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The mitochondrial and endoplasmic reticulum (ER) homeostasis is pivotal to
the maintenance of an array of physiological processes. The physical contact
and association between ER and mitochondria, known as the ER–mitochondria
microdomains or mitochondria-associated ER membrane (MAM), temporally and
spatially regulates the mitochondria/ER structure and function. More evidence suggests
a role for MAMs in energy production, cellular contraction and mobility, and normal
extracellular signal transmission. In pathological states, such as cardiac ischemia–
reperfusion (I/R injury), this ER–mitochondria microdomains may act to participate
in the cellular redox imbalance, ER stress, mitochondrial injury, energy deletion, and
programmed cell death. From a therapeutic perspective, a better understanding of the
cellular and molecular mechanisms of the pathogenic ER–mitochondria contact should
help to identify potential therapeutic target for cardiac I/R injury and other cardiovascular
diseases and also pave the road to new treatment modalities pertinent for the treatment
of reperfusion damage in clinical practice. This review will mainly focus on the possible
signaling pathways involved in the regulation of the ER–mitochondria contact. In
particular, we will summarize the downstream signaling modalities influenced by ER–
mitochondria microdomains, for example, mitochondrial fission, mitophagy, calcium
balance, oxidative stress, and programmed cell death in details.

Keywords: ER–mitochondria microdomains, ischemia/reperfusion injury, mitochondrial fission, mitophagy,
oxidative stress, calcium signaling, cell death

INTRODUCTION

Myocardial infarction (MI) is one of the leading causes of mortality worldwide due to acute
occlusion of coronary arteries. Although revascularization treatment has offered proven protective
efficacy for patients with MI, it also yields undesired ischemia–reperfusion (I/R) injury following
the restoration of epicardial blood flow (Nunez-Gomez et al., 2017; Zhou et al., 2018b). A number
of scenarios have been postulated for I/R injury, including oxidative stress, calcium imbalance,
mitochondrial damage, excessive inflammation response, endoplasmic reticulum (ER) stress, and
programmed cell death (Du et al., 2017; Garcia-Nino et al., 2017; Harisseh et al., 2017; Jahandiez
et al., 2017). These culprit factors unfortunately lead to a secondary damage to the heart and thus
compromise the clinical benefits from revascularization therapy (Merjaneh et al., 2017; Rienks
et al., 2017). Notably, mitochondrial damage and ER stress have been well recognized as major
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upstream factors governing the progression of cardiac I/R injury.
Thereby, the structural and functional association between
mitochondria and ER has emerged as an area of intensive research
that has evolved rapidly over the last decade (Pihan et al., 2017).

The existence of physical links between ER and mitochondria
have been suggested based on co-sedimentation of ER particles
with mitochondria and electron microscopic observations of
close associations between mitochondria and ER vesicles (Shore
and Tata, 1977; Meier et al., 1981; Mannella et al., 1998).
ER–mitochondrial microdomains [termed as the mitochondria-
associated membranes (MAMs)] are purportedly comprised of a
variety of proteins including, but not limited to, (i) the inositol
1,4,5-trisphosphate receptors (IP3R) on the ER and voltage-
dependent anion-selective channel protein (VDAC) located on
the mitochondria, through GRP75, which play a role in calcium
signaling; (ii) the mitofusin 2 (Mfn2) located in the ER and other
molecular chaperones such as mitofusin 1 (Mfn1) and FUNDC1
in the mitochondria, that play a role in tethering and modulating
mitochondrial dynamics; (iii) the ER stress sensor PERK that
initiates signaling in response to ER stress; and (iv) many more
others including ryanodine receptor Ca2+ channel (RyR) (Chen
et al., 2012), AMF-R (Wang et al., 2000), Miro1 (Fransson et al.,
2003), BAP31 (Iwasawa et al., 2011), Fis1 (Wang et al., 2011;
Figures 1A,B).

Structural and functional interactions of mitochondria with
the ER have been demonstrated for rat hearts (Ruiz-Meana
et al., 2010; Fernandez-Sanz et al., 2014; Gomez et al., 2016)
and the distance between the ER and the outer mitochondrial
membrane (OMM) is originally estimated to be approximately
100 nm (Soltys and Gupta, 1992; Mannella et al., 1994). However,
a more recent study using electron tomography demonstrated
that the minimum distance is much less, 10 nm at the smooth
ER and 25 nm at the rough ER (Csordas et al., 2006). The
physical cooperation between the ER and mitochondria offers
pivotal roles in several aspects of cellular functions, including
Ca2+ signaling, lipid transport, energy metabolism, and cellular
survival (Honrath et al., 2018). However, in response to stress
response, especially cardiac I/R injury, ER–mitochondria contact
converts mitochondria and ER from ATP providers and protein
factories that energize the cell to agents of cell death, respectively.
Here, this mini-review is intended to summarize the current
contemporary understanding with regards to the casual role of
ER–mitochondrial microdomains in the onset and development
of myocardial I/R injury.

