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Rare genetic diseases reduce quality of life and can significantly shorten the lifespan. There
are few effective treatment options for these diseases, and existing therapeutic strategies
often represent only supportive or palliative care. Therefore, designing genetic-engineering
technologies for the treatment of genetic diseases is urgently needed. Rapid advances in
genetic editing technologies based on programmable nucleases and in the engineering of
gene delivery systems have made it possible to conduct several dozen successful clinical
trials; however, the risk of numerous side effects caused by off-target double-strand
breaks limits the use of these technologies in the clinic. Development of adenine-to-inosine
(A-to-I) and cytosine-to-uracil (C-to-U) RNA-editing systems based on dCas13 enables
editing at the transcriptional level without double-strand breaks in DNA. In this review, we
discuss recent progress in the application of these technologies in in vitro and in vivo
experiments. The main strategies for improving RNA-editing tools by increasing their
efficiency and specificity are described aswell. These data allow us to outline the prospects
of base-editing systems for clinical application.
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GENE THERAPY APPROACHES

More than 100 million persons are affected by rare genetic diseases globally (Nguengang Wakap
et al., 2020). These diseases have high mortality and morbidity rates and often require specialized
healthcare services and treatments; therefore, the management of these diseases is a large
socioeconomic burden (Ferreira, 2019). As a possible model for the treatment of genetic diseases
caused by the lack of functional activity or by complete absence of a protein, various technologies are
used based on the delivery of a genetic construct having the correct gene sequence (gene addition
strategies) via chemical, physical, or viral delivery (Giacca and Zacchigna, 2012; Kotterman et al.,
2015; Prakash et al., 2016; Salameh et al., 2020; Konishi and Long, 2021). Delivery of genetic tools by
means of viral vectors is widely used in clinical trials and is considered the most promising
administration route featuring low cytotoxicity, good transfection efficiency, and high efficacy (Ginn
et al., 2018). Among the many viral vectors [lentiviral, adenoviral, retroviral, and adeno-associated-
virus (AAV)-based], it is AAV viruses (characterized by low immunogenicity and cytotoxicity) that
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are most often employed in clinical trials and were recently
approved for the treatment of inherited blindness and spinal
muscular atrophy (Ginn et al., 2018; Wang et al., 2019a; Li and
Samulski, 2020).

Aside from gene addition strategies, there have been
developments in the technology of gene editing by means of
programmable nucleases: zinc-finger nucleases, transcription
activator–like effector nucleases (TALENs), and CRISPR-
associated (Cas) proteins. All these tools are utilized in clinical
trials (including phase II–III trials) for the treatment of various
genetic diseases (Cui et al., 2021; Guo et al., 2021). The most
rapidly developing gene-editing system is CRISPR–Cas [for
comprehensive review see (Leonova and Gainetdinov, 2020;
Guo et al., 2021)], which was first used for mammalian
genome editing in 2013 (Cong et al., 2013). In addition to
genome editing, Cas-based tools can also help to regulate gene
expression. Fusion of catalytically inactive RNA-targeting
enzyme dCas13b—either with one of adenosine deaminases
from the ADAR family or with cytosine deaminase
APOBEC3A—forms the basis for RNA-editing tools (Cox
et al., 2017; Matharu et al., 2019).

G-to-A and C-to-T mutations are common in mammals and
represent ~61% of all point mutations annotated in the ClinVar
database (Rees and Liu, 2018). RNA editing also allows to
implement protein recording and alters alternative splicing
sites because inosine is recognized by the tRNA system as
guanidine. Additionally, RNA editing can be utilized for
improving microRNA specificity or RNA stability or for
helping RNAs to assume their secondary structures (Kung
et al., 2018). Interestingly, in bacteria there is only one
example of A-to-I editing in mRNA of hokB toxin gene that
can regulate growth arrest and antibiotic sensitivity (Bar-Yaacov
et al., 2018). In the present review, we will look at examples of
applications of genetic-engineering systems for site-directed RNA
editing for therapy of monogenic diseases in vitro and in vivo.

