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Abstract

Background: Tumor cells are considered to have an aberrant cell state, and some evidence indicates different
development states appearing in the tumorigenesis. Embryonic development and stem cell differentiation are
ordered processes in which the sequence of events over time is highly conserved. The “cancer attractor” concept
integrates normal developmental processes and tumorigenesis into a high-dimensional “cell state space”, and
provides a reasonable explanation of the relationship between these two biological processes from theoretical
viewpoint. However, it is hard to describe such relationship by using existed experimental data; moreover, the
measurement of different development states is also difficult.

Results: Here, by applying a novel time-ordered linear model based on a co-bisector which represents the joint
direction of a series of vectors, we described the trajectories of development process by a line and showed
different developmental states of tumor cells from developmental timescale perspective in a cell state space. This
model was used to transform time-course developmental expression profiles of human ESCs, normal mouse liver,
ovary and lung tissue into “cell developmental state lines”. Then these cell state lines were applied to observe the
developmental states of different tumors and their corresponding normal samples. Mouse liver and ovarian tumors
showed different similarity to early development stage. Similarly, human glioma cells and ovarian tumors became
developmentally “younger”.

Conclusions: The time-ordered linear model captured linear projected development trajectories in a cell state
space. Meanwhile it also reflected the change tendency of gene expression over time from the developmental
timescale perspective, and our finding indicated different development states during tumorigenesis processes in
different tissues.

Background
Cancer is a severe threat to human health. Although
there are many established methods for overcoming this
disease, the high mortality caused by cancer is still a
severe threat to human. Meanwhile, the side-effects of
many therapeutic methods greatly affect the quality of
life of individuals and their families. Uncertainty about
the mechanisms of tumorigenesis greatly handicaps the
creation and application of suitable therapeutic methods.
Tumorigenesis is a complex process, affected by both
genetic factors and environmental conditions. There is
evidence to suggest that developmental processes and

tumorigenesis share some conserved mechanisms [1,2].
Time-course microarray experiments have the advantage
of allowing us to study the dynamics of gene regulation.
Time-course microarrays have recently been used to
identify biological markers associated with disease and
to examine the expression patterns of genes that are
important in tumorigenesis and development [1,3].
Many models have been proposed to explain the

process of tumorigenesis and its relationship to develop-
ment. The “cancer attractor” model was first suggested
by Kauffman in the 1970 s [4] and can be used to
explain how a Gene Regulation Network (GRN) confers
a single genome with the capacity to produce a diversity
of stable, discretely distinct cell types over the process
of development [5]. Foster introduced a simplified dif-
ferential equation described by Huang [6] into a model
containing two genes. Five hundred “cells” were
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stimulated to “differentiate”, finally reaching the “stable
attractors” position, demonstrating the validity of the
“cancer attractor” model. There is a significant amount
of evidence based on time-course microarray experi-
ments which supports the attractor theory [5,7-9]. Mar
and Quackenbush [10] have recently decomposed cell
fate transition into two processes: the core process that
includes the main differentiation pathway, and a transi-
ent process that captures information from the environ-
ment and controls the core process.
Cell state space is a high-dimensional space in which

different cell types correspond to points or distributions
[11]. In Foster’s work [5] a system based on two genes
generated 3-dimensional coordinates including two gene
dimensions and one “quasi potential” dimension, how-
ever, that still exists some difficulties to explain the bio-
logical meaning of this “quasi potential” dimension.
Since time is invariable and irreversible, sequentially
ordered developmental progression is a very important
innate characteristic of life. If we treat time as a scale
for measuring cell state space, it is possible to describe
the high-dimensional cell state space by a low-dimen-
sional space.
Many approaches, including PCA and SVD methods