MITOCHONDRIAL FISSION

Although commonly depicted as shuttle-shaped structures,
mitochondria form a highly dynamic network within
cardiomyocyte where they constantly undergo the fission
and fusion processes (Lopez-Crisosto et al., 2017; Wang
et al., 2017). The mitochondrial fission could be apparently
noted in cardiac I/R injury (Gao et al., 2016; Cowan et al.,
2017; Maneechote et al., 2017; Nan et al., 2017; Zhou et al.,
2018e), and the aim of mitochondrial fission is to generate
more daughter mitochondria that meet the cardiomyocyte

demand in ischemic stage and/or in reperfusion phase. Under
physiological conditions, moderate mitochondrial fission allows
the dissemination of various metabolites and macromolecules
throughout the entire compartment (Westermann, 2012).
At the same time, mitochondrial fission is required for the
removal of damaged and inactive organelles by way of autophagy
(Twig et al., 2008a,b). When the bioenergetic state becomes
critical, for example under nutrient deprivation (Sauvanet
et al., 2010; Toyama et al., 2016), exercise (Coronado et al.,
2018), or exposure to certain forms of stress (Theurey and
Rieusset, 2017), fission is turned on to optimize mitochondrial
function. However, excessive mitochondrial fission has been
suggested as a primary causative factor in the pathogenesis of
myocardial reperfusion injury based on succinct studies from
independent laboratories (Ong et al., 2010; Sharp et al., 2014)
including ourselves (Zhou et al., 2017a, 2018c,f; Jin et al., 2018).
At the molecular levels, mitochondrial fission is exclusively
governed by dynamin-related 1 (Drp1) and its adaptors such as
mitochondrial fission factor (Mff) and mitochondrial fission 1
protein (Fis1) which help Drp1 tightly dock on mitochondria
and then assist Drp1 to form the contractile ring around
mitochondria (Garcia-Nino et al., 2017; Hong et al., 2017;
Zhou et al., 2017c). Interestingly, recent research has depicted
that ER–mitochondria microdomain closely wraps around the
mitochondria and initiates a mitochondrial constriction at the
contact sites before Drp1 is recruited to trigger mitochondrial
fission (Friedman et al., 2011). Besides, Drp1 is also found
to assemble on mitochondria preferentially at sites of the
ER–mitochondria contact (Westermann, 2011), suggesting that
ER–mitochondria microdomain may play an active role in the
early stages of mitochondrial fission via defining the division
sites. Thereby, these effects may aggravate the cardiac I/R injury
through Drp1 recruitment and constriction. Besides, earlier
work by Korobova et al. (2013) also observed a similar action for
the ER–mitochondria microdomain on mitochondrial division,
suggesting that repression of ER–mitochondria communication
may provide more benefits for cardiac I/R injury via disrupting
mitochondrial fission. Notably, Korobova et al. (2013) further
pointed out that the ER-bound protein inverted formin 2
(INF2) predominantly controls mitochondrial fission possibly
by forming a constrictions ring prior to translocation of Drp1
onto the mitochondrial membrane. More importantly, INF2
interacts with the calcium-binding protein calmodulin, which
empowers the ER–mitochondria microdomain to shape the
local calcium homeostasis (Wales et al., 2016). This regulatory
mechanism amplifies the intracellular calcium delivery from ER
to mitochondria, ensuring the success of mitochondrial fission,
which would need sufficient Ca2+ to complete the organelle
contraction. Following studies further confirm that INF2 also
enhances actin polymerization on the ER (Gurel et al., 2015;
Chakrabarti et al., 2018), which facilitates mitochondrial division
through actin-dependent mitochondrial contractile.

Interestingly, the actin polymerization mediated by INF2
could in turn increases the ER–mitochondria contact area,
as assessed by electron microscopy (Steffen and Koehler,
2018). These observations propose a positive feedback between
ER–mitochondria microdomain and mitochondrial fission;
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FIGURE 1 | (A,B) Endoplasmic reticulum–mitochondria microdomains complexes. Multiple structures that tether mitochondria with ER have been described.
Voltage-dependent anion channel (VDAC) and inositol 1,4,5-trisphosphate receptor (IP3R) interacts via GRP75, regulating calcium balance between mitochondria
and ER. Similarly, IP3R also cooperates with FUN14 domain-containing protein 1 (FUNDC1), modifying mitochondrial calcium homeostasis. B-cell receptor
associated protein 31 (BAP31) binds to mitochondrial fission 1 protein (Fis1), regulating cellular apoptosis. Inverted formin-2 (INF2) interacts with dynamin-related
protein 1 (Drp1), handling mitochondrial fission. ER-located mitofusin 2 (Mfn2) interacts with mitochondrial Mfn1/Mfn2, controlling mitochondrial fission and
mitophagy. Besides, the ER–mitochondria encounter structure (ERMES) complex is composed of: the OMM proteins Mdm10 and Mdm34, the ER protein Mmm1,
and the cytosolic protein Mdm12.

ER–mitochondria microdomain first establishes the potential
contractile site for mitochondria fission via INF2, which in turn
further narrows the distance between ER and mitochondria,
leading to a progressive amplification of fission signals. Based
on this, we question whether the distance between ER and
mitochondria may serve as an early hallmark for the extent
of mitochondrial fission and cardiac I/R injury. More work is
needed to verify this hypothesis. Besides, another study notes
a reduction in mitochondrial diameter at sites in which the
ER is almost completely wrapped around the mitochondrial
membrane (from ∼210 nm for uncircumscribed mitochondria
to ∼140 nm for circumscribed mitochondria) (Friedman
et al., 2011; Kang et al., 2017). In other words, the area of
ER–mitochondria microdomain is positively correlated with the
extent mitochondrial fission.

