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Introduction
Family of MYC genes is proto-oncogenes that control the 
expression of a functionally diverse repertoire of genes with 
different physiological roles.1 Malfunctioning of MYC leads to 
B-cell lymphoma, Burkitt lymphoma, neuroblastoma, and epi-
thelial tumors.1 MYC family of proteins (from here referred as 
MYC) consists of three members, c-MYC, L-MYC, and 
N-MYC. The presence of multiple MYC family members with 
distinct expression patterns undoubtedly reflects different spa-
tial and temporal requirements for MYC activity2 and is most 
frankly seen in the particular way each gene is overexpressed in 
specific cancer types. MYC’s key downstream mediators, 
involved in ribosome biogenesis, mRNA translation, cell-cycle 
regulation, and stress responses, affect a broad spectrum of cel-
lular processes, such as apoptosis, differentiation, proliferation, 
survival, and immune regulation.3,4

Among MYC proteins, the deregulated expression of 
c-MYC has been reported in a majority of cancers. The c-MYC 
protein controls the transcription of nearly 15% of expressed 
genes.3 MYCN expression is predominantly found in neural 
and neuroendocrine tissues. MYCL expression is mainly 

observed in the gastrointestinal tract and dendritic cells and 
acts as a driver of certain small-cell lung carcinomas. 
Germline knockout of either MYC or MYCN led to embry-
onic lethality,5-8 whereas mice deficient of MYCL appeared 
normal and were fertile.9

The MYC proteins function as transcription factors.1 MYC 
proteins belong to the basic helix-loop-helix (bHLH) leucine 
zipper family of transcription regulators and possess multiple 
structural domains. MYC dimerizes with MAX through its 
C-terminal region, which is an obligatory partner for MYCs 
binding to DNA and regulation of transcriptional activity. The 
N-terminus of MYC proteins consists of a transactivation 
domain, while the central region carries nuclear localization 
signal.10-12

MYC is considered one of the primary targets in cancer 
drug discovery. However, there are major challenges in design-
ing drugs against MYC, including its intrinsically disordered 
nature, localization in the nucleus, and lack of enzymatic activ-
ity. Due to these inherent obstacles, MYC has long been con-
sidered “undruggable.” Several strategies have been employed 
to directly target MYC, ranging from gene expression 
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regulation to protein-protein interactions (PPIs). Some of 
these strategies have resulted in prototype inhibitors that have 
entered early phases of clinical trials. Over the past 20 years, 
significant progress has been made in developing and approv-
ing drugs comprising small molecules, particularly those that 
can inhibit MYC-MAX interactions and the binding of this 
heterodimer to DNA.13 Several small molecule inhibitors, such 
as 10058-F4, mycomycin-1, mycomycin-2, IIA6B17, 10074-
A4, and 10074-G5, have been reported to inhibit the activity of 
c-MYC.14-17 However, despite the identification of numerous 
prototype compounds these molecules have failed to demon-
strate efficacy into in vivo studies. The limitations are primarily 
attributed to lack of rational drug design and the intrinsically 
disordered nature of MYC in its monomeric form, which lacks 
a clear binding site for drug development.

Another general issue in cancer drug discovery is the off-
target effect of anti-cancer drugs, which can exhibit cytotoxic-
ity against non-cancerous cells. This makes it challenging to 
achieve high selectivity for a small molecule against its target. 
The process from identifying hit molecules to obtaining clini-
cal approval and bringing it to the market typically takes a dec-
ade. Given these factors, drug repositioning offers a promising 
approach to expedite the development of cancer drugs while 
reducing risks and time involved in discovering new drugs.

