally
expressed as a WHO-standardized IU/mL (5.26 copies/mL = 1
IU/mL) (Saldanha et al., 2001). At present, with their high
sensitivity, specificity, accuracy and broad dynamic range, these
techniques are the most widely used assays in clinical practice.
The assays include Cobas AmpliPrep/Cobas TaqMan HBV
version 2.0 (CAP/CTM HBV 2.0) (Roche Molecular Systems,
Pleasanton, CA, United States), with a dynamic range between
105 copies/mL to 9× 108 copies/mL, and Abbott RealTime HBV
assay (Abbott Molecular, Des Plaines, IL, United States), with a
dynamic range 50 copies/mL to 5 × 109 copies/mL (Chevaliez
et al., 2008, 2010; Yeh et al., 2014). More sensitive pre-clinical
tests have also been developed: digital droplet PCR can quantify
HBV DNA down to 8 copies/mL (Liu et al., 2017).

The amount of the dslDNA form of HBV (as opposed to
rcDNA form) can be measured using quantitative real-time PCR
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TABLE 2 | Serum viral biomarkers for the prediction of HCC occurrence.

Biomarkers Antiviral
treatment

Patient
population

Findings References

HBV DNA Naïve HBeAg (+) HBV DNA was not different between HCC
and non-HCC

Fung et al., 2007

HBeAg (−) HBV DNA is higher in HCC group
(AUROC = 0.62)

Fung et al., 2007

All patients AUROC = 0.7 Tseng et al., 2012

Treated CHB patients HBV DNA was not different between HCC
and non-HCC

Kim et al., 2017;
Lee et al., 2020

Cirrhosis patients Risk of HCC is significantly higher in
low-level viremia (<2,000 IU/mL) compared
to undetected

Kim et al., 2017

HBV integration Naïve Unreported

Treated Unreported

HBV variants Splice variants Naïve Unreported

Treated Severe fibrosis
scores (F3/4)

Serum spliced HBV DNA with a cut-off
value of 7% predicted HCC
(AUROC = 0.77, sensitivity: 45%,
specificity: 96%)

Bayliss et al., 2013

Pre-S mutants Naïve HBeAg-negative
patients without
liver cirrhosis

HBV DNA with pre-S deletions predicted
HCC (HR, 11.26; 95% CI, 2.18–58.1;
P = 0.004), median time 84 months

Chen et al., 2007

Treated CHB patients with
Genotypes C and B

HBV DNA with pre-S deletions predicted
HCC (OR = 3.28).

Wungu et al., 2021

HBV DNA with Pre-S1 or Pre-S2 mutations
predicted HCC (OR = 2.42, 3.36)

Wungu et al., 2021

Total HBV RNA Naïve Unreported

Treated Unreported

Truncated HBV RNA Naïve Unreported

Treated Unreported

HBsAg Naïve HBeAg (−), HBV
DNA > 2000 IU/mL

HBsAg poorly predicted HCC (AUROC:
0.58)

Tseng et al., 2012

HBeAg (−), HBV
DNA ≤2000 IU/mL

HBsAg ≥ 1,000 IU/mL is an independent
risk factor for HCC (HR 13.7)

Tseng et al., 2012

Treated Unreported

HBcrAg Naïve HBeAg (−), HBV
DNA 2000–19,999
IU/mL

HBcrAg > 10,000 U/mL could
independently define a high HCC risk group
(HR 6.29)

Tseng et al., 2019

HBeAg(−), HBV
DNA≤104

copies/mL, no
cirrhosis

HBcrAg > 5012 U/mL was associated with
HCC occurrence (HR 6.13)

Tada et al., 2016

Any HBeAg status,
HBV DNA > 104

copies/mL,
FIB-4 < 3.6

HBcrAg > 5012 U/mL was associated with
HCC occurrence (HR 5.69)

Tada et al., 2016

Independent of
HBV DNA levels,
HBeAg

HBcrAg > 794 U/mL was independently
associated with HCC occurrence (HR 5.05)

Tada et al., 2016

Treated HBeAg (+) HBcrAg > 4.9log U/mL predicted HCC
(Sensitivity: 90.3%, specificity: 21.7%)

Hosaka et al., 2019

HBeAg (−) HBcrAg > 4.4log U/mL predicted HCC.
(Sensitivity: 51.9%, specificity: 78.7%)

Hosaka et al., 2019

HBV DNA (−)
post-treatment

HBcrAg > 7.8 kU/mL predicted HCC.,
(AUROC: 0.61, Sensitivity: 57.9%,
specificity: 70.4%)

Cheung et al., 2017

Non-cirrhotic HBcrAg > 7.8 kU/mL predicted HCC.
(AUROC: 0.7, Sensitivity: 62.5%, specificity:
78.1%)

Cheung et al., 2017
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FIGURE 1 | The HBV replication cycle and its secreted products. The HBV virion enters the hepatocyte by NTCP receptor binding, and uncoats prior to entry into
the cytoplasm. The viral nucleocapsid is then transported to the nucleus, where it deposits its DNA genome. HBV relaxed-circular DNA (rcDNA) genomes can be
repaired and ligated to form cccDNA, the template for all viral RNAs. HBV core antigen (HBcAg) is translated and forms capsids, some of which form around the
pregenomic RNA (pgRNA) and viral polymerase. The pgRNA is reverse-transcribed to form either double stranded linear DNA (dslDNA) or rcDNA forms of the virus
genome. The mature nucleocapsid is then enveloped by host membranes studded with HBV surface antigen (HBsAg) and secreted at multi-vesicular bodies.
Cytoplasmic HBV capsids are recycled at a poor efficiency to the nucleus and do not appear to significantly add to the cccDNA pool (Tu and Urban, 2018; Revill
et al., 2020; Tu et al., 2021). In a secondary pathway, HBV dslDNA can integrate into the host genome at host DNA breaks or form defective cccDNA (not shown).
Some of these viral components are released in the serum (bottom) by as yet unclear mechanisms (dashed arrows) including within apoptotic bodies of dying
hepatocytes, secretion through alternate pathways, or within exosomes. Even the form in which some of these biomarkers exist in the serum is still unknown and
controversial (question marks). Figure was generated using Biorender (https://biorender.com/).

(qPCR) coupled with peptide nucleic acid-mediated clamping
(Zhao X.L. et al., 2016). However, this assay is not a standard
laboratory test.

