
Abstract

Background: Currently, the prevalence of autism spectrum disorder (ASD) is increasing, which 
widely spurs the interest in the molecular investigation. Thereby, a better understanding of the 
given disorder mechanisms is likely to be achieved. Bioinformatics suiting protein-protein in-
teractions analysis via the application of high-throughput studies, such as protein array, is one of 
these achievements.Materials and Methods: The gene expression data from Gene Expression 
Omnibus (GEO) database were downloaded, and the expression profile of patients with devel-
opmental delay and autistic features were analyzed via Cytoscape and its relevant plug-ins.Re-
sults: Our findings indicated that EGFR, ACTB, RHOA, CALM1, MAPK1, and JUN genes as 
the hub-bottlenecks and their related terms could be important in ASD risk. In other words, any 
expression modification in these genes could trigger dysfunctions in the corresponding biologi-
cal processes.Conclusion: We suggest that differentially expressed genes could be used as suit-
able targets for ASD after being validated.[GMJ.2019;8:e1367]  DOI:10.31661/gmj.v0i0.1367
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Introduction

Autism spectrum disorder (ASD) as a 
prevalent neurodevelopmental condi-

tion is on the rise with the rate of 1/68 to 1/50 
persons [1]. The typical ASD symptoms ap-
proved by Diagnostic and Statistical Manual 
of Mental Disorders, Fifth Edition (DSM-5), 
include social communication/interaction 
disability, repetitive behaviors, and sensory 
impairments [2]. Genetic and environmen-

tal factors have also a considerable role in 
this heterologous disorder [3]. Many relat-
ed etiological factors such as mitochondrial 
dysfunction [4], heart rate [5], Zn/Cu lev-
els [6], and serotonin system [7], have been 
suggested for the given disorder. Behavioral 
evaluations are the only diagnosis methods 
for this complex disorder [8]. Identification 
of the molecular signatures could also help 
understand the pathophysiological mecha-
nisms and consequently improve the diag-
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nosis and treatment approaches of ASD [1].  
In this light, many biomarker investigations 
of this heritable disorder have been widely 
studied via genomics, proteomics, and me-
tabolomics [1, 8]. However, identification of 
reliable biomarkers still requires more stud-
ies [9]. Genetic evaluations carried out on 
this concept introduced SHANK3 mutation 
as one of the key risk factors of ASD [10]. 
Gene expression profiling is one of the ways 
to determine the gene expression changes in 
specific conditions such as neurological dis-
orders [11]. Also, bioinformatics are anoth-
er relatively new discipline that can suggest 
other aspects of biomolecules identified from 
high-throughput studies. In fact, a modified 
condition, such as a disease state, is respond-
ed by the functionalization resulted from the 
interactions between molecules [12]. Some 
elements are more crucial in this regard due 
to their central roles in a protein-protein inter-
action (PPI) network [13]. Any disruption in 
these essential nodes could trigger abnormal 
conditions such as a disease. Thus, detecting 
significantly differentially expressed genes 
(DEGs) with such a feature could add more 
reliability to their purposed candidacy for dis-
eases such as ASD. For this aim, the present 
study was designed to provide further insight 
into the DEGs in ASD via the PPI network 
analysis. 

Materials and Methods

There are many genes related to ASD, which 
can be screened to find the critical ones. In this 
study, the genes associated with the autistic 
patients with dysregulated mood compared to 
the healthy individuals were extracted from 
the Gene Expression Omnibus (GEO) data-
base and analyzed via bioinformatics.

Data Collection
Gene expression data related to the patients 
with global developmental delay and autistic 
features and healthy individuals were down-
loaded from the GEO database. The dataset 
entitled “expression data from patients with 
global developmental delay and autistic fea-
tures and normal controls” with accession 
number GSE29691 and platform GPL570 

was selected to this end.

Statistical Analysis 
DEGs were assigned and analyzed using the 
GEO2R online software,GEO, https://www.
ncbi.nlm.nih.gov/geo. Prior to DEGs anal-
ysis, the groups of samples were first com-
pared via boxplot to assess the quality of gene 
expression data and ensure whether the sam-
ples are comparable in this regard. The next 
step was to determine these DEGs and assign 
the related statistical properties. Among the 
top 250 significantly expressed genes, those 
with 0.5 ≥ fold change (FC) ≥ 1.5 and adjust-
ed P-value less than 0.05 were considered for 
further analysis.