[12-14], the Bayesian models [15], HMM(Hidden
Markov Models) [16], and some ANOVA and regres-
sion-based model [17,18] have been applied for the ana-
lysis of time-course microarray data from different
aspects. Most of these methods are designed to detect
genes which undergo significant changes and to classify
expression patterns in time-course experiments. Only
few methods emphasize temporal order within experi-
ments and time-course expression profiles.
Here, in order to capture the temporal properties and

describe the trajectories of development processes, we
propose a new linear model, named the “time-ordered
linear model”, which draws on the idea that a co-bisec-
tor can represent the main tendency of a series of vec-
tors. This co-bisector model has two main advantages:
first, unlike present methods such as PCA, the biological
meaning of the co-bisector model is borne in mind in
the design of the model. A co-bisector conserves the
temporal properties of a series of vectors since they
have order-restricted projection locations on the co-
bisector. Furthermore, our model preserves the spatial
distance ratio between neighboring samples which have
fixed locations in microarray space. Our time-ordered
linear model can be used as a measurement scale of
gene expression variation in microarray space, thus
creating a new application for time-course microarray
data; estimating the expression pattern similarities
between expression data from more than one source. In
the present work, we apply our time-ordered linear
model to estimate expression pattern similarities

between different tumor tissues and their corresponding
normal tissues in both mice and humans. Our time-
ordered linear model describe the trajectories of devel-
opment process in a cell state space from the gene
expression pattern perspective, thus helping us to
improve our understanding of the relationships among
different cell types in cell state space.

Results
Design the Time-ordered Linear Model in the Abstract
Cell State Space
The concept of cell state space was proposed by Kauff-
man[11]. In high-dimensional cell state space, cell types
with similar properties are grouped together. The
dimensions of cell state space are measurements of cell
properties such as SNP, transcriptome, and epigenetic
modification. The expression pattern of a cell is simply
a reflection of its cell state. Recently, the mouse and
human genome DNA methylation maps have been
reported [19,20]. We believe that a fuller and more
detailed description of cell state space will emerge as
more and more high-throughput data are published. But
the work presented here only focus on gene expression
patterns, and we simplified the cell state space as a
microarray space which dimensions are determined by
genes.
Since all cell activities are continuous, any cellular

process can be represented as a continuous thread in
abstract cell state space. In Figure 1 the process of cell
differentiation, from the pluripotent to the differentiated
cell state, is described as a continuous track in abstract
cell state space. When microarrays are used to describe
the transcriptome, the expression pattern is projected
from abstract cell state space to microarray space, and
the continuum of cellular processes is retained and can
be used to map cell differentiation in microarray space.
In cell differentiation microarray experiments, samples

representing different cell differentiation stages i.e. dif-
ferent time points, are linked in order by a curve in
microarray space. As a powerful approach, the PCA
method can easily draw the mathematical distribution of
principal components of these points to maximize the
sum of variance. In order to test the efficiency of
description development trajectory by PCA methods, we
analyzed dataset GSE13149 which represents mouse
fetal liver development. Although some principal com-
ponents (PCs) may preserve the sampling order (Figure
S1), one hand, the biological meaning of these PCs can
not be derived directly from the PCA methods. Some
approaches, such as GO annotation, were applied to
obtain the biological meaning of these PCs from the
biological function of significantly changed genes. On
the other hand, under the condition that maximizes
sum of variance, the projection distance ratio of
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neighbor points on PCs are different from real distance
ratio in microarray space (Table S1). For these two rea-
sons, it is difficult to use the PCA method to describe
the trajectories of the development process.
Since this curve is difficult to describe in high-dimen-

sional space, we have to develop a time-order linear
method to characterize this curve using a simple line,
preserving the order of sampling points in the cell
differentiation process. Different to PCA method
(Figure 2), our linear model is designed to describe the
development trajectory as a line with a distinct direc-
tion, which represents the change in genes expression

over developmental time. In microarray space, when a
series of points (expression profiles of samples in experi-
ments) are projected onto a line, the sampling order of
the projected points are preserved; meanwhile, if the
projection distance ratio of neighbor sample points on
the line are equal to the distance ratio of neighbor sam-
ples points in the microarray space, we can say this line
reflect the change of genes expression over time. Natu-
rally, we found that the angle bisector linear model
would satisfy these two conditions. Since feature reduc-
tion involves loss of information, we maximized the
distance between points on the bisector in order to

Pluripotent Cell State

Progenitor Cell State

Cancer State(attractor)

Function Cell State (normal)

Cancer State (attractor)

Function Cell State (normal)

Pluripotent Cell State

Progenitor Cell State

Cell developmental state line
2nd Projection to Cell developmental state line

1st Projection to Microarray Space

Abstract Cell State Space

Pluripotent Cell State

Progenitor Cell State

Function Cell State (normal)

