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Abstract

Background: How do neural networks encode sensory information? Following sensory stimulation, neural coding is commonly
assumed to be based on neurons changing their firing rate. In contrast, both theoretical works and experiments in several sensory
systems showed that neurons could encode information as coordinated cell assemblies by adjusting their spike timing and without
changing their firing rate. Nevertheless, in the olfactory system, there is little experimental evidence supporting such model.

Methodology/Principal Findings: To study these issues, we implanted tetrodes in the olfactory bulb of awake mice to
record the odorant-evoked activity of mitral/tufted (M/T) cells. We showed that following odorant presentation, most M/T
neurons do not significantly change their firing rate over a breathing cycle but rather respond to odorant stimulation by
redistributing their firing activity within respiratory cycles. In addition, we showed that sensory information can be encoded
by cell assemblies composed of such neurons, thus supporting the idea that coordinated populations of globally rate-
invariant neurons could be efficiently used to convey information about the odorant identity. We showed that different
coding schemes can convey high amount of odorant information for specific read-out time window. Finally we showed that
the optimal readout time window corresponds to the duration of gamma oscillations cycles.

Conclusion: We propose that odorant can be encoded by population of cells that exhibit fine temporal tuning of spiking
activity while displaying weak or no firing rate change. These cell assemblies may transfer sensory information in spiking
packets sequence using the gamma oscillations as a clock. This would allow the system to reach a tradeoff between rapid
and accurate odorant discrimination.
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Introduction

Sensory perception is driven in the brain by specific coding

strategies defined as modification of firing patterns in particular

subpopulations of neurons. The rate code is the most studied as it

implies firing changes in neurons which are experimentally easy to

detect and quantify. However, other codes are also considered

since they may carry complementary information and/or may be

more resistant to noise or fluctuations of the stimulus. These

include, temporal codes such as synchronized firing of neurons

[1,2,3,4,5,6,7], first spike latency following stimulus onset

[8,9,10,11,12] or firing in a specific phase of particular rhythms

[13,14,15,16]. Several codes may also be multiplexed in order to

increase the total amount of information embedded in neural

responses [17,18,19].

Neuron responsiveness is assessed at a single cell level, usually

focusing on rate changes relative to baseline. In anesthetized

mammals, mitral/tufted (M/T) cells in the olfactory bulb (OB)

respond to odorants by exhibiting large changes in their firing rate

[20,21,22,23,24,25]. Moreover, most M/T cells respond to only

few odorants, leading to the conclusion of sparse coding in the OB

[21,23,25]. On the other hand, M/T cells have been reported to

respond to odorants by finer temporal changes of rate, such as

tuning in the first spike latency or the preferred phase of discharge

in the respiratory cycle [22,26,27,28,29].

Theoretical studies showed that populations of rate-invariant

neurons may encode information as cell assemblies driven by a

common oscillation [2,30,31]. While few studies in rodents have

shown that M/T cells encode information in specific time-

windows [22,32], none of them emphasized that the information

can be caried by rate-invariant cells changing their temporal

patterning. In addition, to our knowledge, no experimental

evidence supports the potential impact of physiological oscillations,

such as gamma oscillations, in driving M/T cells activity and

conveying odorant information.

To address these issues, we have recorded populations of M/T

cells in anesthetized and in awake mice. Upon comparing odorant

evoked activity to baseline activity, we found that, over the

complete breathing cycle, most neurons in awake animals are rate

invariant. Moreover, this neuronal population expresses fine
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temporal changes in firing inside the respiration cycle that contain

sufficient information to be used to discriminate between different

odorants. We have tested, on a single trial basis, the robustness of

different codes at different time scales to extract stimulus

information from a neuronal population. Our data suggest that

in order to reach fast and accurate odorant discrimination, the

odorant information has to be conveyed as spiking packets read

over gamma oscillations used as an internal clock.

Materials and Methods

Animal preparation
All experiments were performed on 8 to 16 weeks old male

C57BL/6J mice (Charles River France) and were in accordance

with the Swiss Federal Act on Animal Protection and Swiss

Animal Protection Ordinance. Our experiments were approved by

the university of Geneva and Geneva state ethics committees

(authorization 1007/3387/2).

For the anesthetized recordings, mice were prepared as

described previously [22]. For the awake recordings, mice were

anesthetized with isoflurane (3–4% induction, 1–2% mainte-

nance). The skin overlaying the skull was removed under local

anesthesia using carbostesin (AstraZeneca, Zug, Switzerland). A

metallic head post was then fixed on the bone by embedding its

base in dental cement (Omni-Etch Dentin, OmniDent). The rest

of the skull was also covered with dental cement except the part

overlaying the OB. We did not notice any behavioral changes due

to the head post fixation after placing back the mice in their home

cage. The animals were exploring, cleaning themselves and

presenting a level of activity similar to the normal conditions.

They did not present any pain related behavior such as hunched

posture, social isolation or body shaking.

Few days after recovery, a mouse was placed in a plastic tube

and head-fixed by screwing the head post on a custom made

metalic device fixed on the air table. The mice were trained to this

restraining condition for 2–4 sessions (30–60 min each) done in 2

days. The day of the experiment, a mouse is head restrained and

anesthetized using isoflurane (3% induction, 0.75–1% maintai-

nance; by placing in front of the snout a tube delivering the

anesthetic) in order to do a craniotomy on top of the olfactory

bulb. At the end of the craniotomy, the tetrodes are placed at the

surface of the olfactory bulb, the entire procedure lasting ,15–

30 min. Then we penetrate the electrodes into the bulb and we

look for the M/T neurons and once found, we leave the electrodes

in place and stop the anesthesia. The experimental protocol and

recordings started around 45–60 min after complete recovery of

the animal.