Molecular Association With HCC
Serum HBV DNA load in people with CHB has been shown to
be closely related to disease activity and progression (Iloeje et al.,
2006). Moreover, elevated HBV DNA is considered as a predictive
biomarker for HCC, independent of HBeAg and liver cirrhosis
(Chen et al., 2006, 2011). HBV DNA is associated with both
indirect and direct mechanisms of carcinogenesis. The indirect
mechanisms include inducing new HBV infection of hepatocytes,
which triggers ongoing liver immune attack, inflammation, and
liver injury (Bolukbas et al., 2005; Duygu et al., 2012; Chen
and Tian, 2019). Possible mechanisms of direct carcinogenesis
include HBV dslDNA integration into the host genome, which
reportedly leads to genomic instability, insertional mutagenesis

and expression of pro-oncogenic viral proteins (Sze et al., 2013;
Zhao L.H. et al., 2016; Gao et al., 2019). Indeed, one study
reported that the levels of dslDNA increased to 14% of total serum
HBV DNA in people with liver cirrhosis and 20% in those with
HCC, compared to 7% in people with CHB alone (Zhao X.L. et al.,
2016). However, the utility of dslDNA proportion as a biomarker
for HCC has not been examined in clinical trials.

Performance as a Predictor of HCC
HCC occurrence
In NA-naïve patients, two studies in Taiwan have inferred that
elevated serum HBV DNA level can be a useful biomarker for
monitoring HCC independent of HBeAg and liver cirrhosis
(Chen et al., 2006, 2011). A study by Chen et al. (2011) showed
that in a cohort of patients with genotype B/C HBV infection
aged >30 years, the risk of HCC increased with higher levels
of circulating HBV DNA (after excluding patients in immune
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TABLE 3 | Serum viral biomarkers for the prediction of HCC recurrence.

Biomarkers Antiviral
treatment

Patient population Findings References

HBV DNA Naïve Early recurrence (within
2 years)

HBV DNA levels ≥20,000 IU/mL predicted
microvascular invasion (HR 2.77; P < 0.001)

Sohn et al., 2014

Late recurrence
(after 2 years)

HBV DNA level >106 copies/ml was
associated with recurrence (HR 2.548, CI
1.040–6.240)

Wu et al., 2009

Treated 1040 patients with a
high baseline HBV DNA
level (>2,000 IU/ml)

Undetectable HBV DNA at week 24
post-resection predicted lower late HCC
recurrence (P < 0.001, HR 0.408, 95% CI
0.269–0.618), but was not associated with
early HCC recurrence

Huang et al., 2013

HBV integration Pre-resection: 21
(42.0%)
Post-resection: 35
(70.0%)

50 HBV-related HCC
with 36 genotype B
(72.0%)

Detection of tumor-associated HBV DNA
integrations in serum predicted HCC
recurrence in >90% of cases

Li et al., 2020

HBV variants Splice Variants Unreported

Pre-S mutants Naïve at HCC
diagnosis: 35
(46%)

Median HBV DNA
2.1 × 104 IU/mL

The AUROC of the pre-S2 plus
pre-S1 + pre-S2 deletion percentage is
0.6827, followed by the combined pre-S
deletion (AUROC,0.6789)

Teng et al., 2020b

Naïve at HCC
diagnosis: 35
(46%)

Median HBV DNA
2.1 × 104 IU/mL

HBV DNA with Pre-S2 deletions (nt 1–54) in
serum was associated with HCC recurrence
(P = 0.008, AUROC = 0.6321)

Teng et al., 2020a

HBV RNA Unreported

Truncated HBV RNA Unreported

HBsAg Naïve at HCC
diagnosis: 202
(81%)

Late HCC recurrence
(after 2 years)

HBsAg levels ≥ 4,000 IU/mL is the risk factor
for HCC recurrence after 2 years
(HR 2.80; P = 0.023)

Sohn et al., 2014

Naïve at HCC
diagnosis: 315
(78%)

Hepatic resection
HBeAg(−)
HBV DNA < 2000
IU/mL

HBsAg ≥ 1,000 IU/mL is associated with
HCC recurrence

Huang et al., 2014

HBcrAg Treated at
diagnosis of HCC

55 HCC patients, either
curative resection or
percutaneous ablation

HBcrAg levels ≥ 4.8log U/ml at the time of
HCC diagnosis was independent factor for
HCC recurrence (HR 8.96, 95% CI
2.47–11.25; P = 0.005)

Hosaka et al., 2010

Treated at
diagnosis of HCC

119 HCC patients,
HBeAg (−): 68%

HBcrAg level ≥ 5.1log U/ml was associated
with increased tumor recurrence rate
(P = 0.01)

Beudeker et al.,
2021

Treated at
diagnosis of HCC

169 HCC patients with
liver transplantation,
HBeAg(+):47 (27.8%)

HBcrAg ≥ 5.0 log U/mL predicted HCC
recurrence after 5 years
(HR 5.27, 95% CI 2.47–11.25; P < 0.001)

Yu et al., 2019

tolerance phase with HBV DNA >107 copies/mL, as people in
this phase have low risk of HCC). In a case-control study of
HBeAg-negative CHB patients, levels of HBV DNA were found
to be higher in people with HCC than those without (Area Under
the Receiver Operating Characteristic curve, AUROC = 0.62)
(Fung et al., 2007). Tseng et al. (2012) reported that in a cohort
of 2688 treatment-naïve people with CHB, HBV DNA predicts
the risk of HCC regardless of HBeAg status [AUROC = 0.7(95%
confidence interval (CI): 0.65–0.75)]. Together, this suggests
HBV DNA has good predictive strength for HCC risk.

However, HBV DNA titers cannot be used for all patients.
NA therapy can reduce levels of serum HBV DNA to an
undetectable level, preventing its use as a biomarker in this
population that is still susceptible to HCC (Vlachogiannakos and
Papatheodoridis, 2013; Varbobitis and Papatheodoridis, 2016).

Further, in a Korean cohort of 1,246 patients with CHB who
received entecavir, baseline HBV DNA did not predict HCC in
non-cirrhotic patients under NA treatment (>5.7 vs. <5.7log
IU/mL; P = 0.166) (Kang et al., 2017).

