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Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and
discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis
(TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability
or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related
to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review
the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will
also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens

combinations that might be of potential for the control of TB.

1. Introduction

T-cell vaccination is the administration of antigenic material
to produce T-cell immunity against certain diseases. Antigens
used in vaccinations range from live viruses or bacteria
to peptides of proteins associated with the disease target.
Edward Jenner marked the beginning of modern vaccination
by using cowpox to give protection against smallpox in
humans in 1796. Injecting the harmless form of a disease
organism, Jenner utilized the specificity and memory of the
acquired immune response to lay the foundation for mod-
ern vaccination strategies [1]. For the control of infectious
diseases, the core objectives are prophylaxis and therapy. The
initial priority of vaccine development has always been pro-
phylaxis, but the development and evaluation of therapeutic
vaccines, mainly for chronic infectious diseases and cancer,
are gaining momentum. Therapeutic vaccines are substan-
tially more challenging, as diseases such as cancer or chronic
infectious diseases would have coexisted with the immune
system for a long time and have finally escaped immune

surveillance when symptoms are visible. At this stage, almost
by definition, tolerance would have been induced [2, 3]. The
exposition to Mycobacterium tuberculosis (M. tb) produces
several outcomes: no infection, latent infection, or active
disease [4, 5]. During the duration of the latency period, M.
tb goes into a dormant state and would be controlled by the
host’s immunity. However, this control would slowly bring
the immune system to a halt via blockade of regulatory T-
cells (Treg) conversion to Ty 17 cells, blockade of T2 cells
providing stimulation to memory T-cells (T),), and blockade
of costimulatory ligands to avoid activation of effector T-
cells (Tgg) [5]. In this context, the immune system loses
the capability to contain the reactivation of M. tb, resulting
in overt clinical disease, represented by nearly 8 million of
new cases of TB every year. This situation is aggravated by
the growing appearance of multidrug resistant TB (MDR-
TB), extensive resistant TB (XDR-TB), and totally resistant
TB (TDR-TB). In MDR-TB and XDR-TB, therapy requires
alternative, long, expensive, and toxic treatments with low
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success rates while TDR-TB is untreatable. This dire situation
now prompts the need for immunotherapies, with special
interest in T-cell based vaccines to reactivate cytotoxic T-cells
with the capacity to clear disease [6].

2. An Overview of Mycobacterium
tuberculosis and Immunity

TB is a disease of the respiratory tract that is transmitted
through airborne M. tb. Infection of M. tb begins with the
deposition in the alveolar spaces of the lungs upon inhaling
air with airborne M. tb. Here, M. tb will be phagocytosed
by alveolar macrophages (AM) and destroyed with the help
of complement activation [7-9]. Cells such as dendritic cells
also play a part in this process [10-12] but some of the M. tb
will be able to escape the process of intracellular destruction
by the innate immunity, thus leading to multiplication of
the infection and destruction of the AM. Cell debris from
the destroyed AM is then ingested by other monocytes
which would normally differentiate to other macrophages
that would be ready to phagocytose other M. tb but does not
destroy the internalized M. tb from the AM cell debris.

Upon development of acquired immunity (T/B-cell
responses), early infected cells would undergo cytotoxicity.
Other AM which were secondary to the initial infection will
then show inhibited logarithmic bacillary growth where the
infection now goes into a dormant state [13]. During the
dormant/latent state, M. tb escapes immune surveillance via
several strategies. It is capable of inhibiting both phagosome
maturation and autophagy as well as translocating from
the phagolysosomes to the cytosol of the AM [14, 15].
M. tb is also capable of downregulating proinflammatory
cytokines, gamma-interferon (IFN-gamma), and gamma-
interferon receptor (IFN-gammaR) which is crucial T/B-cell
responses [16]. Production of anti-inflammatory cytokines
such as IL-10, IL-1Ra, and IL-4 and transforming growth
factor beta (TGF-f) on the other hand antagonizes the
protective Ty;1 responses by IFN-gamma and IL-1f3 as well
as inducing regulatory T-cells (Tregs) [16-20].