Besides, other components of ER–mitochondria microdomain
are also reported to engage in mitochondrial division.
Knockdown of mitochondrial calcium uniporter (MCU)
interrupted mitochondrial fission, and Chakrabarti et al.
(2018) noted a 2.5-fold decrease in the fission event in cells
lacking MCU. Subsequent studies have identified the casual
relationship between MCU activation and cardiac I/R injury.
Using myocardial reperfusion model, inhibition of MCU
via genetic ablation or pharmacological inhibition sustains
myocardial contractile function (Kwong et al., 2015), alleviates

necroptosis and apoptosis levels by 30 and 50%, respectively
(Oropeza-Almazan et al., 2017). In addition, inhibition of MCU
represses caspase-3/-7/-8/-9 activation (Oropeza-Almazan et al.,
2017), interrupts calcium imbalance (Seidlmayer et al., 2015),
maintains mitochondria oxygen consumption rates (Rasmussen
et al., 2015), preserves mitochondrial potential (Rasmussen
et al., 2015), reduces cellular ROS generation (Rasmussen et al.,
2015), and blocks the opening of mitochondrial permeability
transition pore (mPTP) (Luongo et al., 2015). These findings
have highlighted that the activity of MCU in ER–mitochondria
microdomain is highly responsible for mitochondrial anomalies
and cardiomyocyte injury induced by I/R injury, and support the
concept of MCU inhibition as a potential therapeutic strategy.

Besides, mitochondrial fission may also be regulated by
mitofusins expressed within the ER–mitochondria microdomain.
Structurally, Mfn1 and Mfn2 both localize predominantly on
the OMM, whereas the latter also expresses on ER and ER–
mitochondria microdomain (Koshiba et al., 2004). Genetic
ablation of Mfn1 or Mfn2 results in embryonic lethality,
suggesting essential developmental roles for both isoforms (Chen
et al., 2003, 2007). Mechanistically, the expression of ER-located
Mfn2 is crucial for tethering the ER to the mitochondria and
thus stabilizing ER–mitochondria microdomain formation via
tight interaction with mitochondrial Mfn1 and forming the
Mfn1–Mfn2 heteromultimer (de Brito and Scorrano, 2008).
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Recent studies have found that Mfn2 deletion attenuates
cardiac cell death in response to I/R injury and the potential
to undergo calcium-dependent mitochondrial permeability
transition (Papanicolaou et al., 2011). This observation is further
confirmed by a report that adult murine heart deficient in
both Mfn1 and Mfn2 is protected against acute cardiac I/R
injury (Hall et al., 2016), a finding which is associated with
defects in mitochondrial fission and reduced mitochondrial
calcium overload, suggesting that mitofusins, regulated by ER–
mitochondria microdomain, is of importance to promote the
progression of cardiac I/R injury. Taken together, owing to the
direct contact of ER and mitochondria, the ER–mitochondria
microdomain are easy to cope with mitochondrial fission via
pleiotropic molecular mechanisms on the one hand, and that they
have ideally “guard” roles to prevent cardiac I/R injury on the
other hand. Accordingly, it seems likely that inhibition of the key
site in ER–mitochondria microdomain may prove as an effective
pharmacological intervention for reducing the severity of cardiac
I/R damage via interrupting lethal mitochondrial fission.

MITOPHAGY

Mitophagy, a kind of mitochondrial autophagy, sweeps
the damaged mitochondria and provides the nutrients
necessary to preserve cell viability via timely removal of
poor-structured mitochondria with the assistance of lysosome
(Goiran et al., 2018; Lindqvist et al., 2018). Recent reports
suggested that autophagosome membrane may be derived
primarily from the ER (Molino et al., 2017; Song et al., 2018).
This notion is also confirmed by an observation that pre-
autophagosome/autophagosome marker ATG14 re-localizes to
the ER–mitochondria contact site after starvation (Hamasaki
et al., 2013). This means ATG14, an indispensable factor for
mitophagy activation, is actually regulated by ER–mitochondria
microdomain. Interestingly, in the cardiac myocardial infraction
or coronary artery disease model, ATG14 is required for the
angiogenesis via Becn1–Vps34–ATG14 complex (Lu et al.,
2016), which is a novel agent for treatment of acute ischemia-
mediated myocardial injury via handling revascularization.
This observation is further verified by Liu et al. (2017) using
cardiomyocyte hypoxia-reoxygenation (HR) model. These
investigators found that ATG14 unfortunately decreases in
response to HR stimulus as a result of elevated microRNA-130a,
and reintroduction of ATG14 via inhibition of microRNA-
130a attenuates HR-mediated cardiomyocyte apoptosis. Taken
together, these pieces of evidence have pointed out that ATG14
cooperates with ER–mitochondria microdomain to ensure
mitophagy activation which provides pro-survival signals for the
damaged hearts.