DELIVERY METHODS AND TARGETING
CONSIDERATIONS FOR RNA EDITING
SYSTEMS
Gene therapy is the only effective modality for the treatment of
many rare hereditary diseases. According to the PubMed
database, the number of gene therapy studies has more than
tripled in the last 20 years. Despite active research in the field of
gene therapy, there are still many unsolved problems that limit
the use of such tools in clinical practice. A common problem with
gene addition and gene-editing strategies is finding efficient and
safe ways to deliver the genetic constructs to a target organ. Even
though already three gene therapies based on AAV vectors
(Glybera, Luxturna, and Zolgensma) are approved by the FDA
(Scott, 2015; Al - Zaidy et al., 2019; Maguire et al., 2019), and
AAVs themselves have low immunogenicity, cytotoxicity, and
high tropism for target tissues, there are still cases of serious
complications (even death) caused by AAV-based treatments
(Wilson and Flotte, 2020; Arnold, 2021). Short-term
complications may be related to adverse effects of high doses

of AAVs (Wilson and Flotte, 2020). On the other hand, long-term
complications may be induced by unintended integration of a
viral vector into the genome, resulting in a change in the
expression of host genes and the risk of malignant cell
transformation (Donsante et al., 2001; Donsante et al., 2007;
Nguyen et al., 2021). Different AAV serotypes have diverse
tropism to various human tissues due to a variety of cellular
receptors (Lisowski et al., 2015). The delivery of large gene
sequences via viral vectors is complicated, because for AAV
limitation of packaging capacity is under ~5 kbp DNA and for
high-capacity adenoviral vectors - under ~36 kbp DNA (Wang
et al., 2019a; Li and Samulski, 2020). Accordingly, major research
efforts are now devoted to capsid engineering in AAV vectors
with the aim of enhancing tropism to target tissues (including
rational design (Müller et al., 2003), directed evolution (Ojala
et al., 2018) and chemical conjugation (Liu et al., 2013), reducing
immunogenicity (humoral and cellular immunity against AAV),
and improving the trans-splicing technology to increase
packaging capacity (Srivastava, 2016; He et al., 2021). In
addition, nonviral delivery technologies based on lipids, lipid-
like nanomaterials, or gold nanoparticles are being designed too
(Lee et al., 2017; Rui et al., 2019; He et al., 2021). Delivery of
genetically engineered constructs via lipid nanoparticles has been
approved for a clinical trial (NCT04601051) (Gillmore et al.,
2021). Moreover, a few years ago, the first small-interfering-RNA
therapeutic packaged into nanoparticles (patisiran) was approved
by the FDA for the treatment of hereditary amyloidogenic
transthyretin amyloidosis (Kulkarni et al., 2019).
Disadvantages of the nonviral methods include low specificity
to target tissues and short half-life in the systemic circulation.
Altogether, the choice of a technique for delivery to cells and the
route of administration (intravenous, intraperitoneal, or targeted
administration to an organ) mostly determine the severity of
adverse effects and the treatment outcome. Therefore, despite the
adequate characteristics of genetically engineered constructs,
introduction of gene therapies into clinical practice requires
both long-term preclinical in vivo experiments on animals and
long-term monitoring of participants of clinical trials.

EVOLUTION OF CAS13-BASED
RNA-EDITING SYSTEMS

The complex of the Cas13 nuclease with RNA containing
clustered regularly interspaced short palindromic repeats
(crRNA) is the foundation of the CRISPR–Cas13 system,
which can specifically bind to single-strand RNA and cleave it.
In bacteria and archaea, the CRISPR–Cas13 system is a
component of the adaptive immune system, which performs
programmable RNA-guided degradation of foreign RNAs.
Four phylogenetically distinct variants of Cas13 have been
identified so far: Cas13a (previously known as C2c2), Cas13b,
Cas13c, and Cas13d. All these nucleases have two nucleotide-
binding domains (HEPNs), which are required for pre-crRNA
processing and for the cleavage of a target single-stranded RNA
(Abudayyeh et al., 2017; O’Connell, 2019). The CRISPR–Cas13
system has foundmany applications in molecular biology (Ashraf
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et al., 2022). One exotic application is the delivery of carrier phage
capsid with packaged CRISPR-Cas13a targeted against antibiotic
resistance gene, into bacterial cells (Kiga et al., 2020). Not so long
ago, progress in genetic engineering helped to create a Cas13b
variant devoid of RNase activity—dCas13b—which is still capable
of RNA binding (Cox et al., 2017). This was made possible by
replacement of two histidines with alanines (mutations H133A
and H1058A) in HEPN domains. RNA-binding programmability
by means of CRISPR–dCas13 has significantly expanded its
applicability (Cox et al., 2017; O’Connell, 2019; Ashraf et al.,
2022). CRISPR–dCas13-based systems have also found diverse
basic-research and clinical applications (Figure 1).