The objective of the current project is to identify and study 
Food and Drug Administration (FDA)-approved drugs that 
can disrupt the interaction between MYC and MAX proteins. 
Our approach involves screening for potential candidates 
through drug repositioning, specifically targeting the c-MYC-
MAX interaction. For this purpose, we use the DrugBank 
database, which is a comprehensive resource that integrates 
bioinformatics and cheminformatics data. In terms of drug 
entries, the database contains over 7800 records. This includes 
approximately 2200 FDA-approved small molecule drugs, 340 
FDA-approved biotech drugs (such as protein/peptide-based 
drugs), 93 nutraceuticals, and over 5000 experimental drugs.18

To achieve this objective, we utilized all the molecules from 
the DrugBank database and employed two different virtual 
screening approaches: (1) screening through structure-based 
molecular docking and (2) activity-based quantitative struc-
ture-activity relationship (QSAR) screening. For molecular 
docking, AutoDock Vina and Glide software were used. 
Quantitative structure-activity relationship models were con-
structed using known activity data of molecules against 
c-MYC-MAX interaction. Subsequently, the two independent 
QSAR models were used to screen the entire DrugBank data-
base, prioritizing molecules with predicted high activity against 
c-MYC-MAX interaction. Following both screenings, we 
selected the top 2% of molecules from each approach ensuring 
a more robust selection of potential drug candidates. Finally, we 
identified consensus molecules that appeared in the top 2% of 
both screening lists. These selected molecules represent the 
most promising candidates based on their predicted binding 

affinity or activity against c-MYC-MAX interaction. The 
interactions of consensus molecules with MYC protein were 
further assessed using molecular dynamic (MD) simulation 
approach.

By combining the results of different in silico analyses and 
focusing on the consensus molecules, nilotinib (DrugBank ID: 
DB04868) was identified with the potential to interact MYC 
protein and comparable better predicted activity to inhibit 
MYC-MAX heterocomplex, thus providing new avenues for 
therapeutic intervention.

Material and Methods
Molecular docking-based virtual screening

In the current project, structure-based virtual screening of the 
complete DrugBank database was performed using AutoDock 
Vina19,20 and Glide software.21-23

Ligand retrieval and preparation.  All 9468 molecules from the 
entire DrugBank database were downloaded in .sdf format. 
After extraction, all the molecules (ligands) were preprocessed 
for use in structure-based virtual screening. The OPENBabel 
software24 was utilized to add hydrogen atoms (both polar and 
non-polar) and generate the 3D structure of each molecule. 
Ligprep25 tool embedded in Schrödinger platform was used for 
energy minimization applying OPLS2005 force field. The 
Ligprep produced 15 920 molecules with some drugs more 
than one tautomer. Ligprep-generated library was used for 
both docking methods. Using the PYRX platform, a total of 
15 904 molecules were successfully converted to the AutoDock 
Vina-supported .pdbqt format.

Target protein retrieval and preparation.  Crystal structure of the 
apo form of human c-MYC-MAX complex Protein Data 
Bank (PDB) ID: 6G6J26 in the absence of DNA was used for 
screening. To identify a potential druggable site on the exten-
sive and flat interface, only the crystal structure of MYC (des-
ignated as chain A, without MAX and DNA) underwent 
analysis through the Sitemap tool25 within the Schrödinger 
software suite.

For AutoDock Vina, the protein preparation was conducted 
using AutoDock 4 software.27 Water molecules co-crystallized 
with 6G6J were excluded. In addition, hydrogen atoms, both 
polar and non-polar, along with Kollman charges, were incor-
porated. For Glide, the protein structure was readied using the 
Protein Preparation Wizard utility of Schrödinger: Maestro. 
The preparation involved adding missing hydrogen atoms, 
determining the appropriate protonation and ionization states, 
and optimizing the hydrogen bond network of the MYC struc-
ture. Following this, a restrained minimization was executed to 
mitigate hydrogen atom distortions, alleviate steric clashes, and 
address strained bonds. This optimization employed the 
OPLS2005 force field.
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Following the identification of a druggable site on the pre-
pared MYC protein structure, a receptor grid was created to 
conduct the mining for the best hit compounds. The coordi-
nates of the grid center were 10.08, 13.76, and 184.44 for x, y, 
and z, respectively. For Glide, XP option was used for docking.