Cancer State (atrractor)

Tumorigenesis

Figure 1 Development trajectory in Cell State Space and transformations to cell developmental state line in a sub space. In cell status
space, the development process is represented as a segment of line; the experimental samples are selected to represent time points in this
continuous segment. After experimental detection such as microarray hybridization or proteins 2D-eletrophoresis, the experimental samples have
transformed to points in the sub-attribute space (microarray space or proteomics space). The time-ordered linear model projects the samples
points to the cell developmental state line which keeps the strict temporal order of every sample and conserves distance ratio between
neighbor points.
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preserve as much information as possible. The details of
model construction were described in method.
Using this time-ordered linear model we can obtain

“cell developmental state lines” representing the tem-
poral properties of differentiation trajectories. The
main advantages of this time-ordered model are that
the sequential order is preserved and that the distance
between points is maximized, ensuring that develop-
mental processes are in the right order and that the
relationship among neighboring points in microarray
space is denoted accurately. Here, by analyzing pub-
lished tissue development and cell differentiation
expression profiles obtained using time-course experi-
ments (described below), we obtained cell developmen-
tal state lines representing several developmental and
differentiation processes, and then compared published
tumor expression profiles obtained using the same
microarray platform (described below). By calculating
the projection positions of expression profiles on the
cell developmental state line, and their relationship, we
were able to deduce developmental states of these

tumors in these processes on a developmental-tem-
poral scale.
Similar to PCA, Time-ordered linear model generate

one principal component to represent a mass of sample
points. This principal component which we called
‘developmental state line’, is not only representing one
mathematical characteristic of samples, but also reflects
temporal property of a development process. In other
words, the biological meaning was denoted to a mathe-
matical characteristic, and this clear biological develop-
ment perspective enable us to accurately estimate
different development stage of same tissues samples
came from different sources by one line.
In order to verify whether the principal components

generated by PCA method have the same property, we
used PCA to analyze dataset GSE5334 which contains
mouse ovary development time-course expression pro-
files, then projected another development time-course
data GSE6916 to principal components (PCs) of
GSE5334. The result was shown in Figure 3. PC1
reserved the natural time order of samples in GSE5334,
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but can not estimate the right order of samples in
GSE6916. PC2 can not keep the right natural time order
of 16 day and 18 day in ovary development expression
profiles of GSE5334. In GSE6916, PC2 mainly kept the
right order of development except that sample of 12.5
day was project between 14.5 day and 16.5 day. Oppo-
sitely, the cell development state line of GSE5334 kept
the right natural development order of samples both in
GSE5334 and GSE6916 (Figure 4). We also calculated
the distance and distance ratio between neighbors points
(Table 1). Only cell development state line generated by
Time-order linear model can keep the right distance
ratio information which existed in high dimensional
microarray space. We believe the Time-ordered linear
model is suitable to describe the development trajectory

in a microarray space and estimate the developmental
stage of samples came from other experiments.
The robustness of this time-ordered linear model was

also tested. We generated 3 cell developmental state
lines by removing 1, 2 and 3 points from dataset
GSE13149. Then dataset GSE6998 were projected to
these 3 cell developmental state lines one by one. The
results indicated that the projection locations of the test
dataset GSE6998 maintained the order following interval
of points of the cell development state lines. Meanwhile,
the mean values of the projection locations were similar
to the control, and the variance constantly increased.
Especially the first test point 10.5 D and last test point
16.5 D, suffered bigger variance than other points
(Table S2 and Figure S2). Interestingly, lack of the first
two or three points influenced the resolution of later
development period samples. This result indicated that
the model has a high robustness, especially for the lack
of medial samples, but lack of samples at either end of
the time points would influence the projection result.