One of the most promising areas of practical application of
CRISPR–dCas13 from the standpoint of medical treatments is the

development of the site-directed RNA editing (SDRE) system.
This accomplishment has resulted from the fusion of
CRISPR–dCas13 with an adenosine or cytosine deaminase
(ADAR or APOBEC3A), which is capable of replacing
adenosine with inosine (A to I) or cytosine with uracil (C to
U) (Cox et al., 2017; Matharu et al., 2019). In this way,
CRISPR–dCas13 allows to focus the catalytic activity of ADAR
or APOBEC3A on a certain adenosine or cytosine (in an mRNA
sequence) that has undesirable consequences (alterations in a
splicing site, loss of functional activity of a microRNA, amino acid
substitution, or premature termination of translation).

The first CRISPR–Cas-targeted RNA-editing system was
developed in 2017 (Cox et al., 2017). By fusing dCas13b from
Prevotella sp. (hereafter referred to as dCas13b) with the
deaminase domain of ADAR2 (E488Q) (hereafter referred to as
ADAR2DD), they created RNA Editing for Programmable A to I
Replacement version 1 (REPAIRv1). This system was successfully
utilized for the editing of mutations in cell culture, and editing
efficiency reached 35%. A major drawback of this system is a large
number of off-target effects. To solve this problem, a modified
ADAR2 system with two amino acid substitutions has been created:
ADAR2DD (E488Q/T375G). Fusion of dCas13b with ADAR2DD
(E488Q/T375G) has been incorporated into REPAIRv2, the use of
which in cell culture in vitro has reduced the number of off-target
events from 18,385 (REPAIRv1) to 20 (REPAIRv2) according to
transcriptomic analysis, confirming significantly higher specificity of
the new system (Figure 2). At the same time, conversion efficiency
remains approximately at the same level (Cox et al., 2017).

Introducing 16 mutations into ADAR2DD allowed to expand the
functional activity of this deaminase: aside from adenosine
deamination, the enzyme now can carry out cytosine deamination
with C-to-U conversion and G-to-A functional substitution
(Abudayyeh et al., 2019). This mutated ADAR2DD was fused with
catalytically inactive Riemerella anatipestifer Cas13 (hereafter referred
to as dRanCas13b), and the resulting systemwas named RNAEditing
for Specific C to U Exchange (RESCUE) (Abudayyeh et al., 2019).
Nonetheless, the risk of unintended transcriptomic modifications also
got higher due to the extra deamination activity. To solve this
problem, ADAR2DD was mutated again, and the introduction of
the S375A mutation helped to diminish the number of C-to-U off-
target effects approximately 1.8-fold and A-to-I off-target effects
almost 12-fold while maintaining specificity. This system was
named RESCUE-S. Despite the appealing applications of such a
versatile RNA-editing system, the effectiveness of RNA editing in a
β-catenin transcript (CTNNB1) turned out to be lower than that of
other systems and did not exceed 15%.

To improve the RESCUE system, investigators used a Cas13b
ortholog: dPspCas13b (instead of dRanCas13b) with a nuclear
export sequence (NES) (Li et al., 2021). This system is called
eRESCUE. In multiple cellular transcripts, both C-to-U editing
and A-to-I editing with eRESCUE are up to 2-fold more efficient
as compared to the dRanCas13b-RESCUE-NES system.
Nevertheless, off-target activity of the eRESCUE system is
higher than that of dRanCas13b-RESCUE-NES (Li et al., 2021).