To reduce processing time and expedite the process, 
AutoDock Vina was run on a graphic processing unit (GPU) 
platform, as described in the study by Tang et al.20 This execu-
tion incorporates large-scale parallelism for Monte Carlo-
based iteration for docking (reducing the number of iterations 
per docking thread) and includes an efficient heterogeneous 
OpenCL implementation. To perform the virtual screening, a 
Perl script was written to handle the molecules one by one on 
the GPU. All the information regarding the protein, grid box, 
and ligand library was provided in a configuration text file. 
Finally, a Python script was used to extract the binding energies 
for each molecule, which were then stored in a .csv file.

Quantitative structure-activity relationship

We conducted another round of screening of the entire 
DrugBank library based on predicted biological activity, spe-
cifically predicted IC50 values against MYC-MAX inhibition. 
To accomplish this, we generated two 3D QSAR models using 
the Maestro platform (Maestro suite, Schrödinger LLC). For 
model generation, 33 reference molecules were retrieved from 
the literature, as reported in Supplemental Table S1. These ref-
erence molecules are described in literature as inhibitors of 
MYC-MAX heterocomplex, and their IC50 values were con-
sidered as the biological activity for QSAR model generation. 
To perform energy minimization and alignment to the com-
mon pharmacophore, the macro model and ligand preparation 
tools, respectively, were utilized in Maestro. Later, two inde-
pendent models, namely field-based QSAR and atom-based 
QSAR, were generated. Regression was performed by con-
structing a model using partial least squares factors.

The molecules from the DrugBank library were then 
applied to each generated model separately, and their IC50 val-
ues were predicted. The molecules were ranked based on their 
predicted IC50 values (-log).

MD simulation

The MD simulation was conducted on Desmond (version 6.6) 
and NAMD (version 2.14) package. The AutoDock Vina-
docked complex of the MYC-nilotinib complex was used as 
the starting point for MD simulations. For NAMD, simulation 
was performed as described in the study by Ravi et al.28 The 
CHARMM36 force field and NAMD package version 2.13 
were utilized. The force field parameters were generated for the 
ligands in CHARMM-GUI server. The simulation system was 
set up in a water box, which included 0.15 M NaCl. Water 
molecules were added to extend 20 Å in the x, y, and z coordi-
nates, resulting in a rectangular box surrounding the protein. 

Electrostatic interactions were treated using the Particle Mesh 
Ewald method. Prior to the production run, the systems under-
went equilibration for 2 nanoseconds, employing a conjugate 
gradient algorithm. The simulations were conducted in an 
NPT (isothermal-isobaric) ensemble with a temperature 
maintained at 300 K. The production simulations were carried 
out for a duration of 100 nanoseconds.

For Desmond, System Builder was utilized to set up the 
simulation system, which placed the protein-ligand complex 
into an orthorhombic box with a distance of 10 Å from each 
edge. To neutralize the system, counterions were added, and a 
salt concentration of 0.15 M NaCl was introduced to ensure 
proper electrostatic distribution. In addition, the simulation 
system underwent minimization using both the steepest 
descent and LBFGS (Limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm) methods for 2000 iterations. 
Subsequently, equilibration was conducted using the NPT 
ensemble for 1 nanosecond. Finally, the production run spanned 
100 nanoseconds, maintaining an average temperature of 310 K 
and a pressure of 1 bar.

The post-simulation data of NAMD were analyzed using 
the visual molecular dynamics (VMD 1.9.3) software.29 The 
RMSD tool was used for secondary structure timeline analysis. 
Plots were generated based on the production steps of the 
MD-screened molecules (protein, ligand, and complex) and 
analyzed using the following VMD parameters: Backbone 
alignment on top and average, and finally, an RMSD plot was 
generated. The Desmond simulation results were visualized in 
Maestro and subsequently analyzed using the Simulation 
Interaction Diagram and Simulation Event Analysis programs 
provided by Desmond.

