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Innate lymphoid cells (ILCs) are the most recently discovered 
family of innate immune cells. ILCs can be categorized 
into three groups on the basis of the transcription factors 
that direct their functions and the cytokines they produce. 
Notably, these functions parallel the effector functions of T 
lymphocytes. ILCs play a frontline role in host defense and 
tissue homeostasis by responding rapidly to environmental 
factors, conducting effector responses in a tissue-specific 
manner, and interacting with hematopoietic and non-
hematopoietic cells throughout the body. Moreover, recent 
studies reveal that ILCs are involved in development of 
various inflammatory diseases, such as respiratory diseases, 
autoimmune diseases, or cancer. In this review, we discuss 
the recent findings regarding the biology of ILCs in health 
and inflammatory diseases.
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INTRODUCTION

Innate lymphoid cells (ILCs) are recently identified lympho-

cytes that lack antigen-specific receptors but have similar 

functions as T cells and thus serve as the innate counterparts 

to T cells (Diefenbach et al., 2014; Spits and Cupedo, 2012). 

They respond quickly to signals from the tissue environment 

and are in general enriched in barrier tissues (i.e., skin, lung, 

and intestine) rather than in lymphoid tissues. There are three 

ILC subsets, each of which displays a distinct predilection for 

particular tissues. Within these tissues, the ILCs play specific 

roles in homeostasis and disease (Mjösberg and Eidsmo, 

2014; Patman, 2015) that will be discussed in this review.

INNATE LYMPHOID CELLS

ILC subsets
Unlike lineage cells such as T cells, B cells, and myeloid cells, 

ILCs do not express lineage markers (Vivier et al., 2018). In-

stead, they can be divided into three groups (group 1 ILCs, 

group 2 ILCs, and group 3 ILCs) on the basis of the cytokines 

they produce and the master regulatory transcription factors 

that drive their development and functions.

	 Group 1 ILCs include ILC1s and natural killer cells (NK cells). 

They express CD161 and interleukin (IL)-12 receptor beta (IL-

12Rβ) on their surface, and their master transcription factor 

is T-bet (Cortez and Colonna, 2016; O'Sullivan, 2019). ILC1s 

are the innate counterpart to Th1 cells since they secrete 

interferon γ (IFNγ) and tumor necrosis factor α (TNFα), while 

NK cells are considered to be the innate counterpart to type 1 

cytotoxic T (Tc1) cells since they produce TNFα, IFNγ, perforin, 

and granzyme.

	 Group 2 ILCs (ILC2s) express the IL-33 receptor (IL-

33R) and the transcription factors GATA binding protein 3 
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(GATA3) and RAR-related orphan receptor alpha (RORα) (En-

twistle et al., 2020). ILC2s are the counterparts to Th2 cells 

because they produce large amounts of type 2 cytokines such 

as IL-5 and IL-13. ILC2s also express other cytokines, including 

amphiregulin, granulocyte-macrophage colony-stimulating 

factor (GM-CSF), and IL-9 (Morita et al., 2016).

	 Group 3 ILCs are subdivided into three populations accord-

ing to their expression of C-C motif chemokine receptor 6 

(CCR6) and natural cytotoxicity receptors (NCR) (i.e., NKp46 

in mice and NKp44 in humans). Thus, the CCR6+ cells are 

designated LTi; these cells produce lymphotoxins (LT). The 

CCR6- cells are divided further into NCR+ ILC3s and NCR- 

ILC3s (Montaldo et al., 2015). ILC3s typically express IL-1 and 

IL-23 receptors and the RORγt and aryl-hydrocarbon receptor 

(AhR) transcription factors (Meininger et al., 2020).

	 Recently, several groups identified a new subset of ILCs, 

namely, IL-10-producing regulatory ILCs (ILCregs) (Golebski 

et al., 2021; Morita et al., 2019; Wang et al., 2017). Wang 

et al. showed that they express a distinct transcription factor, 

namely, ID3 (inhibitor of DNA binding 3), and that autocrine 

transforming growth factor beta (TGF-β) signaling is import-

ant for their development (Wang et al., 2017). However, 

other groups have also reported that ILCregs can be derived 

from ILC2s by retinoic acid (RA) (Golebski et al., 2021; Morita 

et al., 2019). Further studies on the origin and functions of 

ILCregs are required.