Apart frommutated ADAR2DD with cytidine deaminase activity,
in mammals there is a cytidine deaminase APOBEC3A (A3A),
which can act on both RNA and DNA substrates (Sharma et al.,

FIGURE 1 | A brief overview of Cas13-based applications. For the
detection of viral genomes in vitro, CRISPR–Cas13a is used as part of specific
high-sensitivity enzymatic reporter UnLOCKing (SHERLOCK), where
CRISPR–Cas13a cleaves a target RNA in the presence of a quenched
RNA reporter that emits its fluorescence signal (Gootenberg et al., 2018).
CRISPR–Cas13 is also a component of the CARVER system (Cas13-assisted
restriction of viral expression and readout), which is aimed at specific
degradation of viral RNA in vivo and has been successfully applied to various
viral RNAs in cultured cells (Freije et al., 2019). Moreover, CRISPR–Cas13d
within the PAC-MAN (prophylactic antiviral CRISPR in human cells) system
inhibits SARS-CoV-2 replication by directly targeting and cleaving all viral
positive-sense RNA (Abbott et al., 2020). The fusion of CRISPR–dCas13 with
florescent proteins helped to use this system for RNA imaging and research on
trafficking of RNAs (Abudayyeh et al., 2016); fusion with a splicing factor allows
for regulation of alternative pre-mRNA splicing (Wang et al., 2019b), whereas
fusion with a translational enhancer or repressor can help to manage the
translation of a specific mRNA (Abudayyeh et al., 2016). Some investigators
(Zhao et al., 2020) devised a photoactivatable RNA-m6A-editing system using
CRISPR–dCas13 (PAMEC), which enables regulation of the methylation level
of target RNA sites by means of light of different wavelengths. The fusion of
dCas13 with deaminases has laid the foundation for the creation of site-
directed RNA base–editing systems CURE, REPAIR, and RESCUE.
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2015). Huang and others fused this deaminase with dPspCas13b and
developed a C-to-U editing tool named CURE (C to U RNA Editor)
(Huang et al., 2020). A3A has high specificity for UC dinucleotides;
hence, the off-target activity of this system is quite low. Guide RNAs
(gRNAs) are designed to create loops at target sites because A3A is
active in specific loop regions. Off-target editing was further reduced
by the attachment of a NES to dCas13. Another version of the CURE
system—CURE-X—involves another nuclease, CasRx (also known
as RfxCas13d), instead of Cas13 to reduce off-target editing. These
systems show great variation in RNA editing efficiency and in off-
target activity, and in some cases, effectiveness is higher than that of
RESCUE-S (Huang et al., 2020).

To take advantage of these protein systems in medical
treatments, the sequences should be delivered into cells using,
for example, AAV vectors. Due to the long amino acid sequence
of Cas13, some researchers (Cox et al., 2017) had to cut
ADAR2DD to fit it into AAV. Another way to overcome this
problem is to find smaller Cas13 proteins. Some authors (Kannan
et al., 2021) analyzed more than 5000 bacterial genomes and
discovered novel subfamilies of small Cas13 proteins (~800 aa in
comparison with ~1100 aa Cas13a) within Cas13b and Cas13c
subtypes (Cas13bts and Cas13cts, respectively). Three proteins,
Cas13bt1, Cas13bt2, and Cas13bt3 were characterized, and two of
them (Cas13bt1 and Cas13bt3) were fused with ADAR2DD; the

resultant systems are called REPAIR.t1 and REPAIR.t3,
respectively. Similarly to REPAIR.t1 and REPAIR.t3, the fusion
of Cas13bt1 or Cas13bt3 with modified ADAR2DD gave rise to
RESCUE.t1 and RESCUE.t3, respectively. The efficiency of
REPAIR.t1/t3 and RESCUE.t1/t3 is comparable to that of the
previously described systems. Overall, improvements in site-
directed RNA-editing systems are currently focused on
increasing the efficiency of deaminases, on lowering the
number of off-target events, and on reducing the size of the
genetic construct to facilitate in vivo delivery.

SITE-DIRECTED RNA BASE EDITING FOR
MONOGENIC-DISEASE THERAPY

Even though dCas13-based site-directed RNA-editing systems
were discovered only recently, successful results have already
been obtained in the treatment of monogenic diseases in cell
culture models. The first successful practical application of RNA
editing was implemented using the REPAIR system (Cox et al.,
2017). Into HEK293FT cells, researchers transfected expression
constructs for cDNA of genes carrying the 878G > A (AVPR2
W293X) mutation, which is associated with X-linked
nephrogenic diabetes, and the 1517G > A mutation (FANCC