Differential expression gene analysis.  The high-throughput gene 
expression microarray dataset (GSE19567), a genome-wide 
expression dataset, was obtained from the publicly available 
Gene Expression Omnibus database (https://www.ncbi.nlm.
nih.gov/geo/). This microarray dataset was utilized to assess 
the expression levels of genes in the chronic myelogenous leu-
kemia (CML) cell line (K562 cells) after treatment with nilo-
tinib (0.05 µM) or imatinib (0.5 µM) for 24 hours.

To identify differentially expressed genes (DEGs), we com-
pared the gene expression data from the treated cells to that of 
vehicle-treated control cells. The DEGs were screened using 
the GEO2R online analysis tool (https://www.ncbi.nlm.nih.
gov/geo/geo2r). We calculated the adjusted P-value 
and|log2FC| (fold change) for each gene. Genes meeting the 
cutoff criteria of adjusted P < .05 and |fold change| > 2.0 were 
considered as DEGs.

Subsequently, we performed an intersection analysis of 
genes with high and low expression levels from the two data-
sets. Specifically, we identified genes in the nilotinib-treated 
group that were not present in other treatment combinations. 
A Venn diagram was employed to visualize this comparison.
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Furthermore, the complete database of MYC-responsive 
genes was downloaded, following the described procedure in 
the study by Zeller et al30 and genes responsive to nilotinib 
treatment were searched in this database.

Results
Molecular docking-based screening  
through AutoDock Vina

The interface of the MYC-MAX heterodimer is characterized 
as relatively large, flat, and devoid of suitable grooves that 
would typically facilitate the binding of small molecules. Due 
to these structural features, the crystal structure of the apo form 
of MYC-MAX heterodimer, unbound to DNA (PDB ID: 
6G6J),26 was chosen. This is the MYC-MAX crystal structure 
in the apo form, providing a better understanding and detailed 
view of the MYC-MAX complex, making it suitable for the 
identification of small inhibitors. Within the MYC, c-MYC is 
involved in the tumorigenesis of several different types of can-
cer. In addition, such detailed structures of other family mem-
bers are not available; therefore, we targeted c-MYC in our 
study. Leveraging the robust algorithm of the Sitemap module, 
only one potential binding site was identified, featuring more 
site points and greater exposure to the solvent as shown in 
Figure 1A.

From the entire DrugBank library, 15 872 and 15 405 
docked poses were generated with AutoDock Vina and Glide, 
respectively; following the docking process, the AutoDock 
Vina results were extracted using a Python script, while the 
Glide results were visualized in Maestro. Molecules were 
ranked, and the top 2% (approximately 180) molecules were 
considered. The binding energy range of the top 2% molecules 
was between −8.5 and −7.1 Kcal/mol for AutoDock Vina and 
docking energy was between −71 and −46 Kcal/mol for Glide, 
provided in Supplemental File 1. Noteworthy, nilotinib was on 
the top of list in both docking methods when compared with 
known interactors of c-MYC as shown in Table 1.

Activity-based QSAR screening

The QSAR approach was employed to rank the best molecules 
in the DrugBank library based on their predicted biological 
activity, specifically their ability to inhibit MYC-MAX interac-
tion. Initially, we selected 35 active drugs/inhibitors against the 
MYC-MAX heterodimer, which were identified through a lit-
erature review and the online ChEMBL database (https://
www.ebi.ac.uk/chembl). The statistical parameters for both 
models can be found in Supplemental Table S2. To assess the 
predictive capability of our models, we applied them to predict 
the activity of known MYC-MAX inhibitors. As demonstrated 
in Table 2, the trends in predicted (from both models) and 
experimental IC50 values (except for MYCi361 and sAJM589) 
closely align with each other, indicating the effectiveness of our 

models in making accurate predictions. The predicted IC50 val-
ues (-log of µM) of nilotinib and other known MYC-MAX 
inhibitors are presented in Table 2. For screening, top 2% 
ranked molecules from each QSAR model were considered, 
and their predicted IC50 (µM) values (-log) are given in 
Supplemental File 2.