Mouse liver cell developmental state line demonstrates
apparent “similarity to early developmental stage” of
liver tumors
The liver development “cell developmental state line”
was calculated according to the method described above
using dataset GSE13149, which traces mouse fetal liver
development from 11.5 days to 18.5 days (Figure 5).
Dataset GSE6998, another mouse liver development
time-course expression dataset, was used to test the
accuracy of this cell developmental state line. As shown
in Figure 1B, the cell developmental state line could
accurately order liver samples according to developmen-
tal stage. Compared to the cell developmental state line,
the projection positions of dataset GSE6998 were earlier.
This alteration might be caused by the use of different
mouse strains in the datasets analyzed; the cell develop-
mental state lines are based on C57/B6 mouse liver
development, while the GSE6998 dataset came from
experiments with CD-1 mice. Our results indicated that
the cell developmental state line reliably reflects the
temporal property of other expression datasets, and can
be used to compare data generated from different
experiments.
We used the liver cell developmental state line to esti-

mate the similarities of liver tumor samples over time.
Expression profiles of 10 liver tumor samples induced
by knockout of Trim24 (Trim24-KO) and 5 normal
samples from the dataset GSE9012 were individually
projected onto the cell developmental state line as
described above. Compared with normal samples, the
expression patterns from tumor samples had a clear ten-
dency to project to positions corresponding to earlier
development stages (Figure 6). The projection positions
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Figure 4 Mouse fetal ovary cell developmental state line
distinguished temporal distributions of mouse ovary tissue
and cancer. (A) Projection positions of Mouse fetal ovary
development time-course sample on Cell developmental state line
based on dataset GSE 5334. The sample 11 d was set as origin
point; other projection positions were normalized by sample 11 d.
(B) Distributions of projection positions of ovary samples from Trim-
28 Knockout mouse and normal WT mouse (dataset GSE5987).
Green represents normal WT mouse ovary samples. Red represents
Endometrioid ovarian adenocarcinomas samples from Trim-28
Knockout mouse. (C) Distributions of projection positions of ovary
development time-course experiments based on GSE6916.

Zhang et al. BMC Bioinformatics 2011, 12:53
http://www.biomedcentral.com/1471-2105/12/53

Page 5 of 12



of expression patterns of normal liver samples and
tumor samples were 53.83 ± 9.42 and 59.55 ± 5.96,
respectively. Such results demonstrate that the cell state
of liver tumors induced by Trim24-KO was more similar
to that of earlier stages of development, suggesting that
knockout of Trim24 may block cell development.
We projected the dataset GSE 5128 which contains a

series of carcinogen-treated samples onto the liver cell
developmental state line. Interestingly, a dynamic back-
moving tendency appeared (Figure 6). Mice treated with
the two positive liver carcinogens had the earliest pro-
jection positions (those treated with 1,5-Naphthalenedia-
mine located at46.52 ± 0.54, while those treated with
2,3-Benzofuran located at 47.70 ± 1.40). Projection posi-
tions for mice treated with the two negative liver carci-
nogens located in the middle between control and
positive liver carcinogen-treated mice. These results sug-
gest that there is a link between carcinogenicity and the
apparent “younger developmental state” of cells
observed here; different carcinogens change the cell
state to different degrees. Our liver cell developmental
state line represents the changes in liver cell state asso-
ciated with development. The analysis of these two data-
sets suggested a fact that liver tumors have a similar cell
state to that of earlier developmental stages of the fetal
liver. As is well known, tumor or cancer cells have
many of the properties of self-renewing stem cells. It is
accepted that once the cell status of cancer cells departs

from that of normal cells, they regain the ability to pro-
liferate uncontrollably.

Mouse ovary tumor demonstrates apparent
“developmentally younger”
We conducted a similar analysis of ovary development
time-course experimental data. In dataset GSE 5334,
expression profiles from 5 stages (Gestational days
GD11 day to GD18) were used to construct the ovary
cell developmental state line as described above. Dataset
GSE6916 was used to test the accuracy of the cell devel-
opmental state line. The results indicated that the cell
developmental state line ordered each developmental
stage accurately (Figure 4). We then used the cell devel-
opmental state line to estimate the projection positions
of dataset GSE5987, which contains 7 ovarian tumors
and 4 normal ovary samples. Results were also similar
to those described above for the liver (Figure 4), once
again suggesting that the process of tumorigenesis in

Table 1 Distance and Distance Ratio in microarray Space, developmental state line (DSL) and PCs of dataset GSE5334

