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In order to make the teleoperation system more practical, it is necessary to effectively

control the tracking error convergence time of the teleoperation system. By combining

the terminal sliding mode control method with the neural network adaptive control

method, a bilateral continuous finite time adaptive terminal slidingmode control method is

designed for the combined teleoperation system. The Lyapunov theory is used to analyze

the stability of the closed-loop system, and the position tracking error is able to effectively

converge in time. Finally, the effectiveness of the proposed control scheme is verified by

MATLAB Simulink numerical simulation, and the numerical analysis of the results shows

that themethod has better system performance. Comparedwith the traditional two-sided

control method (TPDC) of PD time-delay teleoperation system, the control method in this

paper has good performance, improves stability, and makes steady-state errors smaller

and better tracking.

Keywords: the teleoperation system, the terminal sliding mode control method, the neural network adaptive

control method, the Lyapunov theory, tracking error

INTRODUCTION

By improving the mechanical design of the teleoperation robot, as well as the control structure
and algorithm of the system, the performance and application range of the teleoperation system
have been greatly improved. The general remote operation robot system mainly includes the
master module, operator module, master controller, communication channel, slave controller, slave
environment, and so on. The general remote operation robot system has been applied in many
fields, such as unmanned submersible (Sayers and Paul, 1994), space robots (Bejczy, 1994; Wright
et al., 2006), remote surgery robots (Sayers and Paul, 1994; Tang et al., 2020a), teleoperation robots
(DiMaio et al., 2011), etc.

From the research status of teleoperation system, for the uncertain control system, the
control algorithm based on the sliding mode can achieve well-control, and it is robust to
the internal parameter uncertainty and external interference, which has been widely used
(Feng et al., 2002; Yu et al., 2005; Li and Huang, 2010; Neila and Tarak, 2011; Nekoukar
and Erfanian, 2011). But in the above literature, the sliding mode control method is linear.
The state variables of the system with linear sliding mode control strategy converge to the
equilibrium point on the sliding surface at an exponential rate. Although the appropriate
parameters can be adjusted arbitrarily and quickly, the power system cannot reach stable in
a limited time.
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In the practical application of teleoperation system, it is
more desirable to complete the error convergence in finite
time, because it can complete the task better and faster. In
order to obtain the characteristic that the tracking error of the
system converges to zero in finite time, St (Yu and Man, 2002)
proposed a terminal sliding mode control method, using non-
linear sliding mode hyperplane for the first time. Then, many
studies have carried out in-depth research and improvement
on this method (Salcudean et al., 2000; Xu and Yao, 2001;
Nuno et al., 2008; Zhang et al., 2009; Nekoukar and Erfanian,
2011; Liu and Zhang, 2013). Compared with the control method
based on the linear sliding mode hyperplane, the terminal
sliding mode control method has better characteristics, such as
faster, finite time convergence and so on. However, in practical
engineering, it is not only difficult to realize the existing terminal
sliding mode controller, but also, when the design parameters
are not suitable, there will be a singular problem (Guo et al.,
2021; Ma et al., 2021; Zhang et al., 2021). In order to solve
these problems, there are many control methods. However, for
the design of the remote operation system controller, these
methods are not applicable. In teleoperation system, not only
the influence of the operator module and the environment
module but also the time delay of the communication channel
should be considered. Therefore, the finite time sliding mode
control strategy for a robot cannot be directly used in bilateral
teleoperation system (Tang et al., 2020a). So, we need to further
study the sliding mode control strategy of teleoperation system
and propose a new algorithm to obtain the appropriate switching
function and controller so as to ensure the asymptotic stability
of the sliding mode in the motion process of the system,
and then complete the finite time tracking error convergence
and improve the overall stability and tracking performance of
the system.