For all experiments, respiration was monitored using a

directional air flow sensor (AWM2100V, Honeywell, MN) placed

in front of the mouse nose. We observed an average breathing

cycle period of 393 ms in awake animals (15.8 ms inter animal

S.D; n = 6) and 352 ms in anesthetized animals (12.8 ms inter

animal S.D; n = 12). The device, though close to the snout, does

not prevent the odorant to reach the animal nostril.

Odor delivery and experimental protocol
All odorants (amyl acetate: Aa, ethyl butyrate: Eb, hexanone:

Heb) were from Sigma-Aldrich. As odorant stimuli, we used the

following mixtures: amyl acetate/air 60%/40%, ethyl butyrate/air

60%/40%, 3-hexanone 60%/40%, amyl acetate/ethyl butyrate

60%/40% and 40%/60%, 3-hexanone/ethyl butyrate 60%/40%

and 40%/60%. Each stimulus was repeated 9 and 5 times for

anesthetized and awake mice datasets respectively. To test the

impact of the number of repetitions for each stimulus (see below),

we acquired another dataset and used 8 different stimuli, each

applied individually 20 times (Fig. S1). All are monomolecular

odorants evoking different percept, at least in Humans: amyl

acetate, methyl benzoate, ethyl butyrate, geraniol, carvone2(+),

carvone2(2), octanal, 3-hexanone.

Four milliliters of pure monomolecular odorant were placed in

glass vials. Odorants were delivered for 2 seconds through a

custom made olfactometer as described previously [22,57]. The

odorant onset was set to arrive during an animal’s expiration. An

air flow passed through the vials containing the odorants and was

further diluted 20 times with clean dry air before being sent to the

nose. All mixtures were performed by gas mixing, varying the

relative flow of independent stream of odorized air. Because odors

were delivered ,1 cm away from the animal’s nose, these values

overestimate concentrations actually reaching the nasal cavity.

The total flow was constant (0.4 l/min). To maintain a stable odor

concentration during the entire stimulus application, we ensured

that flows were stationary with a 5 s preloading before the odorant

was delivered.

In vivo electrophysiological recordings and spike sorting
A 1–2 mm window was drilled above the olfactory bulb and

dura mater was opened. One or two silicon-based recording

electrodes (A-462-Tet-5 mm-150-200-312, NeuroNexus Technol-

ogies, Ann Arbor, MI, USA) were inserted. The skull cavity was

filled with a mixture of wax and paraffin or an ophthalmic gel

(Lacryvisc, Alcon) to protect the brain from drying. During

recordings of awake mice, a silver wire contacting the gel was

connected to the air table to ground the preparation. Electrodes

were lowered vertically in the target zone until the dorsal or medial

mitral/tufted cell layer (MCL) was reached. The M/T cell layer

was clearly recognised by its strong extracellular spiking activity

restricted to a 100–150 um depth variation. This contrasted with

the much less prominent spiking activity in the external plexiform

and the granule cell layer [39,47,58]. In this respect, it is

noteworthy that electrodes we used had low impedances (1 to

4 MV at 1 kHz). The conditions for optimal single-cell identifi-

cation are stability and reasonable size of the extracellular spike

with respect to background noise (clustering, see below), which in

the case of low impedance electrodes could only be fulfilled by

MCs and tufted cells (the larger cells in the OB), as observed by

others in mice [47] and in rat [39,58]. As a confirmation, we

detected almost no clusterable activity in the granule cell layer,

which contains a large density of small neurons.

Wide-band field potentials were amplified (1006) and band-pass

filtered (0.1 Hz to 9 kHz). All data was digitized at 32556 Hz with

the Cheetah Digital Lynx system (Neuralynx, Tucson, AZ).

Further details about recording and spike sorting have been

described extensively elsewhere [22].

Individual neurons were finally identified as the clusters showing

a clean refractory period in their autocorrelograms. A total of 102

and 130 isolated neurons were recorded in 12 anesthetized and 6

awake mice respectively. The number of cells recorded per animal

ranged between 1 to 25 cells. For the experiments testing the

dependence of the codes to the number of odorant repetitions, we

recorded 46 neurons in 5 mice. All subsequent analyses and

statistics were calculated using custom scripts written for Matlab

(MathWorks, Inc., Natick, MA) or C.

Data analysis
Breathing cycle realignment. Respiratory cycles (RC)

durations of awake mice were highly variable within and across

trials. In order to analyze the consistent neural responses to odors

across trials, the beginning of each cycles were temporally

Odor Coding in Awake Mice
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realigned to each other. All RC were artificially matched to the

average breathing duration (393615.8 S.D.) over the 5 trials:

longer cycles were cut and shorter ones were prolonged.

Corresponding spiking period were realigned with the same

method. Importantly, relative action potential timings in spike

trains were not affected by this method (Fig. S1A–B).

Statistical analysis of the rate change for single cell

responses. Change in the average respiratory cycle firing rate

during odor presentation relative to baseline was assessed by the

non-parametric Wilcoxon rank sum test repeated in each

respiratory cycles spanning stimulus presentation and for all 7

stimuli. In a particular cycle, a cell was considered as responsive if

at least one odorant stimulus evoked a significant change in firing

in comparison to baseline. We set the a-value to 0.05 and further

applied a Bonferroni correction for multiple testing (i.e. division by

stimulus number: 7) so that all resulting percentages could not be

overestimated by more than 5% of false positive.

Analysis of the tuning in spike timing. We divided each

respiratory cycle in 8 time bins (on average, anesthetized: 43 ms,

awake: 49 ms) in which we computed the average firing rate. For

each trial, we described the firing activity per trial over consecutive

respiratory cycles by a 86n matrix (n respiratory cycles before and

during odor presentation). For each odor, we further averaged all

matrices computed for individual trials. The same process was

applied for all the 7 odors and the averaged matrices were

concatenated together (total size, 867n). A principal component

analysis (PCA) was computed with the concatanated matrix, which

allowed representing all the RC as a vector in a multidimensional

space of 8 dimensions, each of them representing one of the

respiratory bins. The 3 first dimensions of the PCA transformation

carried more than ,75% of the variance. To define if neurons are

responding to odors, we assessed whether firing distribution in RC

of the baseline and odor periods are significantly different. For

that, in the PCA space, we measured the Euclidean distances

between RC of the odor and baseline periods.