11d->12d 12d->14d 14d->16d 16d->18d

Distance in microarray space (i->i+1) 118.62 105.49 114.97 104.52

Distance ratio in microarray space ((i->i+1): (i+1->i+2)) 1.12 0.92 1.10

Distance on DSL (i->i+1) 11.25 10.01 10.85 9.91

Distance ratio on DSL ((i->i+1): (i+1->i+2)) 1.12 0.92 1.10

Distance on PC1 (i->i+1) -5.91 -3.46 -6.55 -4.27

Distance ratio on PC1 ((i->i+1): (i+1->i+2)) 1.70 0.53 1.53

Distance on PC2 (i->i+1) -35.89 -50.62 -56.88 0.09

Distance ratio on PC2 ((i->i+1): (i+1->i+2)) 0.71 0.89 -627.75
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Figure 5 Mouse fetal liver cell developmental state line. (A)
Projection positions of the mouse fetal liver development time-
course sample on Cell developmental state line based on dataset
GSE 13149. The sample 11.5 d was set as origin point; other
projection positions were normalized by sample 11.5 d. (B)
Distributions of projection positions of the CD-1 mouse liver
samples from dataset GSE 6998.
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Figure 6 Temporal distributions of mouse normal liver tissues
and tumors. (A) Projection positions of mouse fetal liver
development time-course samples on the Cell developmental state
line based on dataset GSE 13149. The sample 11.5 d was set as the
origin point; other projection positions were normalized by sample
11.5 d. (B) Distributions of projection positions of mouse liver
samples treated with carcinogens from dataset GSE 5128. Green
represents normal mouse liver samples. Yellow represents liver
samples from mice fed negative carcinogens. Red represents liver
samples from mice fed with positive carcinogen for 13 weeks. (C)
Distributions of projection positions of mouse HCC samples and
normal WT liver samples based on dataset GSE9012. Green
represents normal WT mouse liver samples. Red represents mouse
HCC samples.
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ovary make ovary tumor cells have a high “similarity to
early developmental stage”.

Cell state variation caused by carcinogenesis in the lung
do no share same direction to mouse lung cell
developmental state line
Three sets of expression data from different develop-
mental stages were projected onto the lung cell develop-
mental state line (based on dataset GSE11539 which
represents lung development from embryonic day 11.5
to postnatal day 5) (Figure S3). The projection positions
of each of the samples were distributed from early to
terminal differentiated stages according to the age of the
mice. This result demonstrates that the cell develop-
mental state line can faithfully represent the temporal
properties of development. Then the cell developmental
state line was used to estimate the states of GSE5127
lung carcinogenesis expression dataset, in which differ-
ent carcinogens were feed to the mouse. The results
were different to those for the liver and ovary. The four
chemicals hardly changed the “developmental state” of
lung cell state (Figure S4). Although 2,3-Benzofuran and
1,5-Naphthalenediamine can cause cancer in both liver
and lung, our model indicates that, different to in the
liver and ovary, the genes belonged to a developmental
pathway that may have not been involved in carcinogen-
esis process in the lung.
Generally speaking, the cell developmental state lines

generated by our time-ordered linear model using time-
course microarray experimental data accurately reflect
the gene expression pattern variation over time during
development, and their utility for estimating the rela-
tionship between tumor cell state and normal cell state
could supply clues for further investigations of the
tumorigenesis mechanism. If tissue-specific tumors are
treated as “attractors”, the cell developmental state line
describes the relative position of the “attractors” in cell
state space. In the liver and the ovary, cancer attractors
may be located nearer to earlier developmental stages
than is the case for normal tissues. In the lung, cancer
attractors may be located in a direction that is vertical
to the developmental direction, and the cell develop-
mental state line can not distinguish such cell state
changes. Projection results for cancer samples give an
indication that the mechanisms of tumorigenesis may be
not the same in different tissues.

Mouse tissues development trajectories have different
directions in cell state space
Initiating from a fertilized egg, more than 200 kinds of
cell types are generated follow different differentiation
trajectories in both mouse and human. After transform-
ing mouse liver, ovary and lung tissue development
trajectories to tissue developmental state lines, we

calculated the angles of these three developmental state
lines. Obviously, smaller angel between developmental
state lines suggests higher similarity of gene expression
pattern between two tissue development processes. The
result shown in Figure 7 indicated the liver development
and lung development shared more commons (angle of
liver-lung is 72.27 degree), and the ovary development
had a nearly vertical direction to liver and lung develop-
mental state lines (angle of liver-ovary is 91.52 degree;
angle of lung-ovary is 87.79 degree).
As known, the liver and lung both come from the

endoderm, and the ovary is developed from mesoderm.
We guess that if the origins of tissues in the gastrula are
same, their development trajectories may share more
commons in the cell state space, and the angle between
these tissue developmental state lines would be smaller.