The development of immune-surveillance escape mecha-
nisms does not stop at the cytokine level. Processing pathways
of major histocompatibility complex (MHC) class I, MHC
class II, and CDI molecule which presents antigen have also
been observed to be inhibited by M. tb. The mechanism
with which MHC class I molecule is inhibited is yet to
be clearly understood but data shows the possibility of
pathogen associated molecular patterns [21], especially the
19 kDa lipoprotein antigen known as LpqH from M. tb to
inhibit phagosome maturation and thus limit the availability
of antigenic peptides from M. tb to be presented on MHC
class T molecules [22-24]. MHC class IT molecules which
are important for stimulating CD4" T-cells in order to
generate T); against diseases were more clearly observed to
be attenuated by the LpqH from M. tb. It acts as a PAMP and
triggers activation of macrophages through toll like receptor
(TLR) 2. However, this chronic exposure to LpqH and M. tb
infection causes inhibition of IFN-gamma-induced regula-
tion genes (46%), which play important roles in presentation
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of antigen on MHC class II molecules [25, 26]. This eventually
leads to downregulation of antigen presentation and reduced
activation of CD4" T-cells [27, 28].

With the combination of these mechanisms, M. tb
would normally succeed in evading the host immune system
and lays dormant or slowly multiplies within the necrotic
granuloma of the infected lungs (consisting of dysregulated
granuloma turnover, liquefactive necrosis, and pathological
scarring). The lesion formations in the granuloma are het-
erologously infected by M. tuberculosis, giving rise to the
production of the CD4" and CD8" cells. The microenviron-
ment of the human lesions determines the different responses
caused by the M. tb cells depending on the location of the
bacteria in the outer lesion wall [29]. The condition within
these granulomas not only provides an excellent breeding
ground for multiplication of M. tb but also serves as a
spreading ground due to access to the airways of the lungs
[30]. Therefore, the immunity conferred at the early stages
of the infection would only serve as a vague warning sign
to the patient, and in most cases many TB patients go
undiagnosed until reaching active state where the immune
system is already unable to retaliate against the disease.
This problem is aggravated by the fact that there is no gold
standard diagnostics available for latent TB: that is, about
10% of these numbers go into active TB state [5]. Although
new interferon gamma release assays (IGRA) which detect
M. tb specific antigen release of IFN-gamma are capable
of producing more accurate results than the Mantoux test,
there are still problems with false positive test results [31].
Therefore, current treatment of TB has poor prognosis as
treatment is delayed due to the lack in diagnostics and the
inability to stimulate an immunological response when TB
enters the active state. This fact also strengthens the need to
develop improved vaccines which would generate stronger
and lasting immunological responses against TB be it for
prophylaxis or therapy.

Current trends of understanding TB have also progressed
as far as the involvement of other nonconventional T-cells
(iNKT, CDlI restricted T-cells, 8 T-cells, Th17 cells, etc. [32]),
presentation of peptides by HLA-E molecules [33, 34], and
recognition of glycolipids/glycoproteins by CD1 restricted T-
cells [35]. These have all been extensively reviewed in the
cited publications and go to show that immunity generated
as a result of M. tb infection not only confers the CD4, CD8,
and B-cells immunity but also is extended towards other
parts of the immunity due to its capacity to avoid immune
surveillance.

3. Current Prophylactic TB Vaccines
and Their Developments

Historically, TB vaccine has been targeted towards prophy-
laxis/protective immunization with Bacille de Calmette et
Guérin (BCG) which was first recognized in 1931 [36, 37].
BCG, a vaccine made of live attenuated Mycobacterium
bovis (mycobacterium strain that causes TB in cattle), is
used worldwide but is now shown to be unable to protect
adults with pulmonary TB and adolescents despite showing
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beneficial protection in children [38]. Increasing numbers
of active TB is also fueled by HIV coinfection [39-43].
HIV targets the CD4" T-cells which plays an important
role in protection against TB as discussed in the previous
chapter. Due to this coinfection, HIV compromises T-cell
based immunity generated against TB, leading to accelerated
reactivation of latent TB [44].

In order to tackle such problems, new candidate vaccines
are emerging from around the globe. These candidate vac-
cines are intended to provide not only stronger immunolog-
ical responses against M. tb but also long lasting responses
which will require stimulation of memory T- and B-cell
responses [38].