FIGURE 2 | Development of site-directed Cas13-based RNA-editing systems. Development of REPAIR (A-to-I) RNA editing system, RESCUE and CURE (C-to-U)
editing systems. Explanation see in the text.
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W506X), which is associated with Fanconi anemia (Table 1).
Missense mutation W293X leads to a nonfunctional type 2
receptor and insensitivity of cells to changes in arginine
vasopressin concentration in the blood (Wildin et al., 1998).
Missense mutation W506X impairs DNA repair because of
reduced activity of the FANCC protein, thereby causing
cytogenetic instability, hypersensitivity to DNA-crosslinking
agents, and increased chromosomal breakage (Liu et al., 1999).
REPAIRv1 successfully corrected the mutations, with an editing
efficiency of 35% for the AVPR2 gene and 23% for FANCC (Cox
et al., 2017). Of note, the entire REPAIRv1 genetic construct was
packaged into AAV vectors, which were used for delivery. Given
that AAV vectors are currently regarded as most applicable to
therapeutic uses, REPAIRv1 is expected to further minimize the
problems of construct delivery to a target organ.

One research group (Fry et al., 2020) used the REPAIRv2
system to edit the c.11864G > A nonsense mutation in the Usher
Syndrome 2A (USH2A) gene. USH2A is important in the
development and homeostasis of the inner ear and retina, whereas
the absence of the functional protein leads to sensorineural hearing
loss and retinitis pigmentosa. Sequence of exon 60 of USH2A cDNA
carrying the c.11864G >Amutation was delivered via a plasmid into
HEK293T cells along with the REPAIRv2 construct. The efficiency of
target adenosine editing was 43%.

Thus, successful application of site-directed Cas13-based
RNA-editing systems has been demonstrated for RNA editing
and for restoration of a protein product’s function (Cox et al.,
2017; Fry et al., 2020). Preliminary data (Rashnonejad et al., 2019)
also indicate that CRISPR–Cas13 can successfully suppressDUX4
mRNA translation. Normally, DUX4 is expressed only in the
embryonic period, whereas inadequate DUX4 repression in the

postnatal period is associated with progressive muscle wasting
and weakness (facioscapulohumeral muscular dystrophy). By
means of several Cas13b–gRNAs targeted to different parts of
DUX4 mRNA, those authors achieved >90% downregulation of
the DUX4 protein in experiments on cultured cells and a near
100% reduction of DUX4 expression in tibialis anterior muscles
of the TIC-DUX4 mouse model.

In addition to dCas13-ADAR2DD RNA-editing systems, other
RNA-editing systems are currently being actively developed, such
as BoxB-λN-ADARDD, SNAP-tag-ADARDD, and MCP-MS2-
ADARDD, in which the binding of ADARDD and gRNA is
implemented by the λN peptide, SNAP-tag protein, and MS2
bacteriophage coat-binding protein, respectively (Fry et al., 2020;
Khosravi and Jantsch, 2021). BoxB-λN-ADARDD has manifested
greater efficiency of editing of point mutations inMecpmRNA in
vivo (~50%) and in vitro (~70%) (Sinnamon et al., 2017;
Sinnamon et al., 2020). Mutations in the Mecp gene are the
etiology of Rett syndrome. Treatment of Duchenne muscular
dystrophy in the Mdx mouse model via editing of the mutation
in the Mdx gene by means of the MCP-MS2-ADARDD system
yielded less impressive results (up to 3.6% of edited RNA and up to
2.5% protein restoration) (Katrekar et al., 2019). Similarly, dCas13-
based SDRE BoxB-λN-ADARDD and MCP-MS2-ADARDD

systems are relatively small and can be packaged into AAV vectors.
The second important family of editing tools is based on

ADAR gRNA, whose structure mimics ADAR substrates, thereby
ensuring the recruitment of exogenous and/or endogenous
ADARs; the presence of a programmable antisense region that
is complementary to the target RNA sequence affords “site-
directed” RNA editing (Fry et al., 2020; Kannan et al., 2021).
Among approaches involving endogenous ADARs, it is worth

TABLE 1 | RNA editing for therapy of monogenic diseases in mouse models.