Cell differentiation state lines of human ES cell
distinguished cell states variation of human tumors
Since human embryonic stem cells are an important
model for studying human development, we trans-
formed expression data from ES cell differentiation
time-course experiments to a cell developmental state
line representing the ES cell differentiation process.
Unlike mouse tissues developments start from different
cell states, we calculated two cell developmental state
lines for all ES cell differentiation processes starting
from the same pluripotent cell state. This generated
2-dimensional coordinates, with each cell developmental
state line axis representing different developmental
processes. We used the GSE9940 dataset of the ES

Ovary developmental state line

Liver developmental state line

Lung developmental state line

72.27

87.79

91.52

o

o

o

Figure 7 Angles between different tissue development state
lines. Red: Mouse fetal ovary developmental state line (GSE5334);
Green: Mouse fetal liver developmental state line(GSE13149); Blue:
Mouse fetal lung developmental state line(GSE11539).
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cell-derived neural rosette differentiation expression
profile to generate a “neuronal” cell developmental state
line, and the GSE8884 dataset of the ES cell-derived
blast cell differentiation expression profile to generate a
“blast cell” cell developmental state line. We combined
two axes to one “differentiation index coordinate”, and
used it to estimate projection positions of different can-
cers and normal tissues.
First we tested the accuracy of the line. The GSE

15209 dataset, which contains expression profiles of
normal adult cortex samples, fetal neural stem cells and
tumorigenic glioma neural stem cells, was projected
onto the “neuronal” cell developmental state line. Com-
pared to adult cells, fetal neural stem cells (f-NS cells),
were as expected, more like embryonic stem cells
(Figure 8). Surprisingly, tumorigenic glioma neural stem
cells (t-g-NS cells) showed the greatest similarity to ES
cells at the developmental state level. These results sug-
gest that the tumorigenesis process of glioma tumors
may share commons to tumorigenesis in liver and ovary.
Then the “differentiation-index coordinates” was used

to detect cell state of four human tumor expression data
(GSE7305, GSE4107, GSE5674, and GSE18520) contain-
ing normal tissue samples and diseased tissue samples
(endometrium, colon, breast, and ovary, respectively)
from the GEO (Gene Expression Omnibus). Moreover,
we selected expression data from GSE2109 (obtained
from the IGC Expression Project for Oncology (expO)),
which contains expression data from more than 2000
tumor samples derived from more then one hundred
tissues. Tumor samples originating from the breast,
colon, endometrium and ovary were individually esti-
mated by differentiation-index coordinates, and the
results were shown according to tissue.
In differentiation-index coordinates, ovary tumors,

endometriosis, and colorectal tumors were easily distin-
guished from their corresponding normal tissues. More-
over, ovary tumor samples (dataset GSE18520), tended