Therefore, in this paper, in order to make the teleoperation
system with time-delay force feedback more practical, a finite
time non-linear terminal sliding mode adaptive bilateral control
method is designed for the teleoperation system with constant
time delay. Meanwhile, the constant time delay generated by
the communication channel in the teleoperation system and
the influence of uncertainties on the model are solved, and the
tracking error of the teleoperation system can converge in finite
time (Li et al., 2015, 2016).

METHODS

The main goal of this paper is to design a two-sided controller
based on the position error control structure, considering
the internal friction, external interference, and constant time
delay between the master robot and the slave robot in the
teleoperation system to make the convergence time of the
position tracking error of the system converge to 0 in a
finite time. Similarly, the RBF neural network adaptive method
is also used to approximate the uncertainty of the system
model, but the treatment of the uncertainty is different (Liu
et al., 2018; Dankwa and Zheng, 2019; Yang et al., 2019;
Xu et al., 2020).

Controller Design and Stability Analysis of
Teleoperation System
In the control of teleoperation system with forward channel
delay and reverse channel communication delay, considering
the mechanical internal friction and external interference of the
master robot and the slave robot in the system, our control goal
is to calculate the control torque input of the master robot and
the slave robot, respectively, so that the position error between
the master robot and the slave robot in the teleoperation system
can converge to 0 in finite time and guarantee the stability of the
system (Li et al., 2017a,b, 2020; Zheng et al., 2017; Yin et al., 2019;
Chen et al., 2020; Tang et al., 2020b).

In this paper, the control block diagram of time-delay force
feedback teleoperation system based on position error structure
with finite time convergence is shown in Figure 1. Considering
the influence of the constant time delay and the non-linear
uncertainties of the system model on the teleoperation system,
as well as the singularity and chattering problems of the sliding
mode control, a finite time non-linear sliding mode adaptive
bilateral controller is adopted. Compared with the linear sliding
mode controller, the controller can make the teleoperation
system work well. The tracking error of the system can converge
to 0 quickly and finitely, and ultimately ensure the global stability
of the teleoperation system.

Controller Design
From the control block diagram of time-delay force feedback
teleoperation system based on position error structure shown in
Figure 1, it can be defined that the position tracking error of the
master robot and the slave robot is as the following Formula (1):

em = qm − qs (t − Tm) , es = qs − qm (t − Ts) (1)

Here, Tmis the communication delay of the forward channel,
and Ts is the communication delay of the reverse channel. The
position and velocity errors of the master robot and the slave
robot are defined as the following Formula (2):

ėm = q̇m − q̇s(t − Ts), ės = q̇s − q̇m(t − Tm) (2)

Then, based on the non-singular terminal sliding mode method,
the sliding mode function is defined as follows:

sm = em + αmsig(em)
εm + βmsig(ėm)

γm (3)

ss = es + αssig(es)
εs + βssig(ės)

γs (4)

Where, sig(ξ )α = [|ξ1|α1 sign(ξ1), |ξ2|α2 sign(ξ2), · · · , |ξn|αn

sign(ξn)]
T , ξ = [ξ1, ξ2, · · · , ξn]

T ∈ Rn,α1,α2, · · · ,αn > 0.
si = [si1 , si2 , · · · , sn1 ] ∈ R

n, αi = diag(αi1,αi2, · · · ,αin)
and βi = diag(βi1,βi2, · · · ,βin) are positive diagonal matrices,
and εij > γij , 1 < γi1 , γi1 , · · · , γin < 2; i = m, s; j =
1, 2, . . . . . . , n.

S = e + α sig(e)ε + β sig(ė)γ (5)
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FIGURE 1 | A control structure diagram of time delay force feedback teleoperation system with finite time convergence.