Besides, other studies further revealed that the pro-autophagic
proteins BECN1/Beclin1 are both found to re-localize at ER–
mitochondria microdomain, where they enhance the ER–
mitochondria interaction along with increased mitophagy
activity (Gelmetti et al., 2017). Ample evidence has depicted a
protective function of Beclin1 on cardiac I/R injury. In particular,
Beclin1 expression is downregulated after reperfusion injury

(Dai et al., 2017), although it is significantly upregulated by
ischemia preconditioning (Xie et al., 2018). Restoration of Beclin1
attenuates HR-mediated cardiomyocyte death (Ma et al., 2012).
At the molecular levels, Beclin1 activation is involved in stress
protein degradation (Fuhrmann and Brune, 2017), ROS clearance
(Sun et al., 2017), inflammation repression (Chi et al., 2018),
and eNOS-dependent vasodilation restoration (Zhang J.X. et al.,
2018). Overall, the above information comprehensively validated
the permissive role for Beclin1 in cardiac I/R injury, which acts
as an upstream mediator for mitophagy via cooperation with
ER–mitochondria microdomain.

Notably, a recent study from Gautier et al. (2016) has
provided some new insights into the interactive mechanism
for mitophagy and ER–mitochondria microdomain. In patients
with Parkinson’s disease or Parkin-knockout mice, ER and
mitochondria seem to be in closer proximity, followed by
excessive calcium flux to the cytosol partly owing to the enhanced
ER-to-mitochondria Ca2+ transfers. This finding has indicated
that loss of mitophagy receptor fosters ER to move too close to
the mitochondria, which unexpectedly contributes to the calcium
leakage into cytoplasm and subsequent neurodegeneration.
These data highlight that mitophagy is highly manipulated by
ER–mitochondria microdomain on the one hand, and it also in
turn corrects the excessive ER–mitochondria contact in a Parkin-
dependent manner which could be considered as a negative
feedback response to ensure the moderate ER–mitochondria
communication. However, the negative feedback reaction has not
been identified in cardiac I/R injury and thus more works are
required to provide several evidences for this.

In spite of the extensive research which has been carried
out over the past decades to figure out the molecular feature
of mitophagy in cardiac I/R injury, the precise action of
mitophagy in acute cardiomyocyte damage still remains elusive
(Zhou et al., 2018b). Interestingly, the upstream regulatory
mechanism for mitophagy is well-documented. There are
three adaptors identified as the mitophagy inducer including
Parkin, BCL2/adenovirus E1B 19 kDa protein-interacting protein
3 (Bnip3), and FUN14 domain containing 1 (FUNDC1).
Interestingly, those adaptors could signal distinct mitophagic
response for cardiomyocytes fate in I/R injury ranging from
survival to death based on recent studies. Briefly, Binp3-mediated
mitophagy is harmful for reperfused heart through turning on
mitochondrial death (Jin et al., 2018). Similarly, the Parkin-
dependent mitophagy also promoted mitophagy activity which
unfortunately consumes most mitochondria, leading to the
energy depletion and cell death (Zhou et al., 2017d). Interestingly,
FUNDC1-related mitophagy is primarily activated by ischemic
preconditioning and confers the protection against reperfusion
injury (Zhou et al., 2017b,e, 2018f). Our finding is also supported
by several in-depth studies in different disease models such as
fatty liver disease and cancer (Chen et al., 2017; Li et al., 2018;
Shi et al., 2018; Zhou et al., 2018a).

Recently, a delicate work from Wu et al. (2017)
demonstrated that FUNDC1 could bind to IP3Rs to form
the ER–mitochondria microdomain, which modulates ER–
mitochondria Ca2+ exchange, mitochondrial fission, and
mitophagy. Genetic ablation of FUNDC1 downregulates
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the levels of IP3R, disrupts ER–mitochondria microdomain
contact, and worsens cardiac function in cardiac I/R model.
This work has identified, for the first time, the FUNDC1,
a mitophagy-related protein, as an integral component of
ER–mitochondria microdomain, redefining the paradigm
between ER–mitochondria microdomain and mitophagy
regulation. Notably, mitofusins, the indispensable elements for
ER–mitochondria microdomain as our mentioned above, have
recently been suggested in the recycling of mitochondria content
during starvation-induced autophagy (Marchi et al., 2014;
Tubbs and Rieusset, 2017). Disruption of ER–mitochondria
microdomain by Mfn2 deletion inhibits mitophagy and thus
increases the vulnerability of heart to I/R challenge (Zhao et al.,
2012) due to extensive accumulation of autophagosomes. This
observation is also subsequently supported by other studies
that Mfn2 is required for protective mitophagy activation and
cardioprotection in the setting of I/R injury (Campos et al.,
2016). At the molecular levels, Mfn2 tethers the mitochondrial
outer membrane to the ER, and this effect facilitates the transfer
of phosphatidylserine from the ER to mitochondria, which
in turn, is required for phosphatidylethanolamine production
employed in autophagosome membrane formation (Hailey
et al., 2010). Notably, these data indicate that ER–mitochondria
microdomain-located Mfn2 has the ability to activate protective
mitophagy which sends the pro-survival signals for reperfused
heart. Accordingly, several researchers suggest that activation of
Mfn2-dependent mitophagy would provide more benefits for
cardiomyocyte under I/R stress (Zhang W. et al., 2018).