First, the RCs were segregated into baseline respiratory cycles

(BRCs) and odor-evoked respiratory cycles (ORCs) (Fig. 1A). The

BRC was again divided randomly into two groups with an

equivalent number of BRC: the control BRC (CBRC) and the test

BRC (TBRC) (Fig. 1B). We then computed the CBRC centroid

and the average distance (dmean) and the standard deviation (s) of

the Euclidean distances between the CBRC centroid and each of

the single CBRC (Fig. 1C). Then the distances (Ko) between each

single OBRC and the CBRC centroid were calculated (Fig. 1E). A

cell was considered as responsive if:

Kowdmeanzls ð1Þ

where l= 1, 2, 3 … n, for at least one odor. However, this method

may detect false-positive response. In order to discard them, we

computed in a same manner the distances (Kb) between TBRC

and the CBRC centroid (Fig. 1D). Similarly, if:

Figure 1. Framework used to detect for individual neurons fine changes in firing mediated by odorant presentation. (A) Each
breathing cycle spiking activity is described by a vector of 8 dimensions. Following a principal component analysis (PCA) on all baseline and odor
cycle vectors, each cycle point is plotted in the PCA space. (B) The baseline points cloud is randomly split in two sets of points further referred as
control and test baseline. (C) The centroid of the control baseline is calculated and all individual baseline points to centroid distances are computed.
From that, we extract the average point to centroid distance (dmean) and standard deviation (s). (D) Distances (dtbase;i) between test baseline cycle i
and centroid are computed. (E) Distances (dodor;i) between odor cycle i and centroid are computed. (F) A cycle activity is considered to be different
from the test baseline activity if the distance di is superior to Kl the summation of the average distance (dmean) and l standard deviation, in which l is
parametrically varied.
doi:10.1371/journal.pone.0030155.g001

Odor Coding in Awake Mice

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30155



Kbwdmeanzls ð2Þ

a cell was considered as responsive for at least one odor (where

l= 1, 2, 3 … n). The number l of standard deviation s was

parametrically increased until only 5% of cells were considered as

responsive using the CBRC template. We thus kept the value of l
extracted from the equation (2) and used it to satisfy the conditions

in the equation (1). This led to a detection of responsive cell with a

risk of false-positive inferior or equal to 5%.

In this analysis, the cell had to respond significantly for at least 3

RC to be considered as responsive. Similar results were observed

by considering one or two significant RC but the exact percentages

of responsive cells were lower due to an increase of false positive in

the baseline.

Population vector construction and prediction

algorithm. We pooled all neurons recorded in different

animals, assuming that they represent the same variability of

neural responses as an equal number of cells in a single mouse.

The activity of the 102 and 130 neurons in anesthetized and awake

mouse were organized in 102 and 130-dimensional vectors

respectively, containing in each dimension the average firing

rate of a recorded cell computed over a certain time bin.

Population vectors were built using 8 (on average, anesthetized:

43 ms, awake: 49 ms; Figs. 2 and 3) and 24 bins (on average,

anesthetized: 14 ms, awake: 16 ms; similar results were also

observed with 14 ms in awake dataset; Fig. 4) per breathing cycle.

We recurrently changed the time bin duration for analysis

performed in Fig. 5.

Gamma oscillations were also used as a frame to bin the spiking

activity and build the population vector. In this case, each M/T

cell firing rate was binned with oscillations cycles recorded on the

same tetrode. The gamma cycles were then realigned to the

average oscillation (19 ms62; mean6S.D.) over all tetrodes. The

realignment was identical than the one used for breathing cycles.

To compute classification performance, one trial per stimulus

was chosen to be a test set, and the remaining trials were averaged

to be template responses. The Euclidean distances between test

trials and all stimuli templates were computed, and trials were

assigned to the closest template (i.e. to a stimulus prediction). The

percentage of success for odor identity and intensity was the

fraction of correct assignments over the total number of assign-

ments. We averaged this percentage over all the odors.

In short, the algorithm creates template vectors for each

stimulus based on a fraction of the stimulus repetitions and then

assigns each remaining trial to the closest template (i.e. measuring

the Euclidean distance).

Shuffling of the vector structure. We randomly shuffled

each bin containing the firing rate over the breathing cycles for

each trial, cell and odor.

Construction of cumulative and concatenated vector. The

cumulative rate was computed by summing the vectors of each

consecutive time bins in the first breathing cycle after the odor onset.

At the end of the period of interest (i.e. a complete breathing cycle),

the cumulative vector contains the rate summed over all the

subsequent time bins contained in the respiratory period (Fig. 5A).

The concatenated code consists in concatenating each successive

vector to the precedent ones (as an example form the time bin i,

the vector dimension is i multiplied by the number neurons in the

population). It keeps the activity history of all the time bins after the

odor onset (Fig. 5A).

For the awake dataset, as we used only 5 trials per stimulus, we

tested whether the difference in performance observed between

the cumulative and the concatenated codes may be due to an

undersampling, especially in the case of short time windows. We

acquired a second dataset and we used 20 trials per odorant

stimulus. We computed the maximum prediction performance for

the first cycle after the odor onset while varying the number of

trials used trial from 3 to 20 and using different binning window to

compute the population vecor. We observed that the prediction

performances of the two codes evolved in a similar manner for

different number of trials, independently from the time window

(Fig. S2). This ruled out the possible bias due to the under-

sampling.

Results

Odorants evoke weak rate change in mitral cells recorded
in awake mice

In order to study the potential coding mechanisms in M/T cells

underlying odor representation, we recorded ensembles of neurons

from the mouse OB in both anesthetized and awake mice (Fig. 2A–

B) [22]. The average baseline firing rate across all recorded

neurons was 15.4614.3 (mean6S.D.) and 14.2614.6 for

anesthetized and awake animals (no difference between the

distributions, Kolmogorov-Smirnov test, P.0.05), respectively.