One of the many examples of current emerging TB
vaccines is the MVAS85A vaccine, which is based on Ag85A
antigen expressed by modified Vaccinia Ankara virus as a
subunit vaccine. Ag85A is a mycolyltransferase found in
M. tb during its dormant stage to mediate the transes-
terification of diacylglycerol as acyl donors to form lipid
storage bodies causing persistence of infection [45]. The
MVA vaccine, which was developed as a smallpox vaccine
in 1983, was first used in several animal models, which
produced immunogenic responses and provides protection
against BCG vaccinated animals. Safety studies conducted on
BCQG treated patients also showed positive results in a phase
I clinical trial [46]. The vaccination protocol as of then was
BCG vaccination followed by MVAS85A vaccination and then
fowl pox expressing Ag85A (FP85A) vaccination in a prime-
boost strategy. This strategy showed a marked increase in
Ag85A-specific CD8" T-cells after vaccination with FP85A
[47]. Although phase I studies were successful, further
clinical studies in a phase IIb randomized trial showed no
efficacy compared to placebo [48]. The trial recruited an
extensive number of patients (2797 infants, 1399 allocated to
MVAS85A and 1398 allocated to placebo) in Cape Town, South
Africa, but the authors only found that the vaccine was safe
and generated modest immunological responses. However,
efficacy was absent and further investigations are currently
ongoing in order to dissect the findings.

Although the MVAg85A phase IIb failed to show
improved efficacy, efforts in developing vaccines against TB
should be increased and clinical trials must be designed
in a manner to incorporate current understanding such
as nonconventional T-cells and presentation of glycol-
ipids/glycoproteins to CD1 restricted T-cells. This is due to the
fact that, in phase IIb trial of MVAg85A, protective efficacy
was shown by BCG vaccination and thus increased efficacy
was not seen in such a short period. The lack of a non-
BCG vaccinated group also points towards the need for better
clinical trial designs [38].

Other prophylactic vaccines, which are currently in the
pipeline, are listed in Table 1. One of the many interesting
vaccines includes a recombinant BCG (rBCG) designed to
express a lysin from Listeria monocytogenes, which would
promote presentation of antigens delivered to the host
called VPM1002 [49]. This vaccine was cleverly designed to
increase the capacity of BCG vaccine to promote CD8" T-cell
responses. Listeriolysin acts within the infected macrophages
to induce apoptosis as well as translocation of antigens

into the cytoplasm, thus increasing available antigens to be
presented by MHC class I molecule. VPM1002 has since
concluded its phase I trial showing safety, immunogenicity,
and stimulation of both B- and T-cell responses against
antigens from the vaccine [50]. However, studies as such
would require further investigation and investigators would
need to learn from results obtained from the MV85A clinical
trials.

We have so far discussed examples of non-M. tb vaccines
which were used in vaccination against TB. The notion of
immunizing with attenuated live M. tb was also used by
several groups to design new vaccines against TB. Despite
worries that the attenuated M. tb is a viable microorganism
that has intrinsic potential risk to produce active disease,
but this type of vaccine is of great potential. For obvious
reasons, the use of a live attenuated M. tb would provide all
the necessary antigens and the mycobacterium itself would
act as an adjuvant as the presence of numerous types of
liposaccharides is capable of triggering the innate immunity,
thus increasing generation of proinflammatory cytokines
such as TNF-«, IL-2, and IFN-gamma.

One such example is the SO2 vaccine, a mutant strain of
M. tb MT103 that has a disrupted phoP gene [51, 52]. The phoP
gene was shown to play an important role in the virulence of
M. tb strain MT103 and this disruption reduces the potential
of replication significantly [53]. The SO2 vaccine presents
several key antigens from M. tb which have been shown
to be crucial in conferring protection compared to BCG.
The ESAT-6 antigen, for example, was shown to be highly
immunodominant in a M. tb challenge study conducted in
guinea pigs which was not found in BCG vaccination [54-56].
Therefore, the use of live attenuated M. tb as vaccine delivers
a potential alternative.

Another notable vaccine is the fusion protein HyVac4
(H4), which consists of the mycobacterial antigens Ag85B
and TB10.4, which is administered with the adjuvant IC31
or DDA/MPL in BCG-induced individual. H4 was shown in
a preclinical study with 6- to 8-week-old female F1 crossing
of inbred male C57BL/6 and female Balb/c mice to have
effectively boosted and prolonged immunity induced by BCG
with immune response dominated by IFNy/TNF«/IL-2 or
TNF«/IL2 producing CD4 T-cells [57]. Phase II clinical trials
have been announced by Aeras in March 2014 and would
enroll 990 adolescents.