However, this conclusion seems to oppose to the observations
that Mfn2 deletion attenuates cardiac cell death in response
to I/R injury via modifying mitochondrial fission, as we
summarized above. To explain the plausibly inconsistent results,
several key points need to be emphasized. One is that the
fatal fission activated by ER–mitochondria microdomain is
heavily relying on the formation of Mfn1–Mfn2 heteromultimer;
the former expressed on ER and the latter located on
mitochondria. However, the protective mitophagy modified by
ER–mitochondria microdomain is only dependent on Mfn2
rather than the Mfn1–Mfn2 heteromultimer. Considering that
pro-apoptotic fission is excessively activated, whereas pro-
survival mitophagy is mostly inhibited at the stage of I/R
injury, we ask whether increased mitochondrial fission “over-
consumes” Mfn2 via establishing links between Mfn1 and Mfn2
heteromultimer, leading to the failure of deficient Mfn2 to
trigger mitophagy. Last but not the least, the functional role
of Mfn2 in mitophagy activation is to help the phospholipid
transfer from ER to mitochondria, promoting the formation of
autophagosome membrane. However, due to the Mfn1–Mfn2
interaction, decreased Mfn2 monomer in ER–mitochondria
microdomain is by no means capable of initiating mitophagy.
Collectively, although ER–mitochondria microdomain-located
Mfn2 could activate the protective mitophagy to enhance the
heart resistance to I/R injury, it is unfortunately employed by
mitochondrial fission, leading to the increased mitochondrial
fission and decreased mitophagy. This information may lay the
foundation to help us understand the paradoxical role of Mfn2
in cardiac I/R injury. Nonetheless, further work to illustrate

the potential pleiotropic effects of Mfn2 on I/R injury via
balancing fission and mitophagy are required to obtain more
comprehensive picture of ER–mitochondria microdomain in
cardiomyocyte fate under acute reperfusion stress.

CELLULAR CALCIUM BALANCE

The enzymes involved in the tricarboxylic acid (TCA) cycle and
the mitochondrial respiratory complex are critically dependent
on the moderate rise in mitochondrial Ca2+ levels to maintain
cellular bioenergetics and meet the cell demand via ATP
generation (Boone et al., 2017; Fuhrmann and Brune, 2017;
Torres-Estay et al., 2017). Subsequently, with the assistance
of mitochondria-produced ATP, ER rapidly releases Ca2+ into
cytoplasm where Ca2+ interacts with troponin and ensures the
cardiomyocyte beating and myocardial contraction (Eisner et al.,
2017; Merjaneh et al., 2017; Mughal et al., 2018). Notably,
excessive mitochondrial Ca2+ uptake leads to mitochondrial
dysfunction and initiation of a cascade of pro-apoptotic events.
The checkpoint for this phenomena lies on the ER–mitochondria
microdomain (Dreser et al., 2017). The calcium handling
proteins, RyRs (excitable cells) and IP3Rs (non-excitable cells)
on the ER, as well as VDAC and MCU on the outer and inner
mitochondrial membranes (Ligeza et al., 2017), respectively, have
been shown to reside in close proximity at this interface of ER–
mitochondria microdomain where they function to help the facile
transfer of Ca2+ from the ER to mitochondria. Mechanistically,
a high microdomain Ca2+ levels may be shaped after IP3Rs
opening and the microdomain Ca2+ is largely buffered by
mitochondria via MCU. Besides, a recent study also demonstrates
that VDAC1 is structurally and physically linked to the type-
1 IP3R through the molecular chaperone Grp75 (Szabadkai
et al., 2006) and facilitates the Ca2+ communication between
mitochondria and ER. Notably, those two Ca2+-exchange
mechanisms regulated by ER–mitochondria microdomain are
also noted in cardiac I/R injury. First, it is generally believed
that Ca2+ should flow easily through VDAC channels because
VDAC shows only a weak selectivity for small monovalent ions
(Colombini, 1980; Hodge and Colombini, 1997). Per recent
findings, acute myocardial reperfusion injury promotes VDAC
phosphorylation (Schwertz et al., 2007) and this process is mainly
regulated by glycogen synthase kinase (GSK)-3 or Akt (Das
et al., 2008). Inhibition of VDAC phosphorylation by GSK-3
inhibitors is beneficial for reperfused heats (Das et al., 2008). At
the molecular levels, two mechanisms involved in this; one is that
dephosphorylation of VDAC by GSK-3 inhibition alters channel
conductance directly, and the other is that GSK-3 inhibitors
increase Bcl-2 binding to VDAC affecting the OMM transport.
Besides, cardiac IR injury also enhances the activity of VDAC via
promoting protein tyrosine nitration in VDAC (Yang et al., 2012).