Nevertheless, HBV DNA levels can be used to detect poor
response to NAs, which is linked to HCC. In a cohort
of 875 patients with CHB treated with entecavir, greater
HBV DNA levels were linked to increased HCC risk in
patients with cirrhosis (adjusted hazard ratio = 2.20, compared
to those with persistently undetectable HBV DNA) (Kim
et al., 2017). But, HBV DNA did not predict HCC risk in
patients without cirrhosis. HCC incidence was not significantly
different between people with persistently detectable HBV
DNA and those with undetectable levels (13.3% vs. 8.3%,
P = 0.821) (Lee et al., 2020). Thus, in patients treated with
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NAs, HBV DNA titer is useful in predicting HCC only in
cirrhotic patients.

HCC recurrence
In NA-naïve HCC patients, high serum HBV DNA levels
were an independent risk factor for HCC recurrence after
curative resection or liver transplantation, or percutaneous
radiofrequency ablation (Huang et al., 2008; Chuma et al., 2009;
Goto et al., 2011; Li et al., 2011). In a study of 248 Korean patients
who underwent curative resection for early stage HBV-related
HCC, HBV DNA level ≥20,000 IU/mL [hazard ratio (HR) 2.77;
P < 0.001] was a risk factor for microvascular invasion and early
recurrence (within 2 years) (Sohn et al., 2014). However, Wu
et al. (2009) found that HBV DNA level >106 copies/mL (HR
2.548, CI 1.040–6.240) in Taiwan patients with HBV-related HCC
was associated with late recurrence (after 2 years). Therefore, the
utility of high HBV DNA in predicting HCC recurrence needs
further research.

After NA treatment at diagnosis of HCC or follow-up,
sustained HBV DNA expression could increase the risk of HCC
recurrence (Kim et al., 2008). Moreover, Huang et al. (2013)
found that in the 865 HCC patients receiving NAs therapy with a
high baseline HBV DNA level (subpopulation of a 1,040 patient
cohort), an undetectable HBV DNA before postoperative week 24
(P< 0.001, HR 0.408, 95% CI 0.269–0.618) was a protective factor
for late HCC recurrence, but not for early tumor recurrence
(P= 0.541, HR 0.946, 95% CI 0.793–1.130). Therefore, detectable
HBV DNA level could predict HCC recurrence in patients
receiving NA treatment.

HBV Integration
Description
Integration of the dslDNA form of HBV DNA can occur
throughout the host genome at double-strand DNA breaks (Bill
and Summers, 2004), likely without the help of specific viral
proteins (Tu et al., 2019) (instead probably using host DNA
repair enzymes). The sites of HBV DNA integration during
CHB are randomly distributed across the host genome without
strong preference for any specific structural genome features
(Budzinska et al., 2018a).

Quantification
Hepatitis B virus integrations can be detected in the serum
and tissue of HBV-infected patients as virus-host chimera DNA.
Current detection methods for virus-host chimera DNA include
whole-exome sequencing, whole-genome sequencing, Alu PCR
and inverse-nested PCR (Budzinska et al., 2018b). These have
shown less-than-genome length fragments of HBV dslDNA
integrate (with terminal truncations of 100s to 1,000s of base
pairs being common). Of these detection assays, the only
method enabling absolute quantification of HBV integrations is
inverse-nested PCR (Mason et al., 2009), though this method
is very time-consuming and technically challenging, limiting its
clinical utility.

Molecular Association With HCC
While HBV integration sites are randomly distributed across
the genome in non-tumor tissue, HBV DNA integrations in

HCCs have been reported to be enriched in genes involved
in carcinogenesis pathways (i.e., CTNNA2, EGFR, and TERT)
and have been found to be preferentially located within
CpG islands and close to telomeres (Sung et al., 2012; Zhao
L.H. et al., 2016; Li et al., 2019). Even when the HBV
infection is cleared (marked by HBsAg seroconversion), HCCs
risk remains and 70% of HCCs contain HBV integrations
(Wong et al., 2020).

The mechanism behind the association of HCC with HBV
integration is currently unknown. Many studies indicate that
HBV integration causes genetic damage and chromosomal
instability, which has the potential to promote carcinogenic
transformation (Scotto et al., 1983; Zhao L.H. et al., 2016;
Chen et al., 2019; Jang et al., 2020), or drive downstream host
protein expression. HBV DNA can integrate into fragile sites,
CpG islands and near telomerase reverse transcriptase, lysine
methyltransferase 2B, as well as cyclin A2 (Wong et al., 2020),
potentially inducing cancer-initiating genomic instability (Zhao
L.H. et al., 2016; Furuta et al., 2018; Wong et al., 2020). However,
genomic instability is not evident in many cases of HBV-HCC
(Sung et al., 2012). The integrated HBV DNA can also disrupt
cellular genes by insertional mutagenesis or drive expression
of nearby with viral promotors. Insertion in TERT promoter,
CCNE1 (cyclin E1), CCNA2, MLL4 (Myeloid/lymphoid or
mixed-lineage leukemia 4), TP53, and CTNNB1 have been
repeatedly detected in HCC (Paterlini-Brechot et al., 2003; Sung
et al., 2012; Kawai-Kitahata et al., 2016), but these are not
present in all tumors.

In addition, mutant HBsAg produced from integrated
HBV DNA could contribute to HBV-related HCC by causing
endoplasmic reticulum (ER) stress and immune evasion (Hsieh
et al., 2004; Wang et al., 2006).

Performance as a Predictor of HCC
HCC occurrence
Specific HBV-host fusion genes created by HBV integrations have
been suggested as biomarkers for predicting HCC in people with
CHB. In NA-treated patients, a prospective study using liver
tissue from people with CHB reported that human ESPL1-HBV
S fusion gene was detected in 8 of 12 (66.7%) people with HCC,
compared to 0 of 11 (0%) CHB patients without HCC (Hu et al.,
2020). Moreover, HBV has been reported to integrate into long
interspersed nuclear elements (LINEs), leading to fusion HBx-
LINE1 transcripts. HBx-LINE1 can activate β-catenin signaling,
reduce E-cadherin and enhance cell migration, which has been
suggested to promote HCC progression (Liang et al., 2016). These
studies suggest that specific fusion genes could be used as a
biomarker for the early detection of HCC in people with CHB,
but these have not been able to be repeated independently in other
cohorts [for example, in a cohort of Vietnamese patients with
HBV-associated HCC (Trung et al., 2019)]. Indeed, the majority
of integration sites in tumor samples are randomly distributed
across the host genome (Zhao L.H. et al., 2016).