Development and differentiation of ILCs
ILCs develop from common lymphoid progenitors (CLPs) 

in the fetal liver and the adult bone marrow (Zook and 

Kee, 2016). In the mouse, the differentiation of CLPs into 

mature ILC subsets is regulated by the coordinated ex-

pression of a variety of transcription factors that activate 

or repress critical target genes. These transcription factors 

include  ID2, NFIL3, promyelocytic leukemia zinc finger 

(PLZF) (encoded by Zbtb16), TCF1 (encoded by Tcf7), and 

GATA3 (Eberl et al., 2015; Vivier et al., 2018) (Fig. 1). NFIL3 

plays a particularly important role since it controls ID2, 

GATA3, EOMES, and T-bet and thereby orchestrates ILC 

differentiation (Gascoyne et al., 2009; Male et al., 2014; Xu 

et al., 2015). The transcriptional ILC differentiation program 

starts with CLPs expressing NFIL3 and TCF1; this causes them 

to differentiate into early innate lymphoid progenitors (EILPs), 

which are the lineage-committed cells for ILCs and NK cells 

(Geiger et al., 2014; Tanriver and Diefenbach, 2014). The 

EILPs then differentiate into common helper ILC precursors 

(CHILPs) due to ID2 and GATA3 expression (Serafini et al., 

2014; Tanriver and Diefenbach, 2014; Yagi et al., 2014). 

Fig. 1. Development and function of ILCs. ILC differentiation proceeds in a stepwise fashion from hematopoietic stem cells (HSCs) to 

lymphoid lineage restricted precursors. The development of ILCs from CLPs requires ID2-mediated suppression of alternative lymphoid 

cell fates that generate B and T cells. CLPs further commit to the ILC/NK lineage via multi‐potent ILCp. Individual subsets depend on the 

expression of specific transcription factors that determine their terminal differentiation and function. CLP, common lymphoid progenitor; 

EILP, early innate lymphoid progenitor; CHILP, common helper ILC precursor; NKp, NK cell precursor; ILCp, ILC precursor; LTip, LTi cell 

precursor.
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Subsequently, PLZF expression drives the development of ILC 

precursors (ILCp) from CHILPs (Constantinides et al., 2014; 

2015). The ILCp exits the fetal liver or adult bone marrow and 

then circulate in the blood (Eberl et al., 2015). There is also 

evidence that some ILCp matures in the bone marrow before 

entering the bloodstream (Eberl et al., 2015; Walker et al., 

2019).

Tissue tropism of ILCs
A growing body of evidence suggests that ILC subsets are  

strategically localized in specific tissues in a way that relates 

to their roles in immune responses (Bando et al., 2015; Kim 

et al., 2016a). Thus, ILC1s are largely located in the intraep-

ithelium of the intestine (Fuchs et al., 2013); ILC2s predom-

inate in the lung, skin, and white adipose tissue; and ILC3s 

are a major population in the lamina propria, cryptopatches, 

and Peyer’s patches of the intestinal tract (Klose et al., 2013; 

Luci et al., 2009). This tissue tropism is determined in part 

by the tissues, which present a signature array of adhesion 

molecules and emit chemokines, and in part by the ILCp and 

mature ILCs, which express characteristic homing receptors, 

including integrins and chemoattractant receptors, that 

cause them to migrate from the circulation into the peripher-

al tissues (Lapidot et al., 2005). For example, ILCp expresses 

integrin α4β7 (Constantinides et al., 2014; Possot et al., 

2011) while endothelial cells express the binding partners of 

α4β7, namely, mucosal addressin cell adhesion molecule 1 

(MAdCAM-1) and vascular cell adhesion protein 1 (VCAM-

1) at high levels (Deem and Cook-Mills, 2004; Erle et al., 

1994). The encounter between ILCp and MAdCAM-1- and 

VCAM-1-positive endothelium causes the ILCp to stick and 

then extravasate into the tissue. Thus, α4β7 guides ILCp to 

mucosal and non-mucosal tissues. Similarly, the ILCp express-

es chemokine receptors that guide their migration towards 

the corresponding chemokines emitted by the tissues. These 

chemokine receptors include C-X-C motif chemokine recep-

tor 6 (CXCR6), which seems to play an important role in the 

emigration of ILCp from the bone marrow and their periph-

eral seeding, and CCR7 and CCR9, which are key gut-homing 

receptors on ILCs (Chea et al., 2015; Kim et al., 2015; Pat-

man, 2015; Possot et al., 2011; Zlotoff et al., 2010). Thus, by 

expressing specific homing receptors, ILCp and mature ILCs 

migrate to specific peripheral tissues (Fig. 2).