In anesthetized mice, odorants evoked clear responses in some

neurons (,40% of the cells; see below) as shown in the peri-

stimulus time histogram (PSTH) binned over respiratory cycle

duration (Fig. 2C). We observed either an increase or decrease of

firing rate following the odor onset (see representative examples).

In contrast, in awake mice the same set of stimuli evoked weak or

no changes in firing rate variations (Fig. 2D). We thus determined

whether the recorded neurons responded to the odorants. This

was accomplished by measuring in each respiratory cycle, the

percentage of cells that significantly changed their firing rate to at

least one (out of 7) odorants tested (see Methods). In anesthetized

mice a large fraction of M/T cells (,40%, n = 102 neurons tested)

responded significantly to at least one odorant (Fig. 2E). In

contrast, in awake mice the percentage of responding cells was

unchanged during odorant application (Fig. 2F; 1.92%60.44 S.D.

and 1.69%60.64 for baseline and odor periods, respectively;

n = 130 neurons). Thus M/T neurons recorded in awake mice

respond much less to odorants by a rate change.

It follows that in awake mice, either a large fraction of M/T

cells are not activated by the odorants and carry no information

about the stimulus, or the cells respond and encode the stimulus

without strongly changing their firing rate (i.e. baseline and odor-

evoked rate changes computed over a breathing cycle are not

significantly different, Fig. 2F). We explored the ability of neuronal

ensembles to encode sensory information. The ensemble activity

was quantified using a ‘‘population vector’’ representation, a

method (described below) already successfully used for the analysis

of olfactory coding [22,32,33,34,35]. For each neuron, its firing

rate was calculated over a specific time window and was fed in

individual raw of a vector. Each respiratory cycle was divided into

8 bins of equivalent duration (anesthetised: 50 ms, awake: 40 ms).

The temporal evolution of population firing, for each odor trial, is

thus described by vector time series. In order to test the actual

encoding capabilities of the population activity, we used on a single

trial basis, a classification algorithm based on population vector

similarity (see Methods). In anesthetized mice, the curve of correct

prediction fluctuated between ,30–60% correct within and across

respiratory cycles (Fig. 2G; first cycle: max: 52% and mean:

37610% S.D.). These values are much greater than chance (14%),

confirming that the population activity could be used to decode

stimulus information on a single trial basis. In awake mice, the

correct prediction was surprisingly (given Fig. 2F) different from

Odor Coding in Awake Mice
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Figure 2. Rate-invariant mitral/tufted cells encode odorants in awake mice. (A) Sketch of the experimental setup. The mice are head-
restrained and tetrodes are placed in their olfactory bulb. The repiratory cycles are measured by a sensor placed in front of the animal nose. (B)
Schematic positioning of the electrodes during tetrode recordings. The electrodes were lowered from the olfactory bulb surface until the typical
activity of the mitral/tufted (M/T) cell layer was observed. (C–D) Representative examples of M/T cells responses to selected odors shown as a
peristimulus time histogram (PSTH) in anesthetized (C) and awake (D) mice. The time bin is set to the breathing cycle duration. The vertical dashed
red lines define the odor application period. The odors are mixtures of amyl acetate (Aa), ethyl butyrate (Eb) and 3-hexanone (Hex) at different ratios.
(E–F) Percentage of M/T cells that significantly changed their firing rate to at least one (of 7) odorant in anesthetized (E) and awake (F) mice. Grey
boxes indicate odorant applications. Horizontal red dotted line indicates the level of false responsive cells computed over the baseline. (G–H) Correct
stimulus decoding prediction based on population activity computed on single trials. The breathing cycles are divided in eight time bins. Red bars:
chance level. Population of neurons: 102 and 130 cells for anesthetized (E,G) and awake (F,H), respectively.
doi:10.1371/journal.pone.0030155.g002
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chance and even superior to the values obtained in anesthetized

animals (Fig. 2H; first cycle: max: 77% and mean: 54617% S.D.).

In summary, a large fraction of M/T cells in awake animals, while

rate-invariant over a breathing cycle, still respond to odorants and

carry enough information about the stimulus identity to be

discriminated by cell ensembles.

In awake mice, odorants tune the spike timing in the
breathing cycle

To encode stimulus information while being rate-invariant,

individual neurons must carry information by tuning their spike

timing within the respiratory cycle (RC). It therefore follows that

only if the bulbar network contains a sufficient population of co-

active M/T neurons that such information may be read by higher

brain centers. In order to better detect changes in odor-evoked

activity, we quantified the number of odorant-responsive cells that

contribute to the population code using a method that not only

takes into account the firing rate but also redistribution of spike

timing in the respiratory cycle. We divided each respiratory cycle

into 8 bins of equal duration (40–50 ms). This process permits the

represention in time of all averaged odor trials as vector time series

of 8 dimensions (i.e. sequence of consecutive RCs). For each

Figure 3. Reorganization of spike timing during respiratory cycle discharge in individual neurons following odorant presentation
in awake mice. (A–B) Examples of four mitral/tufted cells, recorded in anesthetized (A) and awake (B) animals, showing changes in respiratory
cycles firing during odorant application. Each point represents a breathing cycle activity (BC). Black points: BCs during baseline. Colored points: BCs
during odorant application. The color code corresponds to the different stimuli. Note that colored BCs located in the baseline cloud correspond to
non-responsive odorants. (C–D) Percentage of the recorded cells responding to at least one odorant in anesthetized (C) and awake (D) mice. A cell is
considered as responsive when a significant difference between baseline and odor cycles firing is found using a method that takes into account both
rate and temporal changes (see Methods and Fig. 1). We determine if an odorant BC is different from the baseline BC cloud taking into consideration
the variance of the baseline cloud (standard deviation, S.D.). We use a test set of baseline cycles to estimate the percentage of false positives and
varied the number of S.D. necessary to reach a maximum of 5% of them (horizontal blue dotted lines). With such quantifications, 64% and 29% of the
neurons in anesthetized and awake mice (vertical blue dotted lines), respectively, are found to respond to at least one odorant.
doi:10.1371/journal.pone.0030155.g003

Odor Coding in Awake Mice
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neuron, we then computed a principal component analysis (PCA)

on all averaged odor trials (see Methods). In the PCA space,

baseline and odorant evoked population firing activities appear as

points representing individual RCs (Figs. 1 and 3A–B).