HCC recurrence
Several studies have found that circulating viral-host chimeric
DNA (vh-DNA) generated from HBV integration may be a useful
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biomarker for monitoring HCC recurrence (Wang et al., 2019;
Li et al., 2020). A study of 20 people with HBV-HCC found
circulating vh-DNA representing 87 different HBV integration
sites, which were enriched in genes involved in cancer-related
pathways, suggesting they could act as a biomarker for HCC
diagnosis (Li et al., 2019). Moreover, Li et al. (2020) detected
vh-DNA in 97.7% of people with HBV-related HCC. Two
months following HCC resection, the same vh-DNA sequence
could be detected in 10 cases (23.3%), nine of whom (90%)
experienced HCC recurrence within a year. Thus, vh-DNA of
HBV integration could also be a useful circulating biomarker for
monitoring HCC recurrence.

HBV Splice Variants
Description
Hepatitis B virus pgRNA has multiple splice donor and acceptor
sites and can be spliced by cellular machinery as a post-
transcriptional modification. Sixteen spliced pgRNA variants
have been identified both in vitro and in tissues of CHB
patients (Candotti and Allain, 2017). These splice variants can
be encapsidated, reverse-transcribed and secreted into serum as
replication-deficient viral particles (Terre et al., 1991).

Spliced viral RNAs can also be translated into HBV spliced
proteins. For example, the 2.2-kb singly spliced variant lacking
intron 2447/489, can encode hepatitis B spliced protein (HBSP)
in the livers of patients with chronic HBV infection (Soussan
et al., 2000). The 2447-2901 HBV RNA splice variant can act as
the template for a 43 kDa polymerase-surface fusion glycoprotein
(P-S FP), which localizes to the ER and is posited to be an HBV
structural protein (Huang et al., 2000; Park et al., 2008).

Furthermore, hepatitis B doubly spliced protein and HBSP are
respectively encoded by the 2.2-kb doubly spliced pgRNA and the
single spliced product 1(SP1) variant (Terre et al., 1991; Huang
et al., 2000; Soussan et al., 2000; Lee et al., 2008). However, the
specific function of any of these splice variant-derived proteins is
currently unclear.

Quantification
Hepatitis B virus splice variants can be quantified by reverse-
transcription PCR (RT-PCR). At present, using different
combinations of 5′ splice site and 3′ splice site can generate
HBV RNA splicing variants, including 16 identified HBV splice
variants of pgRNA and 4 splice variants of preS2/S mRNA (Su
et al., 1989; Terre et al., 1991; Hass et al., 2005). The 2.2-kb singly
spliced variant with a lack of intron 2447/489 which is the most
common spliced variant can encode the HBSP, which can be
detected by Western blot (Soussan et al., 2003).

Molecular Association With HCC
Some studies have reported increased HBV RNA splicing being
associated with HCC (Kremsdorf et al., 2006; Bayliss et al., 2013).
The 2.2 kb HBV spliced variant has been reported to be more
highly expressed in tumor tissues than in the adjacent-tumor
tissues (Lin et al., 2002). Moreover, when full-length (3.2 kb)
HBV DNA and 2.2 kb spliced variant are co-transfected into
HepG2 cells, the replication signal of the 3.2 kb HBV genome
was increased 3–7 times (Lin et al., 2002). This suggests the HBV

spliced variant plays a role in increasing HBV, which is a strong
risk factor for HCC.

Circulating splice variant DNA is most frequently detected
as defective HBV particles (dHBV) derived from reverse
transcription of the 2.2-kb singly spliced mRNA, the most
common spliced variant (Günther et al., 1997). In NA-naïve
patients, the ratio of serum dHBV to wild-type HBV was lower in
patients with moderate fibrosis and moderate or no liver necrosis
compared to those with severe fibrosis and severe liver necrosis
(Soussan et al., 2008). However, the direct clinical relationship
between HBV splice variants and HCC remains uncharacterized.

Performance as a Predictor of HCC
HCC occurrence
Many studies have suggested that Pre-S deletion mutants play
an important role in HBV-related HCC (Chen et al., 2007; Xie
et al., 2010; An et al., 2018; Chen, 2018). In NA-naïve patients,
a study enrolled 141 HBeAg-negative patients with CHB, 7
of whom developed HCC with a median time of 84 months.
Univariate analysis showed that the presence of pre-S deletions
was a significant factor for prediction of HCC (HR 11.26, 95% CI,
2.18-58.1; P = 0.004) (Chen et al., 2007). A recent meta-analysis
revealed that pre-S deletions were related to HCC occurrence
(OR 3.28, 95% CI 2.32–4.65; P< 0.00001; random-effects model).
Both pre-S1 and pre-S2 were risk factors for HCC development,
with OR 2.42 (95% CI 1.25–4.68, P = 0.008) and 3.36 (95% CI
2.04–5.55; P < 0.00001), respectively (Wungu et al., 2021).

In a cohort of 165 people with CHB under NA treatment in
Australia (58 of whom were diagnosed with HCC), the median
level of serum spliced HBV was higher in HCC patients than
in non-HCC patients (P < 0.001) (Bayliss et al., 2013). Using a
real-time PCR cut-off value of 7% for serum spliced HBV, the
AUROC analysis of spliced HBV is 0.77, with a sensitivity of
45% and a specificity of 96%. Multiple regression analysis found
that the serum spliced HBV level increased by about 0.1% per
year before the diagnosis of HCC, independent of liver fibrosis
(Bayliss et al., 2013).

HCC recurrence
Studies have revealed that HBV-related HCC patients with pre-
S mutants are at higher risk of HCC recurrence after curative
surgery, even when receiving post-surgical NA therapy (Su et al.,
2013; Yen et al., 2018; Teng et al., 2020b). Su et al. (2013) analyzed
73 HCC patients without NAs therapy but with pre-S deletion
mutants. They found that pre-S deletion mutants were related
to a higher rate of HCC recurrence and higher serum HBV
DNA levels (P = 0.055) (Su et al., 2013). Moreover, a recent
study reported that using next-generation sequencing-based
quantitative detection of pre-S mutants in serum can be useful for
predicting HCC recurrence (AUROC of either pre-S2/pre-S1 or
pre-S2 deletion = 0.683) (Teng et al., 2020b). Teng et al. (2020a)
reported that only the presence of pre-S2 deletions (nt 1 to 54) in
serum was associated with HCC recurrence (P value = 0.0080)
with higher AUROC (0.632, 95% CI 0.556–0.708), compared
with the pre-S1 deletion or the pre-S1 + pre-S2 deletion (nt
2,855–2,872, 1–54). In summary, pre-S2 deletion mutants may be
a useful biomarker for HCC recurrence.