ILC plasticity
Once ILCp and mature ILCs enter the tissues, they seem to 

reside there and proliferate locally. A parabiosis mouse model 

showed that under homeostatic conditions, ILCs reside in 

the tissue whereas other lymphocytes circulate through the 

bloodstream (Gasteiger et al., 2015; Kim et al., 2016a; Moro 

Fig. 2. Tissue tropism of ILCs. ILCp derived from bone marrow hematopoiesis enters the blood to home to lymphoid and non-lymphoid 

organs. This process requires the expression of various chemokine receptors and α4β7 integrin. Their strategic position within tissues 

allows ILCs to act as a monitor of healthy tissue and to enable a rapid response to inflammatory signals. CLP, common lymphoid 

progenitor; ILCp, ILC precursor.
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et al., 2016). In the tissue, ILCp matures into ILC subsets that 

appear to be shaped by microenvironmental cues (Lim and Di 

Santo, 2019).

	 While mature ILCs has less differentiation capacity than 

ILCp, it is clear that the ILC subtype phenotypes are plastic, 

meaning they can convert into other subtypes in response 

to environmental cytokines (Fig. 3). For example, a study 

that used the genetic fate mapping technique to mark cells 

showed that stimulating RORγt+ ILC3s with IL-12 and IL-15 in-

creased their expression of T-bet and IFNγ, which is character-

istic of ILC1s; this treatment also decreased their expression 

of RORγt (Bernink et al., 2015; Montaldo et al., 2015). The 

converse effect is also true: ILC1s can be changed both in vivo 

and in vitro into ILC3s by IL-2, IL-1β, and IL-23 (Bernink et al., 

2015). There is a similar reversible axis of plasticity between 

ILC2s and ILC1s: ILC2s stimulated in vitro with IL-12 exhibit 

increased expression of T-bet and IFNγ, and this is reversed 

by IL-4 (Bal et al., 2016; Lim et al., 2016; Silver et al., 2016). 

This ILC plasticity highlights the consummate ability of ILCs to 

sense, communicate with, and adapt to the surrounding mi-

croenvironment. As we will see below, these activities of ILCs 

participate both in tissue homeostasis and inflammation. 

ROLES OF ILCS IN TISSUE HOMEOSTASIS

ILCs help remodel injured tissue in a variety of ways, thereby 

maintaining tissue integrity. For example, by inducing stromal 

lymphoid tissue organizer cells to produce chemokines (i.e., 

C-X-C motif chemokine ligand 13 [CXCL13], CCL21, and 

CCL19) and adhesion molecules (VCAM-1, MAdCAM-1, and 

intercellular adhesion molecule 1 [ICAM-1]), the ILC3 subset 

LTi promotes the formation of secondary lymphoid organs 

such as Peyer’s patches in the gut, which play an important 

role in gut homeostasis in the face of microbial colonization 

and food-derived antigens (van de Pavert et al., 2009). ILC3s 

also restore secondary lymphoid organs after they have been 

destroyed by a viral infection (Scandella et al., 2008). More-

over, ILC3s help rehabilitate intestinal epithelium that has 

been damaged (for example by chemotherapy) by secreting 

IL-22 (Hazenberg et al., 2019): this induces IL-22 receptor-ex-

pressing intestinal stem cells to regenerate the epithelial cells 

(Wolk et al., 2004). In addition, the intestinal epithelial lesions 

in dextran sodium sulfate (DSS)-induced colitis can be re-

paired by ILC2s that have been stimulated with the epithelial 

cytokine IL-33: these cells produce amphiregulin, which binds 

to epidermal growth factor receptor (EGFR) on epithelial cells 

and thereby regulates their differentiation and proliferation 

(Monticelli et al., 2015). These effects of amphiregulin-ex-

pressing ILC2s are also critical for restoring airway epithelial 

integrity and tissue homeostasis after influenza virus infection 

(Monticelli et al., 2011). These observations suggest that 

therapeutically targeting homeostatic ILC responses in tissues 

could help manage tissue damage.