H56 which is a fusion protein vaccine consisting of Ag85B
and ESAT-6 is very similar to H4 as it also works in order
to boost the immunological responses generated by BCG.
In a preclinical study with BCG inoculated cynomolgus
macaques, boosting with H56/IC31 resulted in efficient con-
tainment of M. tuberculosis infection and reduced rates of
clinical disease. This was measured by clinical parameters,
inflammatory markers, and improved survival of the animals
compared with BCG alone [58]. H56 is developed by Statens
Serum Institut (SSI) and has since collaborated with AERAS
for a clinical trial. Other notable vaccines which have shown
to be of great potential have been incorporated in Table 1
above.



TaBLE 1: Candidate vaccine with emerging protective responses and
its brief description.
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TaBLE 2: Candidate emerging therapeutic TB vaccines and its brief
description.

TB vaccine Vaccine details

Vaccine Vaccine details

Modified Vaccinia Ankara virus

MVAS5A [45
[45] expressing Ag85A

A liposome that encapsulates

RUTT [68] detoxified M. tb fragments

VPM1002 [50]
AdAg85A [89]

rBCG expressing listeriolysin

Adenovirus expressing Ag85A

Mycobacterium smegmatis mutant
that expresses M. tb esx-3 genes
which is capable of inducing central
memory responses

Mutant M. tb strain that has phoP
deleted

Fusion of ESAT-6 and Ag85B in
adjuvant IC31

Ag85B and TB10.4 administered
with IC31 or DDA/MPL

Ag85B and ESAT-6 administered
with IC31

30-kDa major secretory protein of
Mycobacterium tuberculosis

AIKEPLUS [90]

S02 [52]

Hybrid 1+ 1C31 [91]

H4 [57]

H56 [58]

rBCG30 [92, 93]

Fusion protein of Rv1196 and

M72 + AS01/AS02 [94
" / (4] Rv0125 in ASO1 or AS02 adjuvant

4. Current Therapeutic TB Vaccines
and Their Developments

Prophylactic vaccines for TB, as previously discussed, showed
that only BCG was capable of providing protection but is
incomplete. Due to the fact that the protection conferred is
incomplete, reactivation of TB in latently infected patients
poses a great risk and eradication of disease still proves
challenging [59]. With the discovery of MDR, XDR, and
TDR strains of M. tb, treatment of active TB remains as one
of the top priorities, which will complement prophylactic
vaccinations in order to eradicate TB. Without drugs capable
of combating these M. tb strains, nearly 2 million of the world
population are killed yearly with some patients not even
receiving any treatment [60]. New avenues and combination
of drugs in clinical trials showed some form of positive results
like meropenem-clavulanate in combination with linezolid-
containing regimens to treat XDR TB [61]. However, a new
line of thought in using therapeutic vaccines has emerged
with the introduction of several different candidates.
Currently there are only a handful of therapeutic vac-
cines that are in the development pipeline. An example of
these vaccines is an inactivated whole-cell Mycobacterium
vaccae (M. vaccae). This vaccine was first introduced in
1985 to boost BCG vaccinations instead of being used
in treating leprosy [62, 63]. Inactivated M. vaccae pos-
sesses similar immunodominant antigens to M. tb, thus
showing an improved generation of antigen-specific lym-
phocytes responses especially in HIV-patients with TB.
Despite showing efficacy inducing Tyl responses, anti-
body responses, especially IgG against mycobacterial anti-
gens, were also shown to escalate in these vaccinated

Mycobacterium
indicus pranii (MIP)
[95]

A live saprophytic mycobacterium
administered via aerosol route

A fusion of Rv1411 (TLR-2 agonist) and

CSU-F36 [67] ESAT-6 protein

patients [64]. When one dose of inactivated 10° M. vaccae
was administered in combination with chemotherapy treat-
ment, significant clinical improvements were seen in non-
HIV patients in a clinical trial conducted in Uganda [65].
Another trial with three doses of M. vaccae also showed
clinical improvements in non-HIV, chemotherapy treated
patients [66]. This progress however meant that treatment
with chemotherapy is still crucial.

Other potential therapeutic vaccines are also in the
pipeline but one similarity between the vaccines is that they
augment responses generated by chemotherapy or are used
to control latent infection postchemotherapy (Table 2). Ther-
apeutic vaccines such as CSU-F36 which is a fusion of a TLR-2
agonist and ESAT-6 antigen act as a standalone vaccine which
have the potential of generating cytotoxic T-cell lymphocytes
responses as strong level IL-12 was generated [67]. However,
this vaccination has only managed to withstand a mild dose
of aerosol M. tb challenge.