To find significant changes in firing patterns after odorant

application (Fig. 3), one must take into account the stochastic firing

variation in single neurons. To determine which of the odorant

responses are significantly different from baseline, on each average

trial we used a framework taking into account baseline fluctuations

(see Methods and Fig. 1). For cells recorded in anesthetized

animals, odor-evoked RC activity was clearly different from the

baseline activity (i.e. color points outside the black cloud), a result

consistent with the large odorant-evoked rate changes (Fig. 3A). In

contrast, in awake mice, the entire set of points (i.e. baseline and

odor periods) is more compact though during the odor period,

some RCs are clearly spatially located outside the baseline cloud;

consistent with the idea that the neurons responded to these

odorants (Fig. 3B). To identify those responsive neurons, we

determined the respiratory cycles during the odorant application

period that were sufficiently far away from the baseline activity to

be considered as different and thus responsive. To estimate the

number of false responding neurons we also performed the

analysis over baseline epochs. We set a standard deviation

threshold at which we detect no more than 5% false positive

responses over the baseline (Figs 1 and 3C–D). After quantifica-

tion, 64% of the M/T cells in anesthetized (Fig. 3C) and 29% of

the awake animals (Fig. 3D) were found to respond to at least one

odorant. We conclude that some neurons recorded in awake

animals respond to odorants by tuning the firing activity within the

respiratory cycles.

Efficiency of odor information coding by population of
rate-invariant M/T cells

We next inquired whether the entire population of cells is

involved in encoding stimulus information. To address this issue,

we constructed a population vector over a reading time window of

gamma oscillation duration (16 ms, ,60 Hz) that we used to

compute the correct stimulus prediction curve (Fig. 4). Such

oscillations are evoked by odors in the OB (see Fig. 6A) and have

been proposed to reflect some sensory processing

[10,36,37,38,39,40]. For both anesthetised and awake animals,

the prediction values were largely above the chance level (Fig. 4A–

B). In addition the maximum of prediction decreased in this

shorter temporal window when compared to longer time bins

Figure 4. Populations of rate-invariant neurons encode olfactory information in awake mice. (A) Correct stimulus prediction curve
computed over time for odor identity using 102 cells recorded in anesthetized mice. Breathing cycles were divided in 24 time bins (duration: 14 ms –
to reflect gamma frequency). Grey box: odor application. Red line: chance level. (B) Correct prediction curve computed with a population of 130 cells
recorded in awake mice. Time bins duration: 16 ms. (C–D) Prediction performance calculated only using non-responsive cells identified with the
analysis presented in Figure 2 in anesthetized mice (C, n = 37 cells on average) and in awake mice (D, n = 92 cells on average). (E) Correct prediction
curve using randomly selected subpopulation of cells in awake in order to match the same number of cells as in (C). (F) Shuffling spike trains
independently for each cell removed all information contained in the entire ensemble (130 cells).
doi:10.1371/journal.pone.0030155.g004
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duration presented earlier (compare Figs. 2G–H and 4A–B

respectively). The population firing activity is thus sufficiently

precise to encode odor identity at 60 Hz.

We then computed the correct prediction curve using a

subpopulation of 37 out of 102 neurons recorded in anesthetized

animals and which excluded the responsive neurons (identified in

Figure 5. Impact of the reading time window duration on different decoding mechanisms. (A) Correct stimulus prediction curves during
the first breathing cycle (during odorant application) computed for different coding schemes and different time window durations. Black curves:
instantaneous firing rate (i.e. in independent time bins). Red curves: concatenated firing over consecutive time bins (temporal sequence analysis). Blue
curves: cumulative spike counts over consecutive time bins. Each graph shows the prediction curves computed with a population vector built with
different time bin durations (2, 12, 50 and 100 ms). (B) Maximum of prediction in the first breathing cycle computed for different bin durations and
for the different coding schemes during odorant presentations. Noisy fluctuations of the prediction curves increase for analysis using short bin
duration, leading to an overestimation of the true maximum of prediction. For comparison, the maximum of correct prediction computed on a
respiratory cycle before odorant application is plotted. (C) Ratio of the prediction curves for the concatenated code over the cumulative code. For
each window duration, a ratio between the prediction curves of the concatenated and cumulative schemes is computed either on the first 100 ms
(magenta), 200 ms (green) after odor onset (i.e. for 0 to 100 or 200 respectively) or the entire respiratory cycle duration (cyan). Cumulative code is
more informative for shorter time bin duration (,4–6 ms) while concatenated code becomes more informative for longer duration (from 10 to
50 ms).
doi:10.1371/journal.pone.0030155.g005

Figure 6. Encoding odorant information in different phases of the gamma oscillations recorded in the OB. (A), Traces of the respiration
(blue) and of the local field potential (black) before and during (red bar) odorant application. Gamma oscillations are clearly visible in the enlarged part
shown in the green rectangle. Light grey boxes indicate inspiration phases. (B) Maximum of correct prediction reached in the first respiratory cycle
following odor application, computed for the different neural codes (instantaneous, concatenated, cumulative) and plotted as a function of the
timing relative to the phase of the gamma oscillation. The prediction curves were computed with population vectors binned over the duration of a
gamma oscillation, the beginning of the averaging window varying with the phase of the gamma oscillation (see schema).
doi:10.1371/journal.pone.0030155.g006
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Fig. 3). As expected, the performance decreased to chance level