ILCS IN INFLAMMATORY DISEASES

The local tissue microenvironment in inflamed tissues can be 

very different from that in healthy non-inflamed tissues. This 

can cause ILCs to change their phenotype and functions in 

both beneficial and pathogenic ways. We discuss below how 

ILCs act in several inflammatory diseases, namely, asthma, 

chronic obstructive pulmonary disease (COPD), multiple scle-

rosis (MS), and cancer (Fig. 1). It should be noted that despite 

the essential roles of ILCs in gut homeostasis and tissue repair 

(see above), these cells also contribute to inflammatory bow-

el diseases (IBD) and several infectious diseases. For detailed 

information on ILCs in IBD and infectious diseases, we recom-

mend related excellent reviews (Panda and Colonna, 2019; 

Peters et al., 2016; Zeng et al., 2019).

Asthma
Asthma is a chronic inflammatory disease that affects about 

300 million people worldwide (Beasley and Hancox, 2020). It 

is characterized by difficulty breathing, coughing, and wheez-

ing that is caused by airway hyperresponseveness (AHR), mu-

cus overproduction, and airway remodeling (Lambrecht and 

Hammad, 2015). Multiple studies show that ILCs may play 

key roles in asthma pathogenesis (Kim et al., 2016b; Scanlon 

and McKenzie, 2012). This was first discovered when allergic 

asthma models and patients were found to have pulmonary 

ILC2s that produce large amounts of type 2 cytokines; these 

cytokines have long been noted to play key pathogenic roles 

in this classical asthma endotype (Kim et al., 2016b). It is 

now thought that the pathogenic role of pulmonary ILC2s 

starts when these cells are activated by various factors that 

are promptly upregulated in the lungs by allergens: they 

include the epithelial cytokines IL-33, IL-25, and thymic stro-

mal lymphopoietin (TSLP) and the mast cell factors cysteinyl 

leukotrienes and prostaglandins (Doherty and Broide, 2019; 

Liu et al., 2018; Lund et al., 2017; Salimi et al., 2017). The 

activated ILC2s then recruit other immune cells, including 

eosinophils and alternatively activated (M2) macrophages; 

these cells induce AHR and airway inflammation (Halim et al., 

2014; Wolterink et al., 2012).

	 Notably, ILC2s participate in influenza virus-induced asth-

Fig. 3. Plasticity of ILCs. ILCs exhibit plasticity that can switch 

between fully polarized subsets to quickly adapt to changes 

occurring in the environment. The plasticity of ILC1, ILC2, and 

ILC3 depends on signals from the tissue microenvironment, 

mainly the cytokine milieu.
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ma in both a pathogenic and a beneficial way. Thus, the 

virus-damaged epithelial cells secrete IL-33, which stimulates 

ILC2s and thereby worsens airway inflammation (Chang et 

al., 2011). On the other hand, the influenza infection stimu-

lates ILC2s to secrete amphiregulin, which causes the dam-

aged epithelial cells to regenerate (Monticelli et al., 2011; 

Wills-Karp and Finkelman, 2011). ILC2s also play a well-rec-

ognized role in the pathology of eosinophilic asthma in hu-

mans: patients with severe asthma have increased numbers 

of ILC2s in their blood and sputum and the disease severity 

correlates with the amount of type 2 cytokines produced 

by ILC2s but not the Th2 cells (Liu et al., 2015; Smith et al., 

2016). We also found that ILC2s induce the polarization of 

M2 macrophages in patients with eosinophilic asthma (Kim 

et al., 2019).

	 Interestingly, the latter study also showed that in non-eo-

sinophilic asthma, ILC1s and ILC3s, but not ILC2s, activate 

classically activated (M1) macrophages (Kim et al., 2019). 