Through a Formula (5), the derivation of the Formula (3) and the
Equation (4) is obtained

ṡm = ėm + εmαmdiag(|em|
εm − 1)ėm (6)

+ γmβmdiag(|ėm|
γm − 1)ëm

ṡs = ės + εsαs diag (|es|
εs − 1)ės + γsβs diag (7)

(|ės|
γs − 1)ës

In order to solve the influence of system model
uncertainty, Pi

(

qi, q̇i, q̈i
)

on system stability, this paper uses
radial basis function neural network to approximate it. As
a result:

Pi(qi, q̇i, q̈i) = 2T
i ϕ(Zi) + δi(Zi) (8)

According to the expression of the uncertainty, Pi(qi, q̇i, q̈i) of the
system model, we can choose the input signal Zi = [qTi , q̇

T
i , q̈

T
i ]

of the network, δi (Zi) as the bounded estimation error, which
satisfies ‖ δi(Zi) ‖ ≤ εi, εi is a constant. 2i is the weight that
needs to be adjusted.

The terminal sliding mode control method and the radial
basis function estimation method are used to design appropriate
controllers for the master robot and the slave robot in the
teleoperation system with constant time delay.

τm = −Mom(qm)(I + Fm)β
−1
m γ−1

m sig(ėm)
2 − γm +Mom

(qm)q̈s(t − Ts) + Com(qm, q̇m)q̇m(t)+ Gom(qm)

− Mom(qm)(Kmsm + Bmsig(sm)
ρm ) (9)

−
sm

‖ sm ‖
2̃mϕ(Zm)−

(hm)
T

‖ hm ‖
2̂mϕ(Zm)

τs = −Mos

(

qs
)

(I + Fs)β
−1
s γ−1

s sig(ės)
2−γs +Mos(qs)q̈m(t − Tm)

+ Cos(qs, q̇s)q̇s(t)+ Gos(qs)−Mos

(

qs
)

(Ksss + Bssig(ss)
ρs ) (10)

−
sS

‖ sS ‖
∼̇2Sϕ(ZS)−

(

hS
)T

‖ hS ‖
2̇Sϕ (ZS)

Here, for all the Ki,Bi are positive diagonal matrices, where
i = m, s, and 0 < ρi < 1, 2̃i = 2i − 2̂i, hi =

sTi γiβidiag(|ėi|
γi − 1)M−1

oi (qi), Fi = αiεidiag(|ei|εi − 1), 2̂i is the
estimated value of 2i, and the estimation law adopted is as the
following Formula (11):

2̂i = 3i1ϕ(Zi)q̇
T
i −3i1(2̂i −2

∗
i ) (11)

Here, 3i1,3i2 are the normal number; 2∗
i is the nominal value

of2i, i = m, s.

Analysis of System Stability and Tracking

Performance
The time-delay force feedback teleoperation system includes a
bilateral position control closed loop, and its control structure is
shown in Figure 1. The stability of the closed-loop teleoperation
system and the position tracking performance analysis of bilateral
position control are discussed below.

Theorem 5: In the case of constant forward and reverse
channel delays, uncertain model parameters, and external
interference, the non-linear sliding surface of Formulas (3) and
(4) is selected, and the bilateral continuous terminal sliding mode
control with effective time convergence of Formulas (9) and (10)
is adopted. The controller and the control of neural network
adaptive law described in the Formula (11) are as follows:

(1) The whole closed-loop system is globally stable, and all
closed-loop signals are globally bounded.

(2) In the whole closed-loop teleoperation system, the tracking
error of the master robot and the slave robot can converge to
0 in finite time.

Prove (1): now, the Lyapunov candidate functions can be
constructed as the following Formula (12)

V = V1 + V2 (12)

Among them, V1 =
∑

j = m,s
1
2S

T
j Sj, V2 =

1
2

∑

i=m, s Tr(2̃
T
i 3

−1
i1 2̃i). The derivative of V1 is obtained

as Formula (13):

V̇1 =
∑

j = m,s

sTj Ṡj (13)
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By substituting Formula (6) and Formula (7) into Formula (13),
the results are as Formula (14):

V1 =
∑

i=m,s {−sTi Kisi − sTi Bisig(si)
ρi + sTi γiβi diag

(|ei|
γi−1)M−1

oi (qi)× (Pi +
hTi
‖hi‖

ˆ
2

T

i ϕ(Zi))− sTi γiβi diag

(|ei|
γi−1)M−1

oi (qj)
si
‖si‖

∼
2

T

i ϕ(Zi)

(14)

Here, S =
[

sTm, s
T
s

]

,91 = diag(Km,Ks), 92 = diag(Bm,Bs),

ψ1and ψ2 are eigenvalues of 91 and 92. Among which, Ki =

γiβidiag(|ėi|γi − 1)Ki ∈ Rn×n, Bi = γiβidiag(|ėi|γi − 1)Bi ∈

Rn× n.