RUTI is a new form of immunotherapy involving the
use of detoxified and liposome Mycobacterium tuberculosis
cell fragments in the vaccine regimen (Table 2). Preclinical
studies have shown that RUTT treatment has the tendency to
improve the chemotherapy with increased efficiency against
chronic disorders caused by the Mycobacterium tuberculosis
mouse model (C57BL/6 and DBA/2 strains) and guinea pigs
[68]. This one-month vaccination strategy utilises the bacte-
ricidal effect provided by the chemotherapy to synergistically
kill the active bacilli growth and suppress the inflamma-
tory responses generated locally. The inoculation of RUTI
can be implemented after the chemotherapy in order to
prevent the reactivation of the latent bacilli. The intranasal
administration of the RUTI vaccine in mice contributes
to the reduction in the bacillus cell counts and balanced
Th1/Th2/Th3 responses without toxicity. RUTI is advanta-
geous over other TB vaccines due to the protective properties
given by the specific CD8 T-cells and humoral responses
induced during the treatment. This enables the immune
system to fight against a broad range of antigen with antigen-
specific antibody productions upon RUTT vaccination [69].

RUTI extract has successfully elicited the pronounced
immune responses caused by the recombinant mycobacterial
antigens [70]. Significant protection was demonstrated in the
mice sera treated with RUTI regimen in SCID mice [71]. The
RUTI vaccine has shown prophylactic effect as therapeutic
vaccine against tuberculosis. In C57BL mouse model, the
viable bacilli count was significantly reduced in both lung
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and spleens after 4 weeks upon vaccinations. Stronger pro-
tection was observed for lung as compared to spleen cells
after 9-month vaccination. Besides, the guinea pig survived
longer by giving 5-week vaccination prior to challenge. RUTI
vaccination can potentially be a prophylactic treatment to
reduce the risk of tuberculosis infections [72]. During phase
II clinical trial, a randomised, placebo-controlled study has
shown a reasonably safe vaccine which is tolerable and is
immunogenic in human subjects with latent tuberculosis
(69, 72].

The development of an effective TB vaccine has been
challenging on the path of the licensure of the therapeutic
product with proven safety and effectiveness. To design a
potent prophylactic vaccine, animal models have been used
extensively during vaccine development. However, success-
ful clinical trials are required to investigate the immune
response generated during an actual condition of the TB
infection. Further studies are required to understand immune
responses that occur naturally upon infection. To circumvent
this issue, the tracking of the global TB vaccine development
is important and this can be achieved by encouraging Stop
TB partnership to gather vaccine pipelines to acknowledge
the current candidate vaccine profile and novel therapeutic
strategies. The combination of priming, booster, and thera-
peutic vaccines may provide protection before and after TB
antigen exposure during TB infection, which can be further
enhanced by rapid diagnostic approach and adjunct drug
treatment against multidrug resistant TB [73, 74].

5. Future Directions into TB Vaccines

Current vaccinations in the pipeline are much skewed
towards protective vaccination and therapy in combination
with chemotherapy. This current trend is very plausible and
in the light of the results obtained, be it positive or negative,
it would only point towards the possible control of TB.
However, we are still far away from sterile eradication of TB.
In order to improve on discoveries which have already been
made, we would like to underline several key factors that we
think would assist in development of vaccines with enhanced
efficacy.

One of the key factors that we and others think would
be of crucial importance towards generating a better vaccine
is the role of B-cells and antibodies [5]. Like all vaccines
against infectious disease, that is, hepatitis B. virus, antibodies
play the dominant role in providing initial protection against
incoming infection. Antibodies are binders that not only are
specific towards their targets but also recruit many arms of
the immune system (NK-cells, neutrophils, and so forth) to
the site of infection, thus increasing the chance of sterile
eradication. Although we have discussed the ability of M. tb
to evade this mode of eradication, we think that by intro-
ducing a vaccine capable of triggering Th2 responses and an
appropriate antigen especially during the latent stage might
generate antibodies which are targeted against pulmonary M.
tb. The discovery of downregulated invariant natural killer
T-cells (iNKT cells) in peripheral blood of TB patients [75]
also points towards the possibility of using antibodies as a
mode of targeting latent infection and activation of iNKT cells