Thus, different types of ILCs may be responsible for the 

asthma phenotypes in humans. This is supported by studies 

showing that ILC3s may participate in the non-allergic asth-

ma endotypes that appear to arise independently of Th2 cells 

(Everaere et al., 2016; Kim et al., 2014); these endotypes 

include those driven by obesity or environmental factors such 

as ozone, diesel particles, and cold air (Kim et al., 2010). For 

example, we observed that when mice were fed a high-fat 

diet, they spontaneously developed AHR and had significant 

lung numbers of CCR6+ ILC3s that produced IL-17A, which 

is a potent neutrophil chemotactic agent. We then showed 

that these ILC3s were activated and induced to proliferate by 

IL-1β from M1 macrophages (Kim et al., 2014).

	 These observations together demonstrate the crucial im-

portance of ILCs in asthma. Further intensive exploration of 

ILCs is needed since targeting these immune axes could be of 

therapeutic value.

Chronic obstructive pulmonary disease
COPD includes pulmonary emphysema and chronic bronchi-

tis and is a progressive respiratory disease characterized by 

long-term breathing problems and obstructed airflow (Rabe 

and Watz, 2017). The most common risk factor for COPD 

is smoking. The signature immune responses in this disease 

are activated neutrophils, macrophages, Th1 cells, Th17 cells, 

and CD8+ T cells (Bhat et al., 2015; Ni and Dong, 2018).

	 Although there are fewer studies on COPD than on 

asthma, several reports suggest that ILCs are also involved 

in COPD pathogenesis. Kearley et al. showed that chronic 

exposure to cigarette smoke exacerbates virus-induced lung 

inflammation and that this associates with a shift away from 

ILC2 responses to proinflammatory macrophage and NK cell 

responses using a murine model of virus-induced COPD. 

Specifically, smoke exposure increases IL-33 secretion from 

epithelial cells while simultaneously decreasing and increasing 

IL-33R expression on ILC2s and macrophages/NK cells, re-

spectively (Kearley et al., 2015). Notably, Silver et al. showed 

that (inflammatory triggers of COPD also provoke pathogenic 

ILC subset plasticity. They first showed that viral infection and 

long-term smoking convert ILC2s into ILC1-like populations 

that express IL-12Rβ2, IL-18 receptor alpha (IL-18Rα), T-bet, 

and IFNγ. Subsequently, they showed that the severity of 

COPD correlates with increased ILC1s and decreased ILC2s in 

the peripheral blood (Silver et al., 2016). The role of ILC3s in 

COPD is less well studied than the ILC1s and ILC2s, but it has 

been shown that COPD patients have higher ILC3 frequen-

cies in lung biopsies than control subjects (De Grove et al., 

2016). Moreover, COPD lungs, but not unused donor lungs, 

abundantly express the gene set that relates to the ILC3 sub-

set LTi (Suzuki et al., 2017). Therefore, further studies on the 

relevance of ILCs, including the ILC3s, in COPD pathogenesis 

are warranted.

Multiple sclerosis
MS is the most common inflammatory demyelinating disease 

of the central nervous system (CNS) (Reich et al., 2018). Clin-

ical presentation of MS depends on the location of the demy-

elinating lesions, leading to its heterogeneous characteristics. 

It includes sensory or motor symptoms, fatigue, pain, and 

cognitive decline (Filippi et al., 2018). Since MS is regarded 

to be a Th17 cell-mediated disease, most of the research on 

ILCs in MS has focused on the ILC3 subsets. Accordingly, it 

has been shown that compared to control subjects, patients 

with MS have higher numbers of ILC3s, including LTi cells, in 

their cerebrospinal fluid and blood (Degn et al., 2016; Gross 

et al., 2017). However, when MS patients were treated with 

Daclizumab, which blocked IL-2 receptor alpha and previous-

ly used to treat relapsing MS, their circulating ILC3s (LTi cells) 

dropped, but NK cells rose. Notably, significant treatment 

effects were not observed on the frequencies of activated T 

cells (Perry et al., 2012). These findings suggest that ILC3s 

contribute to MS pathogenesis. This is supported by studies 

in experimental autoimmune encephalomyelitis (EAE), a 

mouse model of MS. Hatfield and Browns showed that ILC3s 

are normal resident cells in the meninges (which are where 

the immune cell infiltration to the CNS starts) and that in 

EAE, these cells overexpress IFNγ, IL-17, and GM-CSF. This 

suggests that ILC3s could contribute at an early stage to EAE 

pathogenesis (Hatfield and Brown, 2015). Moreover, Kwong 

et al. showed that when encephalitogenic T cells are trans-

ferred to T-bet depleted mice, the infiltration of T cells into 

the CNS is lower than in wildtype mice. It was then shown 

that the specific loss of T-bet expression in NKp46+ T-bet+ ILCs 

(i.e., ILC1s or the NKp46+ subset of ILC3s) impairs the ability 

of the encephalitogenic T cells to invade the CNS (Kwong 

et al., 2017). These results suggest that despite the fact that 

ILCs are a minor population in the CNS, they can control the 

initiation of inflammation in EAE.