(Fig. 4C). In awake animals in contrast, after removing the

‘‘responsive’’ cells, the classification performance remained above

chance levels (Fig. 4D, maximum: 45%; n = 92 cells remaining in

the population). To eliminate the possibility that this result is due

to the difference in the number of cells used in the cellular

assemblies, we randomly chose the same number of cells in the

population of awake and in the anesthetized animals (i.e n = 37),

and performed the classification with this subset of cells. We

performed the random choice process 10 times in order to pick up

each time a different subset of cells (Fig. 4E). The average

prediction curve was then still markedly greater than chance level

(Fig. 4E, max: 4066%). These results emphasize that cells that are

usually neglected due to their weak firing rate changes and

considered as non-responsive can still contribute to the neural

code, as revealed by the population analysis.

In awake mice, rate-invariant cells contain sufficient information

to correctly encode odorant information as cell assemblies. The

discharge patterns of the population found at each trial are

sufficiently robust to predict the stimuli identity. Therefore each cell

may be precisely time-locked (at least across 16 ms windows),

leading to a typical odorant-evoked ensemble pattern. To test the

importance of the discharge timing, we changed, inside individual

breathing cycle, the spike pattern structure for all recorded neurons.

For that, we randomly shuffled the 16 ms time bins inside each

breathing cycle for each trial, odor and cell. With such shuffled

population, the ability to predict stimulus identity has vanished

(classification performance is now at chance level; Fig. 4F).

Taken together, these data indicate that precise timing of the

firing in the neuronal population is critical to encode odorant

identity accurately.

Impact of the reading time window duration on different
decoding mechanisms

The preceeding findings highlighted the importance of temporal

information to encode odorant identity by cell assemblies. However,

to understand the time scale at which the population activity yields

the highest prediction and to assess which coding scheme (for

example: cumulative rate or temporal sequence) would be more

predictive for different readout window durations we have done the

following analysis. Since animals are able to make a decision about

odorant identity in a single sniff (,200 ms/ [41,42,43,44,45,46]),

we performed the analysis on the first breathing cycle and we varied

parametrically the duration of the analysis window. We computed

the stimulus prediction curve either in individual time bin

(instantaneous) or by summing (cumulative) or concatenating

(concatenated) the bins over time. The instantaneous readout

would be similar to a rate snapshot reading, in which each point is

independently informative. In contrast, reading information over

time takes into account past history. We considered two models:

either looking at spike accumulation over time (cumulative rate) or

at the information contained in the activity sequence (i.e. temporal

features) by performing the concatenation of each population

vectors of subsequent time bins. The latest description preserves the

information contained in fine temporal details of activity, which is

lost when taking the average of the vectors.

In individual time bins (instantaneous readout), correct odor

prediction increased upon enlarging the time window duration,

reaching a maximum of ,80% for bins of 100 ms and then

further decreasing (Fig. 5A–B). For windows smaller than 50 ms,

prediction decreases until reaching a value comparable to baseline

at time scales close to the spike timing (3 and 5 ms) (Fig. 5B). In

contrast, when the evolving history of spiking activity over time

(cumulative or concatenation) is taken into consideration the

information can be extracted at these time scales reaching up to

80% prediction (Fig. 5A–B). We observed, however, a notable

difference between the cumulative rate and the concatenated

codes. The maximum prediction reached in the breathing cycle

for the cumulative rate analysis remains stable for all time bin

durations ,100 ms, whereas the concatenated model shows a

decreasing prediction for short time windows (Fig. 5A upper left

panel and Fig. 5B). Interestingly, for windows ,10 ms, the

prediction decreases and becomes lower than the cumulative rate

code (Fig. 5B). Therefore, over the respiratory cycle, the maximum

prediction of the cumulative rate code is more resistant to highly

fluctuating noise present at a fast time scale but is less predictive

than the concatenated code at time scales longer than 100 ms.

Moreover, the prediction curve evolves differently during the

respiratory cycle for both codes, a parameter that could be of

behavioral importance when considering the observed speed

accuracy tradeoff in odor discrimination experiments [42,43]. The

concatenated model reaches faster the maximum prediction for

specific time windows (for example 12 ms; Fig. 5A upper-right

panel) than does the cumulative model. Hence, we quantified this

difference in performance by plotting the ratio between the

prediction curves of the two codes for different time bin duration

(Fig. 5C). We computed this analysis for three parts of the

breathing cycle (from odor onset to either 100 ms, 200 ms or the

end of the breathing cycle). In all cases, the cumulative rate code

was a better predictor at scales close to the spike timing but

became less efficient for time windows between 6 to 50 ms

(Fig. 5C). We also observed that the ratio increased when earlier

part of the breathing cycle was considered, reflecting that

concatenated code prediction reaches higher performances

directly after odor onset. At fast time scales (,6 ms), cumulative

rate is better in encoding odorant information whereas the

concatenated code reaches high predictive values more rapidly (for

reading windows between 6 and 50 ms). In order to achieve a

trade-off between accurate and fast discrimination, these results

highlight the existence of an optimal reading time window having

a duration of 10 to 50 ms, in which the firing activity may be

analyzed. We then inquired as to the nature of an internal clock

that could be used to chop up the spike sequences to maximize the

reading of the sensory information.

Interestingly, the optimal time window for odorant discrimina-

tion in the olfactory bulb is compatible with the duration of a

single gamma oscillation cycle. As such, the gamma oscillations

could be used as an internal clock used to convey the spikes

emmited by the M/T cells. To test this hypothesis, we detected the

gamma cycles from our recordings (Fig. 6A) and we computed

population vectors using the gamma oscillations duration as a

reference. Across trials, the gamma cycles were realigned to each

other (similar to the breathing cycle alignment, see Methods), the

average duration of a gamma cycle being 19 ms62 (mean6S.D.).