PPI Analysis
The selected genes with gene name were cat-
egorized as up- and down-regulated ones, 
and then queried in Cytoscape, a PPI network 
analyzer [14]. Moreover, STRING database 
was the platform for retrieving a network of 
interacting genes. This application is avail-
able in Cytoscape with four sources includ-
ing STRING protein, STITCH, DISEASES, 
and PubMed [15]. Edge score and number 
of maximum additional interactions were as-
signed as 0.4 and 50 for the network construc-
tion. The network was analyzed further, and 
the centrality features were assessed by the 
Network Analyzer application based on two 
important parameters including degree cen-
trality (DC) and betweenness centrality (BC). 
Nodes with the highest degree and between-
ness values are called hub-bottlenecks [16]. 
The hub-bottleneck nodes were selected for 
expression analysis via CluePedia query and 
merged with GSE29691 expression data file. 
More focus was on genes with significant ex-
pression values in the dataset. CluePedia ap-
plication could provide enrichment analysis 
for genes, proteins, and miRNAs by consid-
ering linear and non-linear statistical depen-
dencies [17]. Furthermore, the enrichment 
analysis of these genes was carried out by 
STRING Enrichment analysis with P≤0.05. 
For this aim, at first, a sub-network of the 
most significantly differentially expressed 
hub-bottlenecks was constructed by STRING 
Plug-in, and then the gene ontology was as-
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signed to each.   

Results

Overall, 13 ASD samples and 2 healthy ones 
were compared in terms of expression values. 
As shown in Figure-1, data from box-plot 
analysis indicated that the samples are medi-
an-centered and are qualified to continue for 
more analysis. The expression comparison in-
dicated that there are genes with differential 
expressions. These genes are ranked based on 
adjusted p-value. Among the top 250 genes 
with adjusted P< 0.05, the genes with 0.5 ≥ 
FC ≥ 1.5 were identified to be included in the 
PPI network. A PPI network was construct-
ed with these properties: 98 nodes and 1028 
links. In this network, genes with high values 
of centralities were determined via Network 
Analyzer, and 12 common genes (as hub-bot-
tlenecks) of 20% of top ones (highest BC and 
DC values) are listed in Table-1. To evaluate 
the hub-bottlenecks expression profile, the 
genes were then queried via CluePedia pan-
el and merged with GEO expression data as 
shown in Figure-2. Genes with at least one 

significantly differential expression value are 
listed in Table-2. The knowledge obtained 
through searching gene expression data val-
ues from all genes indicates that except for 
CALM1, there was one significant expression 
value for EGFR, JUN, RHOA, MAPK1, and 
ACTB. There are four differentially expressed 
spots for CALM1, which the most significant 
ones are included in Table- 2. To acquire more 
information about the six significantly differ-
entially expressed hub-bottlenecks, namely 
CALM1, EGFR1, MAPK1, ACTB, RHOA, 
and JUN the functional analysis of them via 
STRING Enrichment application was carried 
out, and the most significant ones were as-
signed specific colors. The top five biological 
processes were chosen to this end (Figure-3 
and Table-3).  

Discussion

The etiology of ASD has remained unknown; 
however, molecular biology examination has 
proved to be promising in different kinds of 
neurological disorders [18, 19]. Here, the 
gene expression profile of patients with ASD 
has been compared with that of the healthy 
ones with the focus on the interaction network 

Table 1. The List of Hub-Bottlenecks Including 
Genes with the Highest BC and DC Values

Genes DC BC

EGFR 51 0.06

MAPK1 51 0.03

SRC 49 0.02

PRDM10 48 0.04

MAPK3 47 0.02

CALM1
47

0.03

ACTB 46 0.02

RHOA 44 0.02

POTEF 41 0.03

CTNNB1 41 0.03

ALB 40 0.03

JUN 39 0.02

DC: degree centrality; BC: betweenness 
centrality

 
Figure 1. The boxplot comparison of the groups of samples (2 
healthy and 13 ASD). The healthy group is assigned a pink color 
and disorder group is assigned a blue color.
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decoding. At first, DEGs were derived from 
the top 250 significantly expressed genes, and 
then a network of them was constructed. In 
this network, there were genes with differ-
ential properties called hub-bottlenecks. Fol-
lowing the analysis of these genes via desig-
nated statistical criteria, a list of genes was 
introduced. Overall, 12 common genes were 
obtained that none of them belonged to the 
top 250 up- and down-regulated genes. The 
highest degree and betweenness values were 
obtained for EGFR (51 and 0.06, respective-
ly). JUN was found to have the lowest degree 

and betweenness values (39 and 0.02, respec-
tively). In general, 6 out of 12 central nodes 
had differential expression values in which 
there are four negative and two positive ex-
pressions. CALM1 was the gene with four 
significantly differentially expressed spots 
while other genes were represented with 
only one significantly differential expression. 
All the spots in CALM1 were negatively ex-
pressed in ASD. Some of these genes, namely 
EGFR, ACTB, RHOA, CALM1, MAPK1, and 
JUN are common in different kinds of diseas-
es [20-27]. All of these genes are reported for 

Table 2. The List of Hub-Bottlenecks with Significantly Differential Expression Values and Their Properties 
Including Expression Type, FC, and Significance