Figure 1.  High-throughput virtual screening identified nilotinib as an 

FDA-approved top hit compound against oncogenic MYC. (A) Depiction 

of the active site predicted through the Sitemap tool. The red surface 

represents hydrogen acceptor, blue hydrogen donor while yellow shows 

hydrophobic atoms in cavity. The MYC residues within 4 Å of binding site 

are labeled. This active site was selected to screen drugs from the 

DrugBank database. (B) Docking of nilotinib with AutoDock Vina and (C) 

2D structure of binding site with residues in contact with nilotinib in 

AutoDock Vina-docked complex (D) docking of c-MYC-nilotinib using 

Glide software. (E) Contact details of c-MYC residues with nilotinib in 

Glide-docked complex. FDA indicates Food and Drug Administration.
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Selection of consensus molecules

The consensus molecules, which were present in the top 2% of 
drugs identified by both the field-based QSAR and atom-
based QSAR models, were selected. These molecules were then 
compared with the top 2% molecules from AutoDock Vina 
and Glide docking-based screening. The common molecule/s 
that emerged from this comparison were selected as a result. 
Ultimately, only one molecule, ie, DB04868 (nilotinib), was 
chosen, as it exhibited both superior binding with c-MYC 
(Figure 1B to E) and stronger predicted inhibitory activity 
against the c-MYC-MAX complex. Both the screenings are 
summarized in Venn diagram demonstrated in Figure 2.

Analysis of receptor-ligand interaction  
through MD simulation

To further validate the stability of the c-MYC-nilotinib com-
plex, we conducted MD simulations using the NAMD and 
Desmond simulation packages. These simulations extended 
over 100 nanoseconds, and they revealed that the binding of 
nilotinib with c-MYC remained stable throughout this dura-
tion, with robust and intact interactions (refer to Movie S1 and 
S2 for a visual representation of these interactions).

The RMSD plot of NAMD shows that there was initial 
fluctuation in the apo-c-MYC for the first 25 nanoseconds. 
Notably, the nilotinib-c-MYC complex was stable throughout 
the 100 nanoseconds of simulation (Figure 3A). During the 
Desmond simulation, we observed initial fluctuations in the 
C-α atoms of the protein, particularly in the first 35 nanosec-
onds. However, these fluctuations stabilized afterward (see 
Figure 3B). The initial fluctuations led to an increase in RMSD 
values, which went from 4 to 9 Å for the c-MYC-nilotinib 
complex (red line in Figure 3B) and from 4 to 13 Å for c-MYC’s 
apo conformation (blue line in Figure 3B). Importantly, these 
deviations in c-MYC were substantially reduced upon binding 
with the inhibitor nilotinib. This reduction in fluctuations sug-
gests that nilotinib contributes to stabilizing the c-MYC pro-
tein during the simulation.

In addition, the MD simulation revealed that nilotinib 
established multiple stable noncovalent interactions with spe-
cific c-MYC residues. Notably, interactions with residues such 
as Lys392 and Leu370 (as depicted in Figure 3C) remained 

Table 1.  Overview of molecular docking.

S. No Molecule Glide (docking 
energy Kcal/mol)

AutoDock Vina 
(binding affinity 
Kcal/mol)

1 Nilotinib –43.5 –8.2

2 Mycro1 –38.9 –7

3 sAJM589 –20.3 –6.7

4 Mycro2 –32.5 –6.5

5 KJ-Pyr-9 –28.9 –6.5

6 10074-G5 –22.2 –6.5

7 EN4 –39.1 –6.3

8 Mycro3 –41.1 –6.2

9 MYCi361 –32.0 –6.2

10 3JC48-3 –28.6 –6.2

11 MYCMI-7 –22.5 –5.9

12 MYCMI-6 –29.8 –5.8

13 NY2267 –34.5 –5.7

14 KSI-3716 –27.6 –5.5

15 JY-3-094 –21.9 –5.5

16 10058F4 –23.1 –5

Comparison of binding ability of nilotinib and the reported MYC inhibitors to 
c-MYC protein. For Glide, docking energy was considered, while for AutoDock 
Vina binding affinity was considered.