Frontiers in Microbiology | www.frontiersin.org 8 June 2021 | Volume 12 | Article 665201

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-665201 June 7, 2021 Time: 17:46 # 9

Liu et al. Viral Biomarkers for HBV-HCC

Circulating HBV RNA
Description
Multiple studies have shown that HBV RNA can be detected both
in culture supernatants and in the serum of people with CHB
(Hatakeyama et al., 2007; Huang et al., 2015; Wang et al., 2016).
Given that HBV RNA exists as pgRNA in virus-like particles
[produced by defective or partial reverse transcription (Wang
et al., 2016; Prakash et al., 2018)], theoretically, serum HBV RNA
is derived only from cccDNA in infected hepatocytes. However,
the mechanism of the release of HBV pgRNA viral particles from
infected hepatocytes into the circulation is unclear (Lam et al.,
2017; Butler et al., 2018; Wang et al., 2018).

Quantification
Serum HBV RNA can be measured by quantitative RT-PCR, and
digital droplet PCR (Wang et al., 2016; van Campenhout et al.,
2018; Carey et al., 2019). Butler et al. (2018) used quantitative
RT-PCR on the m2000 system (Abbott Molecular) to quantify
serum HBV RNA detection with a lower limit of quantitation
of 45 U/mL (Carey et al., 2020). There is limited standardization
between these approaches to HBV RNA quantification, so further
work needs to be done to harmonize these assays if they are to be
used for routine diagnosis.

Molecular Association With HCC
Serum HBV RNA is closely related to the activity of HBV
replication, especially in people with CHB during NA treatment
(Giersch et al., 2017; Lu et al., 2017; Wang et al., 2017; Huang
et al., 2018). However, there are few data on its predictive
power for HCC risk. Halgand et al. reported that HBV pgRNA
levels in tumor tissues were correlated with a particular HCC
subtype (well-differentiated, non-invasive, and associated with
better survival) (Halgand et al., 2018). However, serum levels may
not be correlated with this. It is possible that high levels of HBV
RNA could be a predictor of HCC in people with CHB under NA
treatment (given it is a surrogate of cccDNA activity), but there is
no clear clinical evidence for this yet.

HBV Truncated RNA
Description
Hepatitis B virus integration can act as a template for truncated
HBV RNA (trRNA) transcripts. Hilger et al. (1991) identified
HBV trRNA transcripts that terminated at a non-canonical
CATAAA polyadenylation signal within the 3′ end region of
the HBx open reading frame in tissue samples from two HBV-
HCC patients. This signal can be used when the canonical
polyadenylation signal is absent (e.g., when truncated as in
the integrated HBV DNA form) (Breitkreutz et al., 2001).
Later studies suggested that truncated HBx transcripts with a
C-terminal deletion could be transcribed from integrated HBV
DNA (Wang et al., 2004).

Quantification
Using specific primers containing a sequence corresponding to
the polyadenylated 3′-end of full-length polyadenylated HBV
RNA (flRNA) or trRNA, RACE-PCR targets the 3′-ends of the
X gene for quantification of all polyadenylated HBV RNA species

(Zhang W. et al., 2004; Ou et al., 2020). The assay’s lower limit of
detection for HBV RNA was 794 copies/mL with a quantitative
range of 800–106 copies/mL.

Molecular Association With HCC
Studies have shown that HBV trRNA, which can be transcribed
from integrated HBV DNA, can encode a C-terminal truncated
HBx protein (Hilger et al., 1991; Sze et al., 2013; van Bömmel
et al., 2015). C-terminal-truncated HBx has been reported to
enhance HCC invasion and reduce apoptotic response (Tu et al.,
2001; Ma et al., 2008). In vitro studies suggest that C-terminal-
truncated HBx promotes HCC through upregulating caveolin-1
to enhance β-catenin-mediated transcription of FRMD5 (FERM
domain containing 5) (Ng et al., 2016; Mao et al., 2019).
Sze et al. (2013) analyzed clinical data from 50 HBV-HCC
patients and found that C-truncated HBx correlated with venous
invasion. Also in vitro experiments reported that C-truncated
HBx activates matrix metalloproteinase 10 by increasing C-Jun
transcriptional activity, resulting in enhanced cell invasion and
metastasis (Sze et al., 2013). Moreover, C-terminally truncated
middle surface protein MHBst initiates c-Raf-1/Erk-2 signaling,
resulting in an increased hepatocyte proliferation rate and
dysplastic changes in hepatocytes (Hildt et al., 2002; Wang et al.,
2006). Although these suggest possible roles for truncated HBV
protein in tumor progression, whether it also plays a role in tumor
formation is not clear.

Performance as a Predictor of HCC
Although serum HBV trRNA has been detected and used as a
predictor for virological outcomes (van Bömmel et al., 2015),
its association with HCC has only been shown in tumor tissues
and not serum. A study with 50 people with HCC revealed that
C-terminal truncated HBx was detected in 23 of 50 (46%) tumor
tissues, and these had more venous invasion compared to tumors
expressing only full-length HBx (P = 0.005) (Sze et al., 2013).
This is consistent with another study where C-terminal truncated
HBx was detected in 88 of 111 (79.3%) HCC tissues, compared
with full-length HBx in all 111 non-tumor tissues and 23 of 111
(20.7%) HCC tissues (Ma et al., 2008). However, these studies
only detected truncated HBx in confirmed HCC tissues. Whether
serum HBV trRNA can predict HCC occurrence or recurrence
is still unclear.