In addition, we used different parts of the gamma oscillations as a

starting point to generate different population vectors: the peak-to-

peak period, the first inflexion point, the trough-to-trough period

and the second inflexion point (Fig. 6B). No matter how the

information had been parcelled, we observed high performances

of prediction for the concatenated and the cumulative codes. It

confirmed that the gamma oscillation could act as a framework

conveying sufficient information to discriminate between different

stimuli. In addition, the choice of the time reference was important

in order to retrieve the maximum amount of information for the

concatenated code. Indeed, we observed that this code is very

sensitive to the gamma phase chosen to compute the population

vector (Fig. 6B). The part of the gamma cycle being the most

informative, starts at the rising phase of a gamma oscillation.
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These results indicate that information about odorant identitiy can

be parcelled by gamma oscillations cycles, each of which may act

as an embedding structure for the spikes.

In conclusion, these data suggest that odorant information

retrieved in the population activity is read as spike packets (i.e.

temporal blocks) of a specific duration to reach an optimal trade-

off between fast and accurate odorant identification.

Discussion

In this study, we analyzed how odorant information is processed

in population of M/T cells. In contrast to anesthetized animals,

where rate changes dominate, we showed that a large fraction of

OB M/T cells are rate-invariant over a breathing cycle and

respond to odorants in awake mice mainly by changing the timing

of the spikes in respect to the breathing cycle. We found that these

rate-invariant neurons transmit sensory information as co-

activated cell population in different time windows. In awake

animals, sensory information may be decoded as spike packets

sequences by downstream network in order to reach a tradeoff

between rapid and accurate odor discrimination. We propose that

OB gamma oscillations act as an internal clock to drive the spikes

packets sequences.

M/T cell responsiveness to odorants in awake mice
Numerous studies in anesthetized mice report a large percent-

age of M/T cells responded to odorants by changes in their firing

rate [20,21,22,23,24,25]. In awake animals, we confirmed, at a

larger population level, an overall reduction of odorant-evoked

rate change [47]. In this dataset, no M/T cells exhibited a

significant odorant-evoked rate change (Fig. 2 and 4) but they

respond to odorants by redistributing their spikes within the cycle,

as described recently for some neurons [32,48].

Why were the cells in awake animals not found to significantly

respond by a rate change in an averaged respiratory cycle?

Considering shorter time bins, it is possible that some cells display

a transient rate change in a respiratory cycle phase that would be

averaged out when considering the mean cycle discharge.

However, it is difficult to statistically extract such period on a

small number of trials (five for awake mice) and without

considering the entire cycle discharge as firing fluctuate substan-

tially in different part of the cycle (even in the baseline). Neurons

may still display weak and transient firing rate changes but below

the intrinsic fluctuations of the baseline firing. At a population

level, these small rate adjustments could still be detected and used

by downstream brain centers as shown in our analysis by the

ability to predict sensory information using the rate codes for long

analysis window duration spaning the inspiration.

Importantly, we don’t claim that none of M/T cells change

their firing rate during any odorant presentation as could be

observed previously for some neurons [32,48]. In this dataset, we

did not observe strong firing changes, which may be due to

different reasons. First, the M/T cells recorded in different part of

the OB may exhibit different response profiles (we recorded

mainly cells in the dorsal part). Second, the number of repetitions

per odorant stimulus may be another difference. In our study, we

used only few trials per odorant whereas in other reports, several

hundred trials were used and sometimes during behavioral tasks.

While having a small number of trials may underestimate the

number of cells significantly changing their firing rate, increasing

the number of trials may also induce some forms of short term

plasticity [49]. In addition, the response of M/T cells in animals

engaged in a behavioral task may be modified by neuromodula-

tory centers [50]. Finally, the concentrations and the nature of the

odorants used (monomolecular vs. mixtures) may be another

source of variability. Indeed, we observed some neurons displaying

firing rate changes when using monomolecular odorants at higher

concentrations (data not shown).

In summary, M/T cells may exhibit complex behaviors

following odorant presentation. While some neurons can exhibit

obvious rate changes, a large fraction of the population can still

respond to the stimuli by exhibiting change in their spike timing

inside the respiratory cycle. In conclusion, while many M/T cells

in awake animals have previously been considered as non

responsive and sparse by rate analysis, in fact, they respond to

odorants by change in temporal patterns, contributing to sensory

coding.

Implication for coding
M/T cells have been proposed to encode odors by strongly

changing their firing rate albeit to only few odorants, implying that

M/T cells are narrowly tuned and that the odor code is sparse

[21,23,25,47]. However, these studies do not take into consider-

ation rate invariant neurons, commonly thought to be unrespon-

sive and thus not contain information regarding the odorant

identity. We showed that ensembles of rate invariant neurons can

encode odorant identity with high accuracy. Indeed, a striking

finding was that, the population of ‘‘unresponsive’’ cells (,70%)

contributed to the neural code as the ensemble activity could be

used to predict the stimuli presented. Therefore, analysis

performed at a single cell level underestimates the percentage of

cells possibly contributing to sensory information transfer. This

result highlights that inferring the neural code based on single cell

response profile tends to give only a partial view of how sensory

information is processed.

While individual neurons don’t change their global firing rate,

how may the OB network encode sensory information? One

strategy is to encode sensory information by increasing synchrony

[3,4,5]. Theoretical studies showed that neurons can encode

sensory information by synchronizing their spikes without

significantly changing their firing rate [2,30,31]. Experimental

studies in the insect olfactory system support the role of synchrony

in odor coding, though neurons that display strong rate changes

also contribute to the odor code [3,4,5]. In our study we couldn’t

precisely assess synchrony between neurons at the time scale of

individual spike as we used a limited number of trials per stimulus.

Future experiments using a larger number of trials would be

needed to precisely evaluate the influence of synchrony in different

part of the cycle to encode odorant information. Although

synchrony between spikes may still be important, we propose a

slightly different mechanism of coactivation. We suggest that M/T

cells act as cell assemblies carrying odorant information by finely

tuning subsequent spiking segments through the breathing cycle.