to resemble ES cells (Figure 9), suggesting that ovary
cells become “developmental younger” during tumori-
genesis. Colon tumors and endometriosis (datasets
GSE7305 and GSE4107) tended to be located at same
distance from ES cell state in the differentiation-index
coordinates (Figure 10 and Figure S5). Interestingly, the
colon cancer seems show a negative correlation between
malignance and differentiation: the distribution of pro-
jection positions follows the progression from normal
tissue to early-onset colon cancer to malignant colon
cancer (Figure 10). Such negative correlation in the dif-
ferentiation-index coordinates suggested that, in a cell
state space, the real colon cell developmental state lines
may have a opposite direction relative to the direction
of the two cell developmental state lines we used here,
namely cell-derived neural and blast cell differentiation.
(Unfortunately, we have not found any suitable data to
calculate the cell developmental state line of the colon.)
These results strengthened solid our assumption that
the directions of different tissue development indicate
the discrete distributions of attractors in cell state space.
Like a man walking down from a mountain peak, there
are many paths with different directions in cellular
development. If we observe development process from
an appropriate viewpoint, we may finally understand
how many roads must a cell walk down, before we call
it a terminal differentiation cell (Additional File 1).
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Figure 8 Human Embryonic Stem cells differentiation state line
distinguished distinct temporal temporal distributions of
human brain samples and neuron cell lines. (A) Projection
positions of Human Embryonic Stem cells differentiation time-
course sample on Cell developmental state line (dataset GSE15209).
The ES cells sample was set as origin point; other projection
positions were normalized by ES cells sample. (B) Distributions of
projection positions of human cortex tissue, normal fetal neuron
stem cells and tumorigenic glioma neuron stem cells. Green
represents normal tissue and cells. Red represents tumorigenic
neuron stem cells.
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In the case of breast cancer, the tumor and normal
breast tissue occupied overlapping positions in the dif-
ferentiation-index coordinates (Figure S6). The fact that
it was not possible to distinguish tumor samples from
normal samples by differentiation-index coordinate
approach may be due to that tumorigenesis in the breast
may not be related to the developmental pathway, or the
breast developmental state line may be perpendicular to
the “neuronal” and “blast” cell differentiation state lines.
Moreover, a recently published comprehensive genome-
level catalogue of breast tumors [21] revealed the com-
plexity of breast tumors. Such complexities at genome
level may also influence the accuracy of cell develop-
mental state line.

Discussion
ES cell differentiation is a good model for studying the
process of development. However, successful cell differ-
entiation under in vitro conditions is only possible in a
limited number of cell types. The two human ES cells
developmental state lines developed here, based on in
vitro datasets, represent only two of the possible ES cell
differentiation directions, and thus cannot fully repre-
sent the complete ES cell differentiation process under
in vivo conditions. The work presented here provides an
approach forwards understanding the relationships
among distinct differentiation directions in cell state

space, of which microarray space is only one subspace.
The increasing availability of high-throughput proteomic
and epigenetic data and other measures of cell proper-
ties will make it possible to investigate other
dimensions.
Theoretically, each type of differentiated cell has its

unique differentiation direction. Even a single cellular
activity can be considered to have a unique direction.
Many different directions exist in the whole process of
tissue development and cell differentiation, and these
different directions reflect distinct aspects of cell proper-
ties. Here, we selected the changing tendency of gene
expression pattern over time to represent the differen-
tiation trajectory. In the embryonic development pro-
cess, the diversity of cells increases continuously with
cell differentiation. However, it is difficult to describe
the relationships among the growing number of cell
types, and how the genome facilitates the generation of
stable and distinct cell types in the development process
is still not clear.
Assuming that differentiation processed follow a strict

order, using a time scale should be useful for estimating
changes in cell state throughout the differentiation pro-
cess. The cell developmental state lines generated by
time-ordered linear model were able to accurately order
different developmental stages in different tissue types.
Interestingly, our results did not only suggest that
tumorigenesis can be measured by “developmental state
lines”, but also suggested the possibility all directions of
ES cells differentiation can be described. It has been
reported that some genes whose expression is signifi-
cantly altered during tumorigenesis may also play key
roles in developmental process [22-24]. Our approach
may help to understand the relationship between tumor-
igenesis and cell differentiation in greater detail.
Tumorigenesis is a complex process. That tumorigen-

esis shares many similar characteristics with embryonic
cell development implies that they have a close, though
poorly understood relationship. The “cancer attractor”
model presents a new and integrated perspective for
viewing these two processes. Constructing cell develop-
mental state lines is an attempt to observe and describe
differentiation trajectories in cell state space from
another perspective. Our result indicated that even in
large scale discrimination, some kinds of tumor showed
the same moving tendency at timescale. Although theo-
retically there are many “cancer attractors” surrounding
normal cell state, in realty the number of these “attrac-
tors” may be limited to a very small range.
The time-ordered linear model constructed here is an