Hepatitis B Surface Antigen
Description
Hepatitis B virus sub-genomic mRNA transcripts (2.4- and 2.1-
kb surface mRNAs) encode the large, middle, and small variants
of the HBV surface antigen, which can assemble at the ER as
sub-viral particles (SVP) and be secreted via the Golgi apparatus
(Ganem and Schneider, 2001). The majority of circulating HBsAg
exists as non-infectious filamentous and spherical SVP, in 1,000-
to 100,000-fold excess compared to virions (Wei et al., 2010).
HBsAg may be translated from both HBV cccDNA and integrated
DNA; the latter especially in HBeAg-negative chronic HBV-
infected patients (Hu et al., 2018).

Secreted HBsAg in SVP could play an immunomodulatory
role during HBV infection. SVP capture neutralizing anti-HBsAg
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antibodies and divert host immune recognition away from
infectious HBV virions (Carman et al., 1996). The host antiviral
immune response is subsequently minimized, allowing HBV
persistence (Rydell et al., 2017). HBsAg is also the target of HBV
functional cure; if serum HBsAg is eliminated then HBV infection
is considered to be cleared (Chen et al., 2016; Al Awaidy and
Ezzikouri, 2020).

Quantification
Currently, there are three quantitative assays for HBsAg
measurement: Architect HBsAg QT (Abbott Diagnostics),
Elecsys HBsAg II Quant (Roche Diagnostics) and DiaSorin
Liaison XL. All assays provide measurements that correlate well
with each other (Burdino et al., 2014; Liao et al., 2015). The
Architect assay is capable of quantifying HBsAg concentrations
ranging from 0.4 to 250 IU/mL (Deguchi et al., 2004). The
range of the Elecsys II and DiaSorin Liaison XL assays are
respectively from 0.05 to 130 IU/mL (sensitivity from 0.017 to
0.022 IU/mL) and 0.03 to 150 IU/mL (sensitivity of 0.03 IU/mL)
(Burdino et al., 2014; Cornberg et al., 2017). All three assays have
automatic dilution (1:400) to increase the upper limit of detection
to over 50,000 IU/mL.

Unfortunately, these assays do not distinguish between the
three forms of HBsAg (small, medium, and large). In pre-
clinical trials, the ratios and composition of the three HBsAg
forms have been reported to predict HBsAg clearance during
treatment in patients with HBeAg-positive CHB (Pfefferkorn
et al., 2021). Therefore, the quantification of HBsAg variants and
monitoring the HBsAg composition throughout treatment could
be important to predict the clearance of secreted HBsAg and the
associated reduction in HCC risk.

Molecular Association With HCC
Several clinical studies recently reported that high levels of serum
HBsAg are associated with an increased risk of HCC (Tseng
et al., 2012; Kawanaka et al., 2014). Similarly, HBsAg loss is
associated with very low HCC risk (Yip et al., 2017, 2019). While
the underlying mechanism is not clear, this may be due to the
association of HBsAg with replication levels or the amount of
integrated HBV DNA, which are both risk factors for HCC
(Xiangji et al., 2011; Yan et al., 2015; Tseng et al., 2019).

Chronic inflammation driven by anti-HBs responses could
promote oncogenesis. A chimeric HBV-HCC mouse model
was studied by extracting HBsAg-expressing hepatocytes from
HBsAg transgenic mice (C57BL/6J) and transferring them
into immuno-competent Fah−/− recipient mice (which allow
implantation of hepatocytes) (Hao et al., 2021). Persistent HBsAg
expression triggered HBsAg-specific CD8+ T cell activation,
followed by hepatocyte apoptosis and turnover, progressive
chronic inflammation, clonal expansion, and ultimately HCC
(Nakamoto et al., 1998; Hao et al., 2021). In in vitro models,
HBsAg has been reported to promote HCC invasion through the
TLR2/MyD88/NF-kB signaling pathway (Cheng et al., 2017).

Hepatitis B surface antigens with mutations in the Pre-S1
or Pre-S2 regions could be directly oncogenic: these mutated
proteins can alter host cell lipid metabolism, lead to ER stress,
induce oxidative DNA damage and genomic instability, all of

which increase the risk of HCC development (Hsieh et al., 2004;
Wang et al., 2006; Yang et al., 2008). HBsAg Pre-S1 and Pre-
S2 mutants accumulate intracellularly, forming the characteristic
cytopathic effect of ground-glass structures (Roingeard and
Sureau, 1998). Ground-glass hepatocytes (GGH) occur as either
Type I or Type II GGH containing LHBsAg with mutations in
the Pre-S1 or Pre-S2 regions, respectively (Wang et al., 2003).
Type I GGH occurs as single hepatocytes during early stages
of HBV infection with active HBV replication, while Type II
GGH occurs as clusters (suggestive of clonal expansion) during
latter stages of reduced HBV replication (Fan et al., 2001; Wang
et al., 2003). Type II GGH is associated with cirrhosis and HCC
development (Fan et al., 2001). In HBV patients, biopsies of
cirrhotic nodules with Type II GGH contained HBV genomes
which were integrated and clonally expanded, suggesting that
Type II GGH are pre-neoplastic lesions (Fan et al., 2000).
Similarly, the presence of Pre-S mutants in the serum of patients
with CHB is associated with an increased risk of HCC, with
Pre-S1 and Pre-S2 mutants present significantly higher in HCC
patients compared to non-HCC carriers (19/64, 29.7% vs 25/202,
12.4%, P = 0.002) (Fan et al., 2001; Lin C.L. et al., 2007). HBsAg
mutants may activate ER stress-dependent and -independent
pathways to promote genomic instability and cell proliferation
needed for HCC tumorigenesis.

Performance as a Predictor of HCC
HCC occurrence
Generally, the predictive value of HBsAg levels for HCC is
poorer than HBV DNA or ALT in treatment-naïve patients with
CHB (Tseng et al., 2012). In HBeAg-negative patients with HBV
DNA levels ≥2,000 IU/mL, HBsAg levels (<1,000 IU/mL or
>1,000 IU/mL) were not related to the risk of HCC (AUROC
0.58; P = 0.247) (Tseng et al., 2012). However, multivariate
analysis showed that HBsAg ≥1,000 IU/mL was an independent
risk factor for HCC development in HBeAg-negative patients
with HBV DNA level <2,000 IU/mL (HR 13.7, 95% CI: 4.8–39.3)
(Tseng et al., 2012).