According to the definition above ∼̇2i = −̇̂2i, and ∼̇2i =

2i − 2∗
i . We can get the following result by deriving from V2.

V̇2 = −
∑

i=m,s

(Tr(2̃T
i ϕ(Zi))q̇

T
i −

3i2

3i1
2̃T

i (2̃i −2i)) (15)

Because ‖ sTj γjβj diag
(

∣

∣ėj
∣

∣

γj−1
)

M−1
oj

(

qj
)

Pj ‖ ≤ ‖

sTj γjβj diag
(

∣

∣ėj
∣

∣

γj−1
)

M−1
oj

(

qj
)

‖‖ Pj ‖, and θ̃Ti

(

θ̃i − θ i

)

≤

1
2

∥

∥

∥
θ̃i

∥

∥

∥

2

F
− 1

2

∥

∥θ i
∥

∥

2
F
, there are

V̇ ≤
∑

i=m,s {−sTi Kisi − sTi Bisig(si)
ρi − sTi γiβidiag(|ėi|

γi−1)
M−1

oi (qi)
si
‖si‖
2̃T

i ϕ(Zi)}+
∑

i=m,s (−Tr(2̃T
i ϕ(Zi))q̇

T
i − 3i2

23i1
‖ 2̃i ‖

2
F +

3i2
23i1

‖ 2i ‖
2
F)

(16)

Mqi

(

qi
)

=

[

mi1l
2
i1 + mi2l

2
i1 + mi2l

2
i2 + 2mi2li1li2 cos

(

qi2
)

mi2l
2
i2 + mi2li1li2 cos

(

qi2
)

mi2l
2
i2 +mi2li1li2 cos

(

qi2
)

mi2l
2
i2

]

(21)

Cqi (qi, q̇i) =

[

−mi2li1li2q̇i2cos (qi2) −mi2li1li2(q̇i1 + q̇i2) sin(qi2
mi2li1li2q̇i1 sin(qi2) 0

]

(22)

Gqi (qi) =

[(

mi1li2 +mi2li1
)

g cos
(

qi1
)

+mi2li2g cos
(

qi1 + qi2
)

mi2li2g cos
(

qi1 + qi2
)

]

(23)

Therefore, V (t) ≥ 0,while V(t) ≤ 0; it can be concluded that
all the signals in the closed-loop system are bounded, such as the
sliding mode variable si, the joint position tracking error ei and
the estimation error 2̃i of the adaptive law. And then we used
barbarat’s theorem to know that V(t) asymptotically tends to 0,
and then, when t → ∞, si → 0 and thenėi → 0.

Prove (2): from (1), we know the Lyapunov
candidate function

V1 =
∑

j = m,s

1

2
STj Sj (17)

In the same way, it is deduced that:

V1 ≤
∑

j = m,s

−sTj Kjsj − sTj Bjsig(sj)
ρj (18)

Therefore, we can get:

V1 ≤ − ST91S − ST92sig(S)
ρj (19)

Among which, sig(S)ρ = [(sig(sm)
ρm )T , (sig(sS)

ρS )T]
T
.

Then, we can deduce that the convergence time satisfies:

T ≤
1

91(1 − ρ)
ln

291V
(1 − ρ)/2
1 (s(0)) + 2(1 − ρ)/292

2(1−ρ)/292
(20)

To sum up, we can prove that the joint position tracking
error of the master robot and the slave robot in the closed-loop
teleoperation system with time-delay force feedback based on the
continuous adaptive terminal sliding mode bilateral controller in
this chapter can converge to 0 in finite time, and all the signals
of the closed-loop system are bounded, which can not only
ensure the stability of the system but also improve the tracking
performance of the system.