Strain Model Delivery
system

gRNA delivery
system

Editing
system

Target Tissue References

In vivo

Mecp2317G>A mice Rett syndrome AAV λN-BoxB hADAR2
(E488Q)

Mecp2 Hippocampus Sinnamon et al.
(2020)

Mdx mice Duchenne muscular
dystrophy

AAV MS2 GluR2
transcript

hADAR2
(E488Q)

Mdx Muscle Katrekar et al.
(2019)

spfash mice Ornithine transcarbamylase
deficiency

AAV GluR2 transcript hADAR2
(E488Q)

Otx Liver Katrekar et al.
(2019)

Idua-W392X mice Hurler syndrome AAV cadRNAs hADAR2
(E488Q)

IDUA Liver Katrekar DY et al.
(2021)

In vitro/Ex vivo

Neuro2A cells, Primary neurons
from Mecp2R106Q mice

Rett syndrome AAV λN-BoxB hADAR2
(E488Q)

Mecp2 -- Sinnamon et al.
(2017)

HEK293T cells Monogenetic type of
Parkinson’s disease

Plasmid -- ADAR
gRNAs

PINK1 -- Wettengel et al.
(2017)

Primary fibroblasts from Hurler
syndrome patient

Hurler syndrome Plasmid -- ADAR
gRNAs

IDUA -- Qu et al. (2019)

HEK293FT cells X-linked nephrogenic
diabetes

AAV dCas13 hADAR2
(E488Q)

AVPR2 -- Cox et al. (2017)

HEK293FT cells Fanconi anemia AAV dCas13 hADAR2
(E488Q)

FANCC -- Cox et al. (2017)

HEK293T cells Usher syndrome type 2 Plasmid dCas13 hADAR2
(E488Q)

USH2A -- Fry et al. (2020)
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mentioning the RESTORE system (Recruiting Endogenous
ADAR to Specific Transcripts for Oligonucleotide-mediated
RNA Editing), which is based on short chemically modified
antisense oligonucleotides, and LEAPER (Leveraging
Endogenous ADAR for Programmable Editing of RNA),
which involves long antisense RNAs (Merkle et al., 2019; Qu
et al., 2019). ADAR gRNAs often use the naturally occurring R/G
motif of GluR2 sequence or artificially synthesized sequences.
These approaches are responsible for the substantial progress in
the editing of mutant IDUA pre-mRNA both in vitro (efficiency
up to 80%) (Qu et al., 2019) and in vivo (efficiency up to 17%) in
Idua-W392X mice (Katrekar DY et al., 2021). A nonsense
mutation in the IDUA gene leads to the absence of an enzyme
(α-L-iduronidase) and the buildup of large sugar molecules
(glycosaminoglycans) in lysosomes, resulting in one form of
type 1 mucopolysaccharidosis (Hurler syndrome). Despite
relatively low magnitude of RNA editing in the liver of Idua-
W392X mice (Katrekar DY et al., 2021) (≤17%), this was
sufficient for a 50% reduction of the glycosaminoglycan
accumulation in lysosomes. Other studies on ADAR gRNA
have shown restoration of ornithine transcarbamylase function
(up to 34% of edited RNA and ≤2.5–5.0% protein restoration) in
the liver of ornithine transcarbamylase–deficient spfash mice
(Katrekar et al., 2019) and successful editing of the mutant
RNA of the PINK gene (up to 65%) in cultured
HEK293T cells; the loss of the functional protein product of
this gene is associated with the development of the monogenetic
type of Parkinson’s disease (Wettengel et al., 2017).

One of the reasons for the scarcity of studies on Cas13-based
RNA-editing systems aimed at correcting the effects of genetic
mutations may be that these systems were discovered relatively
recently. Other approaches to RNA editing have yielded
considerable progress in in vivo experiments and therefore
offer a wide variety of experimental models for evaluating the
effectiveness of CRISPR–Cas13-based systems. The most
important characteristics for clinical dissemination of SDRE
systems are their effectiveness and specificity (a low number of
off-target events). Although it is not yet possible to compare
different RNA-editing systems by these parameters, it should be
mentioned that the studies in question (Cox et al., 2017; Fry et al.,
2020) were performed on cultured cell lines with forced
expression of fragments of mutant genes. The performance of
such systems in vivo can be much different. Furthermore, the
percentage of edited RNA is often higher than the percentage of
the protein with a restored function. Consequently, new studies
are needed to evaluate the effectiveness of CRISPR–Cas13-based
RNA-editing systems in vivo.

TRANSLATIONAL POTENTIAL OF
SITE-DIRECTED RNA-EDITING SYSTEMS
FOR GENE THERAPY OF MONOGENIC
DISEASES

The most important safety limitation is the off-target effects, which
inevitably arise when an SDRE is employed (Mao et al., 2019).