The true sensitivity and specificity of HBsAg in predicting
HCC in these patients on NA therapy remains unknown and
requires larger cohorts. Furthermore, HCC can still occur in
patients with CHB who have undergone HBsAg loss (Chen et al.,
2016). In one retrospective study, the annual incidence of HCC
after HBsAg seroconversion was 2.85 and 0.29% in cirrhotic
and non-cirrhotic patients, respectively (Kim et al., 2015). The
risk factors associated with HCC development post-HBsAg
seroconversion are: age above 50 (HR: 12.14; 95% CI: 1.61–91.68),
male gender (HR: 8.96; 95% CI: 1.17–68.80), and infection with
HBV genotype C (Kim et al., 2015). Given that HCC can occur in
patients with CHB following HBsAg seroconversion, quantitative
HBsAg is unlikely to be a suitable standalone biomarker for HCC
risk (Kim et al., 2015; Chen et al., 2016).

HCC recurrence
HBsAg can also be used to predict HCC recurrence following
curative hepatic resection (HR 1.23, 95% CI: 1.04–1.44, P= 0.01)
(Huang et al., 2014; Zhou et al., 2015). Moreover, HBsAg level
≥4,000 IU/mL (HR 2.80; P = 0.023) is a risk factor for late
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HCC recurrence (after 2 years) (Sohn et al., 2014). Following
hepatic resection, in HBeAg-negative patients with HBV DNA
level <2,000 IU/mL, HBsAg level determined the risk of HCC
recurrence (P = 0.014), while HBV DNA (P = 0.55) and ALT
(P = 0.186) were not predictive (Huang et al., 2014). Univariate
analyses of patients with HBV-HCC following radiofrequency
ablation showed HCC recurrence is associated with HBsAg
≥1,000 IU/mL (Zhang et al., 2017). Similarly, in HBeAg-
negative patients following radiofrequency ablation, recurrence-
free survival significantly decreased (P = 0.039) as a result of
high HBsAg levels; i.e., at 2 years post-treatment, recurrence-
free survival decreased from 64% (HBsAg < 1,000 IU/mL) to
50% (HBsAg ≥ 1,000 IU/mL) (Zhang et al., 2017). In summary,
high HBsAg may be useful in predicting HCC development and
recurrence in HBeAg-seronegative patients with low HBV DNA.

Hepatitis B Core Related Antigen
Description
The 3.5-kb precore RNA derived from the HBV Pre-C/C gene
can act as the template for three viral proteins: HBcAg, HBeAg
and a truncated 22 kDa precore protein (p22Cr) (Mak et al.,
2018). The so-called hepatitis B core related antigen (HBcrAg)
consists of these three proteins which share an identical 149 long
amino acid sequence. HBcAg forms the viral capsid subunits.
HBeAg (164-amino acid protein) is synthesized by removing
the C-terminal region of p22 and is secreted from infected
cells (Messageot et al., 2003). p22Cr is the pre-core protein
with additional post-translational processing at both the N- and
C-termini (Kimura et al., 2005).

Quantification
Hepatitis B core related antigen was first measured by a
sensitive enzyme immunoassay that denatures antibodies prior
to analysis and therefore can detect HBcAg and HBeAg
in anti-HBc or anti-HBe antibody-positive patients (Kimura
et al., 2002). Currently, a newly chemiluminescence enzyme
immunoassay with monoclonal antibodies to HBeAg and HBcAg
was developed for the detection of HBcrAg. This assay showed
the HBcrAg concentration correlates strongly with the HBV
DNA concentration (P < 0.001) over a 5-log range. Moreover,
the correlation between HBV load and circulating HBcrAg was
not affected in HBeAg-negative patients nor those with pre-
core mutations (Rokuhara et al., 2003). Particularly for patients
under NA treatment, the HBcrAg assay could be a sensitive and
clinically useful surrogate marker of intrahepatic HBV cccDNA
levels (Rokuhara et al., 2003).

Molecular Association With HCC
Transcriptional activity of intrahepatic cccDNA is recognized as
a risk for HBV-induced HCC under NA therapy (Levrero and
Zucman-Rossi, 2016; Chen et al., 2017; Mak et al., 2018; Suzuki
et al., 2019; Testoni et al., 2019). Several studies have shown that
serum HBcrAg is highly correlated with intrahepatic cccDNA
activity (Wong et al., 2017; Mak et al., 2018) as it can only
be expressed from cccDNA (unlike HBsAg, which can also be
expressed from integrated HBV DNA). Importantly, NA therapy
only inhibits reverse transcription of HBV RNA, but does not

inhibit protein synthesis from cccDNA (Tong and Revill, 2016).
Therefore, HBcrAg is a non-invasive biomarker of active viral
replication, which in turn may predict HCC.

Performance as a Predictor of HCC
HCC occurrence
A number of studies have suggested that serum HBcrAg can
be a useful viral biomarker for HCC risk (Chen et al., 2018;
Hosaka et al., 2019; Suzuki et al., 2019; Tseng et al., 2019; Baudi
et al., 2020). A study of 1,031 NA-naïve patients with CHB
(78 of whom were diagnosed with HCC during the follow-
up period, median duration 10.7 years) revealed that serum
HBcrAg was significantly related to the risk of developing
HCC. HBcrAg >794 U/mL (HR, 5.05; 95% CI, 2.40–10.63) was
associated with the risk of developing HCC, independent of
HBV DNA titers. In the subgroup of HBeAg-negative, non-
cirrhotic patients with HBV DNA levels ≤10,000 copies/mL,
HBcrAg >5,012 U/mL was significantly related to the risk of
HCC (HR 6.13, 95% CI 1.71–22.06). However, in the subgroup
of CHB patients with HBV DNA levels >10,000 copies/mL,
any HBeAg status, and FIB-4 index ≤3.6 (an index of fibrosis),
HBcrAg >794 U/mL was associated with the incidence of HCC
(HR 5.69, 95% CI 1.37–23.72) (Tada et al., 2016). Another
study of 2,666 patients with CHB (of whom 209 developed
HCC) reported that baseline HBcrAg levels of >10 kU/mL in
HBeAg-negative patients with HBV DNA levels from 2,000 to
19,999 IU/mL are at increased risk of HCC (Tseng et al., 2019).
Conversely lower HBcrAg levels (<10 kU/mL) were linked to a
low risk of HCC.