Genes Expression type FC P-value
CALM1 Negative H 2.09 L 1.87e-04
EGFR Positive 1.69 6.36e-03
RHOA Negative 1.62 3.25e-02
ACTB Negative 2.09 6.57e-03
JUN Positive 1.76 3.40e-04

MAPK1 Negative 1.54 2.49e-02

 
Figure 2.  The normalized expression values of all genes that show some expression data with different spots. The data were extracted 
from GSE29691 through CluePedia. No expression data was available for POTEF. Healthy samples and ASD patients are shown by yellow 
and blue, respectively. Color scheme change from red to green indicates the changes in the expression values from the maximum positive 
to negative expression (white=zero expression and grey=missing values).
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cancer pathophysiology. Among them, EGFR 
as the top hub-bottleneck has been widely re-
ported in ASD [15, 28]. However, in Table-2, 
the expression value and the statistical prop-
erties of the sated gene are presented among 
the other significantly differential expres-
sions. Development and repair of the nerve 
cell is the responsibility of this molecule. In 
line with the previously reported results [28, 
29], the present study also revealed that the 
given gene has a positive expression profile 

in ASD. ACTB as a cytoskeletal protein had 
a negative expression in ASD, as previously 
showed the same manner in developmental 
abnormalities [30]. The changes in this gene 
can disrupt the functions of some organs in-
cluding brain, heart, and kidney [31]. RHOA, 
as a participant in neural development [32], 
implies ASD [33]. The down-regulation of 
this gene was observed, and its centrali-
ty can suggest the more fundamental roles 
of this candidate. The next hub-bottleneck 
is CALM1 with four significant reduced 
amounts of expression in ASD. No particular 
relationship between this gene and autism has 
been reported so far. MAPK1, as a member 
of the MAPK family, has an essential role in 
proliferation and apoptosis. Indeed, this gene 
is a potential biomarker in cancer [34]. What 
is more, apoptosis is one of the contributing 
mechanisms in ASD [35]. Therefore, it may 
cause impairment in neurological develop-
ment, resulting in many neurodevelopmental 
disorders [36, 37]. One of the features of ASD 
is an impairment in social communications. 
Apparently, this gene is implicated in this 
phenotype in the central nervous system as 
suggested by some investigations [38]. Also, 
JUN is important in cell survival and apoptot-
ic activities [39]. No data is available about 
the relationship between this gene and ASD. 
However, the role of this gene in apoptosis 

Table 3. The List of Biological Processes Related to the Six Hub-Bottlenecks and Their Significant 
Contributing Genes with Their Assigned False Discovery Rate (FDR) P-value. 

Description Color 
in 
model

Enriched genes FDR 
P-value

FC receptor 
signaling pathway 

Light 
blue

MAPK1|EGFR|CALM1|ACTB|JUN 1.13E-05

enzyme-linked receptor 
protein signaling 
pathway 

Dark 
blue

MAPK1|EGFR|CALM1|ACTB|JUN|RHOA 3.61E-05

vascular endothelial 
growth factor receptor 
signaling pathway 

Light 
green

MAPK1|CALM1|ACTB|RHOA 5.22E-05

axon development Dark 
green

MAPK1|EGFR|ACTB|JUN|RHOA 1.37E-04

Fc-epsilon receptor 
signaling pathway 

Pink MAPK1|EGFR|CALM1|JUN 1.71E-04

 
Figure 3.  The functional enrichment analysis of the six signifi-
cantly differentially expressed hub-bottlenecks with 15 interac-
tions among them. Different colored parts of the circles refer to 
the related biological processes. P≤ 0.05 was considered as the 
significant level.
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could justify its putative effect on ASD. In 
other words, MAPK1 and JUN, as mentioned 
earlier, are active in apoptosis that may be re-
lated to the pathogenesis feature of the ASD. 
Further examination of these central hub-bot-
tlenecks showed that there are five highlight-
ed biological processes for a network of these 
essential genes. Our results indicated that at 
least four of these genes contributed to an 
important biological process. Among these 
terms, the FC receptor signaling pathway 
is the main one. MAPK1 is the gene con-
tributing to all the important biological pro-
cesses. By expression modifications in these 
genes, the related biological processes may 
be influenced. In other words, each of these 
terms may lose their function by differential 
expression of these hub-bottlenecks. On the 
whole, some of these genes, such as EGFR, 
were previously shown as promising candi-
dates for ASD compared to others, e.g., JUN. 
It merely confirms both categories regarding 

centrality aspect in a PPI network. Therefore, 
the linkage of EGFR, ACTB, RHOA, CALM1, 
MAPK1, JUN, and their associated biological 
processes with ASD based on the PPI net-
work analysis is supported. 

Conclusion

The differentially expressed hub-bottlenecks 
and biological terms might be relevant targets 
for the improvement of ASD.  
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