Strategies for lowing the number of off-target events in dCas13-
based SDRE include (i) introduction of point mutations into the
deaminase domain for increasing deamination specificity, (ii)
selection of programmable binding proteins that are not
promiscuous, and (iii) unconventional configuration of the fusion
protein, which may impair deaminase–RNA interaction via steric
hindrance, thereby reducing the off-target effects (Mao et al., 2019).
Substantial progress in the engineering of genetic editors has already
allowed to create stable system (REPAIRv2) with a minimal number
of off-target events. A reduction in this number is usually
proportional to a reduction in editing efficiency; accordingly, one
of the urgent tasks is to optimize existing editors in order to achieve
the best ratio of efficiency to off-targets. It should be pointed out that
the number of off-target events and the efficiency of editing also
depend on the uniqueness of their target RNA sequence. Lately,
relevant tools have been coming out (created via deep-
learning–based computational modeling) that evaluate the
effectiveness of editing (Song et al., 2020).

The applicability scope of basic RNA editors is limited by the
finding that they can correct the effects of only ~60% of pathogenic
pointmutations. CRISPR–Cas13-based tools alongwith amicroRNA
or antisense oligonucleotide can be successfully employed to treat
dominant mutations (e.g., polyglutamine diseases, including
Huntington’s disease, spinobulbar muscular atrophy,
dentatorubral-pallidoluysian atrophy, and several spinocerebellar
ataxias) (Matos et al., 2018; Silva et al., 2020). SDRE systems do
not affect DNA sequence, and consequently their effects can be
considered temporary and reversible; thus, clinical use of these tools
may be more attractive than that of gene-editing tools. The duration
of action of RNA editors in the cell is mainly influenced by the
deliverymethod: a ribonucleoprotein complex rapidly degrades in the
cell, whereasAAVvector genomes in episomal form can persist in the
cell for several years (Niemeyer et al., 2009; Nathwani et al., 2011a;
Nathwani et al., 2011b; Lin et al., 2022). Notably, the rapid
degradation of Cas-based editors in the form of a
ribonucleoprotein complex significantly diminishes off-target
effects (Doman et al., 2020). Thus, for diseases that require short-
term RNA correction (for example, during a critical period of child
development), SDRE would be optimal. AAV-mediated delivery of
an SDRE systemmay be utilized for long-term therapy of an inherited
disease. An important prerequisite is stable expression of the vector
genomes, which reduces the risk of the need for repeated treatment.
Apart from financial implications, the repeated administration of
AAV vectors may entail transduction suppression by an increased
titer of a neutralizing antibody (Guggino et al., 2020). Consequently,
RNA editors can abrogate the effects of a wide range of mutations,
and these editors have advantages and disadvantages as compared to
CRISPR–Cas9 or base editing; the choice of treatment in each case
depends on characteristics of the genetic disease in question.

CONCLUSION

Incessant improvement of CRISPR–Cas-based RNA-editing
systems and of delivery modalities is step by step bringing
about the era when rare mutations will not mean a death
sentence for their carriers. On the other hand, at present,
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there is a large gap between basic research and translation into
therapies for rare diseases (Tambuyzer et al., 2020). One of the
main goals of the International Rare Diseases Research
Consortium is the acceptance of 1000 new therapies for rare
diseases into clinical practice by 2027 (Austin et al., 2018), among
which gene therapy is expected to occupy an important place.
Still, as recent events suggest, it is dangerous to accelerate the
design of gene therapies; hence, their safety should be a top
priority. Exceptions may only be made if a gene therapy can be
regarded as a treatment of last resort (salvage therapy). In terms
of safety, Cas-based RNA editors are promising, because as
already noted, these systems do not induce double-strand
DNA breaks. Nevertheless, to use these editors in clinical
practice, it is necessary to conduct systematic preclinical
studies on rodents, nonhuman primates, and other animal
models that would allow for the evaluation of delayed adverse
effects. Besides, systematic investigation is needed to select
optimal combinations of conditions (e.g., the editor type,
delivery conditions, vector concentration, and neoadjuvant
therapy). Altogether, these comprehensive studies will make an
invaluable contribution to the progress of gene therapy.
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