Hepatitis B core related antigen has been reported to be
superior to HBV DNA or HBsAg in predicting HCC in NA-
naïve patients with CHB. Tada et al. (2016) reported that HBcrAg
could predict HCC in 2, 5, and 10 years with AUROC curves
0.80, 0.68, 0.70 (compared to HBV DNA at 0.75, 0.63, 0.65,
respectively). Moreover, Tseng et al. (2019) found that AUROC
of HBcrAg, HBV DNA, HBsAg was 0.73, 0.72, 0.57, respectively
with 10 years follow-up, or 0.70, 0.69, 0.56 with 15 years follow-
up. These studies show a high correlation between HBV DNA and
HBcrAg levels, with HBcrAg being more sensitive than HBsAg in
predicting HCC in untreated patients.

In patients with CHB under NA treatment, persistently high
HBcrAg levels were associated with HCC development (Kumada
et al., 2013; Hosaka et al., 2019). Hosaka et al. (2019) reported
that in a study of 1,268 patients treated with NAs for more than 1
year, among the 60 of 667 HBeAg-positive patients, high HBcrAg
levels (≥4.9 log U/mL) after 1-year on-treatment was associated
with increased HCC incidence within 15 years (HR, 6.15, 95%
CI: 1.89–20.0, P = 0.003). Using a HBcrAg cut-off value of
4.9 log U/mL gave positive and negative predictive values of 0.95
and 0.19, with sensitivities and specificities of 0.903 and 0.217,
respectively. Moreover, in 601 HBeAg-negative patients, the risk
of HCC was higher in those with HBcrAg values >4.4 log U/mL
(HR, 2.54, 95% CI: 1.40–4.60; P = 0.002). In this cohort positive
and negative predictive values were 0.51 and 0.79, sensitivity
and specificity were 0.519 and 0.787 (Hosaka et al., 2019). This
result is similar to another study enrolling 76 NA-treated patients
with CHB with undetectable HBV DNA diagnosed with HCC
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and 152 matched controls who did not develop HCC (Cheung
et al., 2017). The AUROC of HBcrAg in the HCC group was 0.61
(95% CI: 0.54–0.69) for predicting HCC. Using a cut-off value of
≥7.8 kU/mL, the sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV) were 57.9, 70.4, 49.4,
and 77.0%, respectively, with an odds ratio (OR) of 3.27 (95% CI:
1.84–5.80) for HCC development. HBcrAg was more predictive
of HCC in non-cirrhotic patients: AUROC was 0.70 (95% CI:
0.58–0.81) using a HBcrAg cut-off value of ≥7.9 kU/mL, with a
sensitivity, specificity, PPV and NPV of 62.5, 78.1, 58.8, 80.6%,
respectively, and with an OR of 5.95 (95% CI: 2.35–15.07) for
HCC development (Cheung et al., 2017).

HCC recurrence
Hepatocellular carcinoma recurrence after HCC resection is still
high, with a rate of∼50% within two years (Wu et al., 2009). High
serum HBcrAg has been reported to predict HCC recurrence:
Chen et al. (2018) reported that in 56 of 89 HCC patients with
both positive cccDNA and HBcrAg who had been followed up for
5 years, recurrence rates of HCC in patients with high HBcrAg
(>5.2 log U/mL) were higher than those with low HBcrAg
(≤5.2 log U/mL; P = 0.003).

During NA therapy, higher HBcrAg levels at HCC diagnosis
can predict post-treatment recurrence of HCC (Hosaka et al.,
2010). In a study of 55 HCC patients with NA treatment at
diagnosis of HCC receiving curative surgery, serum HBcrAg
levels ≥4.8 log U/mL at the time of HCC diagnosis was
an independent risk factor for HCC recurrence with HR of
8.96 (95% CI: 1.94–41.4) (Hosaka et al., 2010). A long-term
follow-up study in Netherlands revealed that higher HBcrAg
level (≥5.1 log U/mL) was associated with an increased tumor
recurrence rate in 53 of 119 HCC patients who were identified
with early stage HCC receiving NAs at the time of HCC diagnosis
(Beudeker et al., 2021). Moreover, in a cohort of 357 CHB-related
HCC patients who underwent liver transplantation followed by
NA treatment, HBcrAg ≥5.0 log U/mL was an independent
risk factor for HCC recurrence, with a higher 5-year cumulative
recurrence rate, compared with an HBcrAg <5.0 log U/mL (37.6
vs 6%, P < 0.001) (HR:5.27, 95% CI 2.47–11.25, P < 0.001) (Yu
et al., 2019). In conclusion, HBcrAg may be a useful biomarker
for HCC recurrence, however the sensitivity and specificity of
HBcrAg in predicting HCC recurrence needs further research.

FUTURE WORK AND CONCLUSION

This review has assessed the value of serum viral biomarkers
in HBV-related HCC. Of all the potential biomarkers that have
been studied, growing evidence supports the use of serum
HBcrAg and preS mutations as biomarkers for predicting

HCC occurrence in people with CHB, both in NA-naïve
patients and in patients receiving NA treatment. In combination
with AFP and abdominal ultrasound serum biomarkers might
improve HCC screening and increase early diagnosis, although
further validation studies are required to confirm their clinical
performance in predicting and/or detecting HCC. Moreover,
several biomarkers remain to be tested in a clinical setting (e.g.,
HBV integrations and HBV RNA, both full length and truncated
forms), laying the groundwork for future exploratory studies.

Challenges remain in this field of research. Firstly, some
of these markers (e.g., HBV RNA and HBcrAg) have no
standardized quantification assay. To accurately and robustly
compare HCC risk between different studies, equivalent cut-off
values need to be used and this can only be done with appropriate
reference samples and standardized assays. Moreover, we lack the
appropriate laboratory models to investigate new and existing
HCC markers in HBV infection. Even if there were a practical
experimental animal system that supported HBV infection, no
known models recapitulate the decades long-process of HBV-
initiated HCC. This makes discovery, characterization, and
confirmation of new and existing viral biomarkers difficult.

While this field awaits further developments to enable
more in-depth analysis, our review has shown signs of
promise in viral biomarkers and their ability to predict HBV-
associated HCC occurrence and recurrence. We expect that
(in combination with existing markers) viral biomarkers will
increasingly become incorporated into HCC risk algorithms,
improving health outcomes for the ∼300 million people
worldwide living with CHB.
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