Other new Ca2+ regulators located in ER–mitochondria
microdomain have been reported. For example, GSK-3β

could specifically interact with IP3Rs in ER–mitochondria
microdomain, and subsequently increases the transfer of Ca2+

from ER to mitochondria, as well as sensitivity of cardiomyocytes
to IR-caused apoptosis (Gomez et al., 2016). Additionally,
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mitochondrial chaperone cyclophilin D (CypD), a composition
of mPTP, also cooperates with the VDAC1/Grp75/IP3R1
complex in cardiomyocyte (Paillard et al., 2013), enhancing
ER Ca2+ efflux into mitochondria. The mitochondrial Ca2+

overload triggers excessive mPTP opening and thus initiates
mitochondria-dependent cellular death in reperfusion-treated
cardiomyocytes (Paillard et al., 2013). Conversely, a recent
report suggested that mPTP opening modulates mitochondrial
Ca2+ balance (Andrienko et al., 2016). This notion was initially
confirmed by an earlier study that mPTP inhibitor, CsA,
prevents mitochondrial Ca2+ efflux in adult rat ventricular
cardiomyocytes (Andrienko et al., 2016), thereby postulating
that mPTP may mediate mitochondrial calcium homeostasis.
Altogether, the above information collectively suggest that
moderate mitochondrial Ca2+ elevation governed by ER–
mitochondria microdomain benefits cell energy metabolism
and, however, uncontrolled mitochondrial Ca2+ accumulation,
driven by ER–mitochondria microdomain in response to cardiac
I/R injury, is detrimental to cardiomyocyte viability. Thus,
preservation of mitochondrial Ca2+ balance via downregulating
Ca2+-handling molecules in ER–mitochondria microdomain
is an essential step to prevent the propagation of dangerous
reperfusion signals.

Apart from mitochondrial calcium imbalance, cellular
calcium overload also has the deleterious consequences on
reperfused heart, which is highly handled with ER–mitochondria
contact. The sarco-ER Ca2+ transport ATPase (SERCA), an
ATP-driven protein, inversely transports Ca2+ back to the SR.
However, in previous studies (Zhang Y. et al., 2016; Cui et al.,
2018), the activity and expression of SERCA are statistically
decreased in answer to cardiac I/R injury. The decreased
SERCA is closely associated with cytoplasm calcium overload
which obligates cardiomyocyte to mitochondria-dependent
programmed death and finally amplifies reperfusion injury to
heart either via triggering SR–Ca2+–XO–mitochondrial ROS
axis (Zhu H. et al., 2018) or activating Ca2+–ROS–Drp1–
mitochondrial fission pathways (Cui et al., 2018). Following
study from Raturi et al. (2016) identified thioredoxin-related
transmembrane protein 1 (TMX1) as a novel SERCA-inhibiting
protein at ER–mitochondrial microdomains; inhibition of
TMX1 may reduce the susceptibility of heart to I/R injury.
Interestingly, the TMX1–SERCA complex formation could be
enhanced by mitochondria-produced ROS (Krols et al., 2016).
That is to say, mitochondria ROS may tighten up TMX1–
SERCA interaction within ER–mitochondrial microdomains,
effectively inhibiting SERCA activity. In traditional concept,
mitochondria are the downstream effectors of ER via uptake
of Ca2+ in ER–mitochondrial microdomains. However,
their findings have established a new interactive mechanism
in ER–mitochondria; damaged mitochondria could send
a positive feedback to ER via ROS–TMX1–SERCA axis,
further disrupting ER–calcium homeostasis and aggravating
Ca2+ overload-mediated cell damage. However, no study is
available to verify the feedback response between ER and
mitochondria in cardiac I/R injury, and accordingly, further
investigation is required to confirm this in acute cardiac damage
model.

OXIDATIVE STRESS

In response to reperfusion therapy, the restored blood rapidly re-
introduces the fresh oxygen to the ischemic heart. Unfortunately,
abundant oxygen would evoke a burst of reactive oxygen
species (ROS) via multiple mechanisms reported by numerous
studies (Zhou et al., 2015; Zhang Y. et al., 2016; Liu D.
et al., 2017; Zong et al., 2017; Nuntaphum et al., 2018),
leading to the cardiomyocyte oxidative stress. Cellular ROS
is mainly produced by mitochondria when the electrons
cannot be tightly coupled by the mitochondrial respiratory
complex I and III (Hernansanz-Agustin et al., 2017; Miranda-
Vizuete and Veal, 2017; Niaudet et al., 2017). However, other
mechanisms have also been put forward to participate in this
process, especially ER–mitochondrial microdomain. First, ER–
mitochondrial microdomain could directly produce ROS via
Ero1 (Gilady et al., 2010) and p66Shc (Lebiedzinska et al.,
2009). Ero1, a key controller of oxidative folding and ER redox
homeostasis, is enriched in ER–mitochondrial microdomain.
Higher expression of Ero1 is closely associated with increased
ROS production (Anelli et al., 2012). p66Shc (a 66-kDa isoform
of the growth factor adapter Shc), a cytosolic adaptor protein
related to ROS generation, could be detected in the ER–
mitochondrial microdomain fraction (Patergnani et al., 2011).
Careful examination from Lebiedzinska et al. (2009) revealed
that the levels of p66Shc in the ER–mitochondrial microdomain
is age-dependent and corresponds well to the mitochondrial
ROS production. These data raise the possibility of a direct
role for ER–mitochondrial microdomain in ROS outburst, which
may be implicated in the cardiac I/R-mediated oxidative stress.
Besides, in the repair stage of I/R injury or in the early phase
of heart failure, the mitochondrial calcium overload mediated
through the leaky RyRs increases the ROS production via
NAD(P)H (Pacher et al., 2000). More importantly, the excessive
superoxide in turn oxidizes the RyRs, thereby exacerbating
mitochondrial calcium overload and ROS generation (Blackburn
et al., 2017; Tomczyk et al., 2017). In consequence, this viscous
cycle of Ca2+ leakage, mitochondrial calcium overload, and
ROS outburst completely paralyzes cardiac contractility and
obligates cardiomyocytes to apoptosis in the context of I/R injury
(Gadicherla et al., 2017; Yang et al., 2017). Consistent with the
above observations, following investigation further confirms that
the ER-localized NADPH oxidase Yno1 is definitely required
for cellular ROS accumulation in yeast (Leadsham et al., 2013).
These pieces of information indicate that ER–mitochondrial
microdomain-mediated ROS eruption is universal in many kinds
of species.