via a-galactosylceramide («-GalCer) [32, 76] would be able
to lead to the destruction of latently infected cells. However,
as mentioned by Nunes-Alves et al., the use of a-GalCer
has yet to be explored. This however can be substituted by
other iNKT cells activator such as the minor lipid species
that copurifies with 3-GlcCer in mammals [77]. Aside from
inducing antibody responses, the use of appropriate antigen
is key to generating cytotoxic antigen-specific CD4" and
CD8" T-cells. As we have observed in current vaccines being
developed, they were mostly targeted against Ag85A, Ag85B,
and ESAT-6. These targets are all very immunodominant
and if so, with latent TB constantly stimulating similar T-
cell clones and results showing upregulation of Tregs in
patients, there will also be Tregs that are specifically targeted
towards suppressing T-cell responses against these antigens.
This situation is often noticed in chronic diseases as well as in
cancer whereby antigen-specific Tregs are often found to have
superior suppressive capacity, thus leading to suppression of
T-cell responses [78]. We speculate that this might be one
of the reasons why results obtained from clinical trials are
inferior compared to results obtained from animal studies.
Generating T-cell responses against M. tb which is yet to
be suppressed would require the search of new antigens
which are constitutively expressed yet lessimmunodominant.
One example of such possible antigen is Mtb32 that, despite
being less studied, has shown to be a promising antigen for
generating CD4" and CD8" T-cell responses in pre- and
postexposure in M. tb mouse models [79, 80].

Another key factor in designing a potential vaccine
would be the use of an adjuvant which would provide
depot effects, stimulate the innate immunity to provide a
proinflammatory environment, and skew Th responses [81].
A combination of a Squalene/Tween-80 emulsion, 2 TLR
agonist,an MHC class I target peptide,an MHC class Il helper
peptide, and IFN-gamma has recently showed generation
of high levels of antigen-specific CD8" T-cells which not
only are cytotoxic but also were shown to generate memory
T-cells. Responses generated by this combination (CASAC
adjuvant) not only were against foreign antigens (ovalbumin)
but also were capable of mounting responses towards self-
antigen (tyrosinase-related protein 2). Responses generated
were capable of eradicating a B16 mouse melanoma challenge.
The responses generated could also be recalled after a 50-day
resting period [82].

One final key factor that we should factor in is to use
antibodies that would deplete or block suppressive signals
such as programmed-death 1 (PD-1), cytotoxic T-lymphocyte
antigen 4 (CTLA-4), and ultimately Tregs. PD-1, CTLA-4,
and Tregs are all correlated in suppressing T-cell responses.
In a recent study to develop cancer vaccines, PD-1and CTLA-
4 have shown to be present on tumour infiltrating lympho-
cytes (TIL), antigen-specific CD8" T-cells. This presence was
regulated by Tregs which at the end causes dysfunction of
cytotoxic T-cells that were infiltrating tumours. In a com-
parative study, dual blockade of PD-1 and CTLA-4 restored
the dysfunction of these TIL and caused 100% rejection of
tumour [83]. This could be a very interesting avenue to pursue
in order to possibly restore functions of reactive T-cells that



might have been generated in the initial infection stage of TB
as described previously.

Based on these lines of thoughts, we suggest the possibil-
ity of developing new vaccines based on the use of an adjuvant
such as CASAC in combination with new antigens which is
of less immunodominance and pretreatment with antibody
that depletes or blocks suppressive responses such as anti-PD-
1 and anti-CTLA-4.

On a similar train of thoughts, we think that using heat
shock proteins (HSP) as an immunogenic carrier could be of
potential benefit [84-86]. HSP are a group of proteins that
is recognized by the human immune system and expressed
during inflammation. The human immune system has a
natural autoimmunity towards HSP, particularly HSP60 here,
whereby CD4" T-cells responses would be generated. HSP60
showed positive preclinical results in multiple occasions as
an adjuvant which will provide help towards both CD8" T-
cells and B-cells due to activation of the CD4™ T helper cell
in diseases such as murine CMV [85], Meningitides [87], and
West Nile virus [88]. Therefore, with the right selection of
M. tb antigen or attenuated whole M. tb cell in combination
with potent adjuvant and the right pretreatment, we think
that generation of a new line of vaccine for TB would not be
a far cry away in the hope of eliminating TB.
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