Cancer
While cancer is a complex disease, studies in recent years 

have started to elucidate the roles of ILCs in tumor develop-

ment. The study of Dadi et al. showed that ILC1s can have 

anti-tumor effects: when breast cancer arises spontaneously 

in mice, the mammary glands contain elevated frequencies 

of ILC1s that bear NK cell characteristics (IFNγ and granzyme 

B production) and are cytotoxic to tumor cells (Dadi et al., 

2016). By contrast, a study with MCA1956 carcinogen-in-

duced sarcoma shows that by expressing TGF-β, tumors can 

escape NK cell-mediated tumor control by converting cyto-
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toxic NK cells into ILC1s, which are unable to control tumor 

growth and metastasis (Gao et al., 2017).

	 The roles of ILC2s in cancer immune response are also 

controversial. Rag-/- mice challenged with IL-33-expressing 

B16-melanoma cells develop tumors less effectively than 

mice challenged with wildtype tumor cells: this is due to the 

IL-33-mediated expansion and activation of cytotoxic NK 

cells. However, this beneficial effect of IL-33 is tempered by 

its effect on ILC2s, which inhibit NK cell activation and cyto-

toxicity via immunosuppressive enzyme CD73 (Long et al., 

2018). Similarly, ILC2s produce IL-13 in the acute promyelo-

cytic leukemia animal model, which activates monocytic my-

eloid-derived suppressor cells (M-MDSCs) thereby enhances 

tumor progression (Trabanelli et al., 2017). However, several 

other studies observe that ILC2s can also have anti-tumor ef-

fects. Thus, genetic deletion of ILC2s in mice associates with 

increased tumor growth and metastasis (Saranchova et al., 

2018). Moreover, in pancreatic ductal adenocarcinoma, in-

tratumoral ILC2s activate CD103+ dendritic cells and enhance 

the anti-tumor responses of CD8+ T cells (Moral et al., 2020). 

In addition, in a lung metastatic melanoma model, ILC2s pro-

duce IL-5, thereby activating eosinophils and increasing their 

anti-tumor response (Ikutani et al., 2012). Moreover, ILC2s 

produce IL-9, which is important to suppress metastasis of 

cancer cells, in tumor microenvironment (Park et al., 2020; 

Wan et al., 2021).

	 Similarly, divergent roles were observed for ILC3s. For ex-

amples, in models of preclinical breast cancer and invasive 

colon cancer, ILC3s promote tumor growth and metastasis by 

producing IL-22 (Irshad et al., 2017; Kirchberger et al., 2013). 

By contrast, in the B16 melanoma model, NKp46+ ILC3s in-

crease leukocyte invasion and tumor suppression by produc-

ing IL-12 and upregulating ICAM-1 and VCAM-1 (Eisenring 

et al., 2010).

	 Although studies over the last few years have provided 

critical insights into the role of ILCs in anti-tumor immune re-

sponses, many aspects remain to be explored.

CONCLUSION

Since ILCs adapt remarkably quickly and fluidly to environ-

mental cues and orchestrate downstream immunity, includ-

ing adaptive immune responses, they are fundamental front-

line defenders of the host. However, because of their sparsity 

relative to other immune cells, the importance of ILCs has 

long been underestimated. Since ILCs share many properties 

with T cells, specific treatment targeting ILCs is not available 

until now. However, the present review clearly shows that 

ILCs participate in both tissue homeostasis and disease patho-

genesis, thus could be potential therapeutic targets for man-

aging diseases. ILCs might play an important role in priming 

the immune response at the various stages of the disease by 

secreting large amounts of cytokines prior to T cells by rapidly 

responding to alarmins. Therefore, targeting alarmins could 

be one of the promising approaches to regulating ILCs for 

disease control, although further experiments are required.
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