attempt to use a linear trajectory to describe tissue
development and cell differentiation processes. Not only
it is a novel method to analyze the time-course expres-
sion profiles, but by, primarily defining a biological
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meaning to the mathematical model, the approach also
supplies a different viewpoint to traditional methods
which mainly emphasize the mathematical characteris-
tics. The time-ordered linear model is a simplified
model for calculating lines to represent development
trajectories, and some limitations are still need to be
addressed. The calculation of this liner model depends
on a given order of sample points, and disordered sam-
ple points would generate fake cell development state
lines. Moreover, in this work, we used the average of
several repeats at each time points to calculate the cell
development state line. Such an approach partly limits
the robustness and increases the sensitivity to noise. In
the future, replacing the averaged points by a may over-
come these weaknesses.
However, we cannot expect such a simple model to

reflect all the details of development, to fit all expression
data, or even to distinguish all types of cancer in cell
status space. Rather, its function is simply to transform
cell differentiation expression profiles to a line in keep-
ing with the natural temporal properties of gene expres-
sion during the development processes. The real
development trajectories in cell status space are much
too complex to be modeled computationally at present.
We have therefore started with a simple “line,” which
captures the basic progression of development from one
perspective. If the approach works, it could serve as a
basis for further construction of more realistic, compre-
hensive, and predictive models of cell state space. To
draw developmental trajectories in cell state space accu-
rately requires being able to describe cell state from the
perspective of all of cell features, including its transcrip-
tome, epigenetic map, and proteome. Understanding the
trajectories in cell status space will help reveal the mys-
teries of embryonic development.

Conclusion
By primarily defining a biological meaning to a mathema-
tical model, we designed the time-ordered linear model
which can capture temporal properties of development
process, and drew the linearly projected development tra-
jectories in a cell state space. Meanwhile, it reflected the
change of gene expression from a developmental time-
scale perspective. By applying this model to measure
tumors of different tissues, we found that different devel-
opmental states appeared during tumorigenesis.

Methods
Construction of our time-ordered linear model
In N dimensional space, T vectors which are unlooped
and head-to-tail jointed have many angle-bisectors when
N >> T. In order to unique our linear model, we
selected the angle-bisector which maximized the

projection of each vectors (Additional file 2), and we
named it “co-bisector”. Naturally, we selected co-bisec-
tor of a series vectors to indicate their main moving ten-
dency. The co-bisector well suited our requirement of a
linear model to represent tissue development and cell
differentiation processes.
X is a n × t matrix, which represents expression data

containing n genes measured at t time-points, in which
Xj represents the expression profile in time point j and
the expression score of gene i in time points j is xij.
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To simplify our calculations, we set eall

 
as 1:

eall

 
 1 (5)

With equation (2)(3)(4)(5), the parameters ai and θ,

and vector eall
*

 
were determined.

Projecting expression data on the cell developmental
state line

The co-bisector eall
*

 
is the line which represents the

temporal properties of the differentiation curve, so we
call this co-bisector the “cell developmental state line”.
This cell developmental state line reflects the degree of
cell state change during the cell differentiation process,
from pluripotency to the fully differentiated cell state,
and can be used to assess the differentiation stage of
experimental samples. When the expression profiles of
the samples are projected, the projection position Pi of
each sample is calculated by:

P X e x x
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i i all i ni

n
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,
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1

1 1

(6)

Datasets
We applied our time-ordered linear model to analyze
time-course experimental expression profiles obtained
from the Gene Expression Omnibus http://www.ncbi.
nlm.nih.gov/geo/ for mouse liver, ovary and lung tissue
development, and for human ES cell differentiation. We
constructed tissue-specific “cell developmental state
lines” to represent developmental trajectories and used
them to estimate the relationship between tumor tissues
and normal tissue development over time. To increase
the resolution, we also constructed “differentiation-index
coordinates”, which consisted of two different “cell
developmental state lines” based on the human ES cell
differentiation datasets. We used the datasets listed in
Table S3 to generate mouse tissue-specific developmen-
tal cell developmental state lines. We then used the
model to estimate the relationship between the tumor
and normal tissue expression profiles listed in Table S4.
Human ES cell differentiation cell developmental state
lines were generated using the datasets listed in Table
S5, and then human cell developmental state line were
used to assess the expression profiles of human tumors
listed in Table S6.

Additional material

Additional file 1: Changing our viewpoints. Once changing
viewpoints of observation development, the structure of cell
differentiation forked tree will be different.

Additional file 2: Maximization of the projection of each vectors on
co-angle-bisector. Maximization of the projection of each vectors on
co-angle-bisector.
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