Table 2.  Micro molar IC50 values (-log) of nilotinib and known MYC-
MAX inhibitors.

S. No. Compound Experimental 
IC50 µM (-log)

Predicted IC50  
µM (-log)

Atom-
based 
QSAR

Field-
based 
QSAR

1 Nilotinib Nil –0.68 –0.7

2 KSI-3716 0.08 0.13 0.23

3 MYCMI-7 –0.58 –0.5 –0.52

4 sAJM589 –0.26 –0.51 –0.61

5 MYCMI-6 –0.58 –0.57 –0.51

6 EN4 –0.83 –0.82 –0.91

7 MYCi361 –0.56 –0.9 –1.03

8 KJ-Pyr-9 –1.0 –0.91 –1.28

9 Mycro3 –1.6 –1.12 –1.48

10 Mycro2 –1.36 –1.2 –1.3

11 10058F4 –1.4 –1.38 –1.31

12 Mycro1 –1.48 –1.49 –1.47

13 3JC48-3 –1.53 –1.49 –1.6

14 JY-3-094 –1.52 –1.53 –1.54

15 NY2267 –1.56 –1.74 –1.61

16 10074-G5 –2.16 –1.91 –1.93

Analyses were performed using atom- and field-based 3D QSAR models. 
Experimental IC50 values (column 3) are also included to demonstrate the 
predictive accuracy of the QSAR models. Abbreviation: QSAR, quantitative 
structure-activity relationship.
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consistently intact throughout the simulation, as shown in 
Figure 3D. Furthermore, in the case of apo-c-MYC, at 100 
nanoseconds simulation loss of helicity was observed in the 
helix-2 region. In contrast, this helical structure was found to 
be preserved in the nilotinib-bound c-MYC structure, as illus-
trated with black arrows in Figure 3E and F. The regions 
between Asp420-Lys426 may substantially contribute to the 
stabilization of MYC protein by gaining helical structure. As 
the root mean square fluctuation values of these residues were 
low in complex compared to apo-c-MYC (Figure 3G and H, 
blue arrow). The gain of stabilization was remarkable when 
simulation was performed for Glide-obtained nilotinib-c-
MYC complex (Supplemental Figure S1A to D)

In short, our simulation analysis from two different pack-
ages suggests that binding of nilotinib to c-MYC led to stabi-
lize the protein structure of the later during both simulations. 
Nonetheless, there is a variation in the magnitude of read outs 
from both modules but overall analysis shows that c-MYC 
structure is stable in complex with nilotinib compared to apo-
c-MYC. As shown in Table 3, the RMSD of nilotinib-c-MYC 
complex was lower than apo-c-MYC protein in both simula-
tion methods.

Nilotinib-driven gene expression program  
and MYC responsive gene signature

Differential gene expression analysis showed that 397 and 85 
genes were differentially expressed in nilotinib and imatinib 
treatment group, respectively (Figure 4A and B). We focused 
on the 391 genes and traced them in database of MYC respon-
sive genes as described by Zeller et al.30 Remarkably, among the 
397 genes exclusive to nilotinib treatment, 201 of them were 
identified as MYC-responsive genes, as illustrated in Figure 
4C, for details refer to Supplemental File 3.

Discussion
Perturbed PPIs have been identified as significant contributors 
to various diseases, with cancer being a notable example. 
Within the realm of these interactions, the MYC-MAX inter-
action holds particular importance. This interaction involves 
the binding of the MYC-MAX heterodimer to the E-box 
sequence located at the promoter of target genes and plays a 
crucial role in the development of the oncogenic phenotype.31,32 
Protein-protein interactions have historically been viewed as 
challenging targets for drug development due to their intricate 
and dynamic nature. However, there have been promising 