More recently, in-depth study argue that ER–mitochondrial
interface actually hosts a dynamic ROS nanodomain (Booth
et al., 2016). At the molecular levels, ER–mitochondrial Ca2+

communication stimulates ROS mobilization from mitochondria
to microdomain. It is the microdomain ROS transients rather
than mitochondrial ROS overproduction sensitizes ER Ca2+

release to amplify Ca2+ oscillations (Booth et al., 2016).
This piece of evidence fully updates our concept regarding
microdomain ROS and verifies the existence of microdomain
ROS for the first time. The difference between microdomain
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ROS- and mitochondrial ROS-triggered calcium imbalance is
that the former requires lower concentration of ROS to oxidize
ER–calcium channel. That is to say, the microdomain ROS may
spatially and temporally confines or amplifies the mitochondrial
superoxide anion production, which should be considered as the
ROS switch and source. However, the detailed functional role of
microdomain ROS is incompletely understood and little is known
its function in the development and progression of cardiac I/R
injury. Starting from these observations, further work is needed
to explore the influence and mechanisms of microdomain ROS in
cardiac I/R injury.

APOPTOSIS AND NECROPTOSIS

The importance of cell death following IR injury is demonstrated
in in vivo rodent model. Notably, prolonged periods of
myocardial ischemia are related to an increase in the rate
of apoptosis, whereas, paradoxically, reperfusion leads to an
enhancement in necroptosis. There is more supportive evidence
from our recent findings and other published data that most of
cellular death could be blocked through inhibiting necrosis (or
necroptosis), whereas only very marginal of reperfusion-induced
cell death is attributable to apoptosis (Hochhauser et al., 2003;
McCully et al., 2004; Yang et al., 2012; Zhang T. et al., 2016).
Therefore, relieving cell death via preventing apoptosis and
necrosis is vital to reduce I/R injury and improve the therapeutic
efficiency of revascularization treatment. Many researchers have
attempted to demonstrate the causal role of ER–mitochondrial
microdomain in modifying I/R-mediated cell death. First, it
is well documented that the sensitivity of cardiomyocyte to
death (regardless of apoptosis and necroptosis) is fine-tuned by
cellular calcium concentration (Mofid et al., 2017; Zhu et al.,
2017; Pan et al., 2018) which drastically is affected by the ER–
mitochondrial microdomain. Based on previous studies (Zhou
et al., 2018d; Zhu H. et al., 2018), IP3R expression is upregulated
in response to I/R stress, leading to the calcium overload in
mitochondria. Subsequently, the calcium overload would activate
necroptotic signaling in reperfused hearts via CaMKII–mPTP
(Zhang T. et al., 2016) or XO–ROS–mPTP (Zhu P. et al., 2018)
pathway. However, some other researchers argued that Ripk3-
related cardiomyocyte necroptosis in I/R injury is not mediated

through mPTP opening. They reported that suppression of
autophagic flux contributes to cardiomyocyte death by activation
of necroptotic pathways (Ogasawara et al., 2017). Actually,
necroptosis is a kind of cell death program due to ATP depletion.
Both mPTP opening and autophagic inhibition may interrupt
the ATP supply, therefore exacerbating the reperfusion-mediated
necroptosis. More recently, we provided partial evidence to
confirm that ER-located IP3R is actually managed by Ripk3;
genetic ablation of Ripk3 abrogates reperfusion-induced IP3R
upregulation and ER stress (Zhu P. et al., 2018). These findings
acknowledged the necessity of ER–mitochondrial microdomain
in the excitation of Ripk3-induced necroptosis in cardiac I/R
injury. However, we cannot exclude the protein interaction
between Ripk3 and IP3R. If Ripk3 has the ability to directly
integrate with IP3R, a new composition of ER–mitochondrial
microdomain would be established, which means that the
strategies to regulate the balance of Ripk3 and ER–mitochondrial
microdomain could be a therapeutic target to cardiac I/R injury.

Besides, the downstream executive event of necroptosis is
Ripk3-activated mPTP opening, which mediates the swelling and
rupture of the organelle and cell due to the energy production
disorder (Alghanem et al., 2017; Rossello et al., 2017; Rossello
and Yellon, 2017). According to previous finding (Jahandiez
et al., 2017; Zhou et al., 2017d), VDAC, one of the components
of ER–mitochondrial microdomain, undergoes polymerization
and resultantly promotes the hexokinase 2 liberation from
mitochondria into cytoplasm. Hexokinase 2 is the endogenous
inhibitor of mPTP opening and dissociation of hexokinase 2
from mitochondria has been shown to regulate, at least in part,
cardiac I/R injury and mitochondrial integrity (Smeele et al.,
2011; Pasdois et al., 2012; Nederlof et al., 2016).