As a consequence, decoding performance achieved by down-

stream network would be strongly influenced by the duration of

the read out time window.

Specific read-out time window for temporal code
How may downstream networks such as the piriform cortex be

reading incoming inputs? As in other systems [15,16], the decoder

may need a reference to integrate sensory information. Obviously

an essential reference is the start of the sensory stimulation but

additional reference time points may be needed by the decoding

networks to maximize information readout. Here, we defined

these optimal readout window durations for different coding

strategies. The instantaneous firing rate code led to decreasing

prediction performances for short duration analysis windows

(,50 ms), reaching the level of the baseline noise (for 4 ms). By
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computing a cumulative spike count or a concatenated vector

(temporal sequence), we showed however that both coding

strategies led to higher prediction of odorant identity at faster

time scale than the instantaneous rate code. We further report that

the concatenated code performs better in the early phase of the

respiratory cycle, corresponding to the inhalation phase. This

result is in agreement with a recent report, which has shown that a

concatenated model is more efficient than a rate model to encode

odorantss in a read out window of 20–40 ms in rats trained to a

two choices discrimination task [32]. Our study adds two

important observations to their results. First, in untrained mice

we reached high prediction level by using populations of rate

invariant neurons and using few odorant applications (5 trials

versus several hundreds per stimulus), This situation approaches

more natural olfactory behavior where an odor is recognized by

naı̈ve animals, avoiding possible remodelling of activity after

behavioral training paradigms and repetitive odorant applications

[49]. Second, we showed a fast decrease in performance of the

concatenated model close to the spike count time scale (,6 ms), a

time window that was not assessed in the latter study. This coding

scheme eventually becomes too much sensitive to noise and

decreases drastically its prediction performance, while the

cumulative code remains stable and reaches a high performance

level. Beyond the boundaries of this window, the instantaneous

rate or the cumulative rate codes perform better than the

concatenated code. However, none of them reaches a maximum

level of performance as fast as the concatenated code in the

optimal read-out time window during the inhalation phase (80–

100 ms).

Therefore, the olfactory cortex may decode the OB outputs as

subsequent spikes trains embedded in ,12–50 ms windows. This

particular read out scale may allow the system to reach an optimal

trade-off between accuracy and speed of odor categorization, as

observed during behavior [43]. Interestingly, coincident conver-

gence of synaptic inputs from M/T cells of different glomerular

units onto piriform cortex pyramidal cells efficiently triggers

spiking for this particular duration [51,52].

Therefore, to obtain an optimal trade-off between discrimina-

tion accuracy and speed as observed during behavior [43], the

olfactory cortex may decode the information coming from the

olfactory bulb in subsequent time segments of ,12–50 ms,

keeping the information of precedent packets. Interestingly,

coincident convergence of synaptic inputs from M/T cells of

different glomerular units onto piriform cortex pyramidal cells

efficiently triggers spiking for this particular duration [51,52].

Moreover, the duration of the optimal readout time window

corresponds either to the duration of a gamma oscillation cycle or

to the duration of a fast beta oscillations cycle. Gamma oscillations

are commonly observed in the OB and has been proposed to be

essential for odor processing [10,36,37,38,40,53,54,55]. Thus, it

can represent a driver for the temporal spike packets. In vitro,

gamma oscillations enhance the spike timing reliability, increasing

discrimination between odors. The rising phase of the oscillation

seems to drive spiking activity and optimize the stimulus

information content [10,36,37,38,40,53,54,55]. Our results pro-

vide a similar view and show that gamma oscillation can play the

role of the internal reference to drive the spiking segments in the

neuronal population. Moreover, we also observed that varying the

internal reference defined by gamma oscillation phase change also

the information content of the spiking trains. Thus, rising phase of

the gamma cycle led to the maximum odor discrimination when

using the concatenated code.

Recent work in the piriform cortex has shown that pyramidal

neurons are phase-locked to beta oscillations of the local field

potential recorded in the cortex [56]. Interestingly, different

cortical neurons prefer to spike at different phases of the LFP beta

oscillation. It is possible that the variability of the preferred phase

may correspond to the ability of different cortical neurons to

integrate spiking packets locked to different OB gamma oscillation

cycles. Anyhow, the way M/T cell spikes are conveyed to the

piriform cortex and integrated in a broader frequency range still

need to be fully understood.

In conclusion, we showed that a large fraction of M/T cells may

encode odorants without changing their global firing rate. These

cells form assemblies of temporally coactive neurons. We propose

that sensory information carried by these assemblies is embedded

in the temporal spiking patterns that may not be processed by the

cortex independently but in spike segments of specific duration.

The gamma oscillations may represent an advantageous reference

time frame to drive the spikes [16] in subsequent segments. The

information would be optimally decoded from the total sequence

of segments over the inspiration period, providing a trade-off

between fast and accurate discrimination.

Supporting Information

Figure S1 Schema of the breathing cycles realignment
across trials. (A) Schema of the breathing cycle after odorant

application onset for three different trials. The grey boxes

represent the inspiration phase. The duration of the respiratory

cycles can change from trial to trial (but also within the same trial).

M/T cell spikes are indicated in blue. (B) Schema of the realigned

breathing cycles. The inspiration onset from each trial is realigned

to the mean breathing duration (393615 S.D.). The longer

breathing cycles were then cutted. The shorter were prolonged. It

is noteworthy that the spike timing relative to respiration cycle

onset is not changed by this procedure.

(TIF)

Figure S2 Dependence of the classification analysis on
the number of trials per stimulus. We tested such

dependence for both neural codes (concatenated and cumulative)

and for several analysis window durations. We always observed

similar curves for both codes, independently of the binning

duration used to compute the population vector. All predictions

have been normalized to the prediction reached for 20 trials.

(TIF)
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