Figure 2.  Virtual screening of the complete DrugBank database against c-MYC protein. The Venn diagram shows that virtual screening was performed at 

two levels: activity-based QSAR (hexagons) and structure-based molecular docking (triangles). Lead molecules were selected in the top 2% (180 

molecules) of each method. In QSAR screening, consensus molecules of atom-based (green hexagon) and field-based (yellow hexagon) are depicted as 

the gray pyramid. Structure-based molecular docking screening was performed using AutoDock Vina (sea blue triangle) and Glide (sky blue triangle). The 

consensus molecules of docking-based screening are depicted in the magenta triangle. The common drug among all virtual screening methods is 

represented as a red pyramid in the middle, which is nilotinib (DB04868). QSAR indicates quantitative structure-activity relationship.
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Figure 3.  Ligand-protein complex analysis. The AutoDock Vina complex of nilotinib and c-MYC was subjected to MD simulation using the (A) NAMD 

package and (B) Desmond package. The simulations were performed, and the RMSD trajectories are shown, where the red lines represent the RMSD 

trajectory of the complex and the blue lines represent the protein alone. (C) Histogram representation of various interactions formed by residues of c-MYC 

with nilotinib. The colors in the bars, that is red, purple, green, and blue, represent ionic, hydrophobic, hydrogen bonds, and water bridge interactions, 

respectively. (D) Timeline contacts of c-MYC amino acids with nilotinib during 100 nanoseconds. (E) The extracted last frame (100th nanosecond) of the 

simulation trajectory of the c-MYC-apo and (F) c-MYC-nilotinib complex. (G) The RMSF values of apo-c-MYC amino acids and (H) c-MYC residues in 

complex with nilotinib. The arrow shows decrease in RMSF compared to (F). MD indicates molecular dynamic; RMSF, root mean square fluctuation.
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instances of success in the development of small molecules that 
can effectively disrupt specific PPIs,33,34 some of which are 
candidates for cancer therapeutics.35,36

Challenges in targeting the dimerization between MYC-
MAX indeed stem from the highly distorted nature of this 
interaction and the absence of well-defined binding pockets on 
flat interface of MYC protein.37,38 The bHLH domain of 
MYC plays a pivotal role in maintaining MYC-MAX dimer, as 
well as their binding to the E-box element.39 Despite the 
importance of this interaction, numerous efforts over the past 
few decades to interfere with the dimer formation between 
MYC and MAX have faced limited success. The translation of 
discovered molecules into clinical applications has proven to be 
impractical.37,40,41 Several key compounds have been identified 

exhibiting the MYC-MAX inhibitory activity. Those mole-
cules have failed to demonstrate efficacy into in vivo studies. 
The limitations are primarily attributed to lack of rational drug 
design and the intrinsically disordered nature of MYC in its 
monomeric form, which lacks a clear binding site for drugs 
development.

In our current study, we addressed these obstacles by identi-
fying a potent druggable binding site within the bHLH domain 
of c-MYC. We utilized this site to identify a drug through the 
process of drug repurposing, which involves identifying new 
therapeutic applications for existing drugs. The strategy of 
drug repurposing/repositioning enables researchers to leverage 
the extensive knowledge and safety profiles of established 
drugs, potentially resulting in reduced time and costs compared 

Figure 4.  Differential gene expression analysis of nilotinib treatment. High-throughput gene expression microarray dataset GSE19567 was downloaded 

and analyzed using GEO2R online analysis tool. The cut off criteria for adjusted P < .05 and |fold change (FC)| > 2.0. The selected genes are presented 

here. (A) Volcano diagram of DEG between vehicle-treated and nilotinib-treated groups with red dots representing highly expressed genes and blue as 

downregulated genes. (B) Venn diagram of DEG in control vs nilotinib or imatinib and imatinib vs nilotinib. The genes which were exclusively altered in 

nilotinib group were further analyzed. (C) Venn diagram of nilotinib-affected genes and c-MYC responsive genes. DEG indicates differentially expressed 

gene.
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to developing new drugs from scratch. Several notable suc-
cesses have been achieved through drug repurposing, eg, repo-
sitioning of thalidomide and sildenafil.42

A druggable site is characterized by its reasonable size, high 
solvent exposure, and a greater hydrophobic and lesser hydro-
philic nature within the protein structure.43 Utilizing a robust 
algorithm of the Sitemap module, we identified a site suitable 
for screening a large number of molecules, as this site exhibits 
all the properties of a druggable site in contrast to previous 
study,44 which identified five targetable sites in low-resolution 
MYC protein structure.