Notably, other factors have also been reported to be involved
in mitochondria-dependent cell death. Mitochondrial cardiolipin
is a kind of phospholipid that predominantly embed in the
inner mitochondrial membrane. The role of cardiolipin in the
prevention of mitochondrial apoptosis and cardiac I/R injury
is a well-established factor via repressing cyt-c liberation from
mitochondria into cytoplasm (Brown et al., 2013; Shen et al.,
2015; Ackermann et al., 2017). The cardiolipin downregulation
and peroxidation would weaken the binding affinity of cyt-c
to inner mitochondrial membrane and promote cyt-c leakage
into cytoplasm (Zazueta et al., 2007; Zhang et al., 2010;

FIGURE 2 | The role of ER–mitochondria microdomains in cardiac I/R injury. In the setting of cardiac I/R injury, excessive mitochondrial fission, defective mitophagy,
oxidative stress, calcium dyshomeostasis, and programmed cell death are modulated by ER–mitochondria microdomains.
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Le Cras et al., 2017). Notably, although cardiolipin is synthesized
by ER (Fleischer et al., 1967), the transfer of primarily
phospholipids from the ER to mitochondria has been thought
to be mediated via ER–mitochondrial microdomain (Gaigg
et al., 1995). At the molecular levels, ER-mitochondrial
encounter structure (ERMES) (Kornmann, 2013) is responsible
for the cardiolipin exchange between mitochondria and ER.
Structurally, ERMES is composed of mitochondrial distribution
and morphology 10 (Mdm10), Mdm12, Mdm34, mitochondrial
morphology 1 (Mmm1), and the regulatory subunit GTPase
EF-hand protein of mitochondria (Gem1) (Klinkenberg et al.,
2013). Functionally, ERMES possesses a synaptotagmin-like
mitochondrial lipid-binding (SMP) domain that harbors an
elongated hydrophobic groove in which different lipids can
bind and possibly be transported (Kopec et al., 2010). Outside
of cardiolipin transmission, ERMES also governs cardiolipin
peroxidation via monitoring mitochondrial DNA (mtDNA)
replication. Because the mitochondrial respiratory complex
is encoded by mtDNA, the destruction of mtDNA inevitably
suppresses the transcription and activity of mitochondrial
respiratory complex. The decreased complex activity fails
to capture free electron, finally evoking ROS outburst and
subsequent cardiolipin peroxidation. In a word, the dysfunction
of mtDNA copy is closely associated with cardiolipin oxidation.
Interestingly, ER-resident protein Mmm1, one element of
ERMES complex, structurally coimmunoprecipitates with
Mgm101, a DNA-binding protein of the nucleoid, in chemically
cross-linked mitochondrial extracts (Mbantenkhu et al.,
2013; Pevala et al., 2016). This information proposes that a
complex situated at the ER–mitochondrial microdomain has
the ability to manage mitochondrial genome integrity and
thus influence cardiolipin oxidation which facilitates the cyt-
c liberation from mitochondria into cytoplasm under cardiac
I/R injury. Interestingly, despite the established functional
relationship between ER–mitochondrial microdomain and
mtDNA over 10 years, little attempt is made to figure out whether
microdomain-mediated mtDNA damage is one of the pathogenic
factors for I/R injury.

CONCLUDING REMARKS

This review shows clearly that ER–mitochondria microdomain
plays important roles in regulating cardiac I/R injury (Figure 2).

The pathological interaction between ER and mitochondria
promotes the malignant mitochondrial fission and inhibits the
protective mitophagy. Thus, the ER regulates mitochondrial
dynamics, and alterations in mitochondrial morphology uniquely
reflect cell health. Interestingly, mitochondria are not only the
downstream effector of microdomain; it also sends negative
and/or positive feedback response to ER via microdomain.
Accordingly, microdomain help ER and mitochondria shape the
regulatory loop between them. Besides, ER and mitochondria also
reciprocally transmit danger signals such as calcium overload
and oxidative stress through microdomain which conveys
organelle-extrinsic stress signals to promote cardiomyocyte
death. Notably, little evidence is available for the precise
role of ER–mitochondria microdomain in regulating I/R-
initiated inflammation although NLRP3 infiammasome was
found activated by ER–mitochondria microdomain (Zhou et al.,
2011). Similarly, the relationship between ER–mitochondria
microdomain and the cardioprotective signaling pathways
including reperfusion injury salvage kinase (RISK) axis and
survivor activating factor enhancement (SAFE) cascade has
not adequately established, and therefore, more studies are
required. Overall, in response to cardiac I/R injury, the ER–
mitochondria microdomain represents a platform to modify the
extracellular signal determining the degree of cellular insult.
Based on this, therapies to influence the homeostasis of ER–
mitochondria microdomain would be a therapeutic target to
cardiac reperfusion stress in the clinical practice.
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