Through virtual screening based on the ligand-protein struc-
ture and activity-based QSAR, we pinpointed the FDA-approved 
anti-cancer drug nilotinib as a potent interactor with MYC and 
an inhibitor of the MYC-MAX complex. Our MD simulation 
studies reveal that upon binding with nilotinib, the Asp420-
Lys426 region of the MYC protein becomes stabilized by form-
ing a helical structure. In the apo-MYC state, these helices are 
absent. Interestingly, previous studies have shown that this par-
ticular region of MYC is typically distorted, which facilitates its 
interaction with MAX to achieve stabilization.45 Our analysis 
suggests that the binding of nilotinib likely inhibits the MYC-
MAX interaction by stabilizing the helical structure of MYC in 
the region encompassing Asp420-Lys426. Nilotinib is a tyrosine 
kinase inhibitor (TKI) employed in the treatment of patients 
with CML patients who are positive for the Philadelphia chro-
mosome (BCR::ABL1). The BCR::ABL1BCR::ABL1 fusion 
oncogene encodes the fusion protein kinase BCR::ABL1, which 
remains constitutively activated in individuals with CML. 
Nilotinib is chemically described as N-[3-[3-(1H-imidazolyl)
propoxy]phenyl]-4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]
amino] benzamide. It has demonstrated both efficacy and safety 
in CML patients who are either resistant to or intolerant of 
imatinib, another potent TKI. Although nilotinib is a proven 
TKI, emerging evidence show that nilotinib exerts anti-tumor 
activity in cancers which do not harbor Philadelphia chromo-
some, for instance, adrenocortical carcinoma,46 hepatocellular 
carcinoma,47 and prostate carcinoma.48 All the aforementioned 
cancers are negative for BCR::ABL1 ablation, strongly support-
ing the idea that nilotinib is not only a TKI but also exhibits its 
activity through other molecular mechanisms. In addition, the 
aforementioned cancer types express MYC at higher levels, sup-
porting further investigation into the relationship between MYC 
and nilotinib.

Notably, hyperglycemia with impaired glucose metabolism 
is one of the most commonly observed events during nilotinib 
therapy. This effect is unique to nilotinib and not associated 
with other TKI,49 suggesting that nilotinib might be involved 
in metabolic reprogramming through pathways that are inde-
pendent of the tyrosine kinase pathway.

The literature provides ample evidence of MYC’s role in 
influencing metabolic adaptation.50 Through its transcriptional 
activity, MYC controls the expression of numerous genes asso-
ciated with glycolysis, oxidative phosphorylation, and the 
Warburg effect.51 When MYC activity is inhibited, it can 
induce metabolic alterations in cancer cells.52 In our study, we 
observed that approximately half of the genes that responded 
to nilotinib treatment are the targets of MYC too. This sug-
gests the possibility that nilotinib may disrupt the MYC-MAX 
heterocomplex and consequently influence the metabolic 
reprogramming of cancer cells. All the previous studies men-
tioned above indicate a strong relationship between nilotinib 
and MYC. In summary, this study establishes a conceptual 
foundation for understanding how nilotinib binds to and forms 
a stable complex with MYC. Our findings indicate that nilo-
tinib possesses remarkable inhibitory properties toward the 
MYC-MAX dimer. Further investigation in a preclinical set-
ting to assess its efficacy and pharmacokinetic behavior holds 
promise for nilotinib as a potential therapeutic agent targeting 
MYC in conjunction with its role as a TKI.
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