EXPERIMENTS

Simulink is used for simulation verification (Wang et al.,
2021), and the S-function is used to establish the system
model (Li et al., 2021), and then the closed-loop control
system of time-delay force feedback teleoperation system
with finite time convergence is built as shown in Figure 1.
Compared with the traditional PD (proportional and
derivative) control method, the simulation results are analyzed.

In this paper, the master robot and the slave robot in the
teleoperation system adopt the 2-DOF, 2-link, rotary joint robot.
For the sake of simplicity and generality, the moment of inertia
of the rod is ignored. The mathematical models of joint space
dynamics are as follows:

In addition, the external interference of the master
robot and the slave robot in the system is also set as

fi(qi, q̇i) = [0.1qi1q̇i1 sin(t) 0.1qi2q̇i2 sin(t)]
T
, and the internal

friction of the master robot and the slave robot is fcm
(

q̇m
)

=
[

fd1q̇m1 + k1 sign
(

q̇m1
)

fd2q̇m2 + k2 sign
(

q̇m2
)]T

, respectively,

and fcs(q̇s) = [fd3q̇s1 + k3sign(q̇s1)fd4q̇s2 + k4sign(q̇s2)]
T , where

fd1, fd2, k1, k2 are constants, and i = m, s.
At the same time, the external force from the operator is

selected as f ∗
h

= [25(1 − cos(πt))0]T , and the external force
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TABLE 1 | Master-slave robot parameters and operator and environment parameters.

mm1 lm1 mm2 lm2 ms1 ls1 ms2 ls2

0.5 kg 0.6m 0.5 kg 0.4m 0.5 kg 0.6m 0.5 kg 0.4 m

g

9.81 m/s2 1 2 3 3 3 2 4

k4 Mh Bh Kh Me Be Ke

6 0.2 kg 50 Ns/m 1,000 N/m 0.1 kg 20 Ns/m 1,000 N/m

sig(ξ )α = [|ξ1|
α1 sign(ξ1 ), |ξ2|

α2 sign(ξ2 ), · · · , |ξn|
αn sign(ξn )]

T ξ = [ξ1, ξ2, · · · , ξn ]
T ∈ Rn α1,α2, · · · ,αn > 0.

FIGURE 2 | Tracking performance between master and slave robots. (A) Tracking of master and slave robots’ joints; (B) position tracking error of master and slave

robots’ joints.

FIGURE 3 | Input torque τm and τs of robot joints. (A) The master robot joint input torqueτm; (B) the slave robot joint input torque τs.
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FIGURE 4 | Simulation results after the change of external force Fe. (A) From the interaction, Fe between the robot and the environment; (B) position tracking error of

master and slave robots’ joints.

FIGURE 5 | Comparison of tracking error between master and slave robots. (A) Comparison of the master robot’s joint position tracking error (B) Comparison of the

slave robot’s joint position tracking error.

from the interaction between the robot and the environment is
selected as f ∗e =

[

0 0
]T
.

In the process of building a closed-loop teleoperation
system, the mechanical constant parameters related
to the dynamics of the master robot, the slave robot,
the operator, and the environment are shown in
Table 1.

In the simulation, it is assumed that the uncertain part of
the master robot’s dynamic model is 1Mm = 0.3sin(2t)Mom,
1Cm = 0.2sin(3t)Com, 1Gm = 0.1sin(4t)Gom and that of the

slave robot’s dynamicmodel is qm (0) =
[

0.4pi&0.2pi
]T

, qs (0) =

[

0.1pi&0.05pi
]T
. Set the initial position of the master robot

and the slave robot. The time delay of forward and reverse
communication channels of teleoperation system is Tm =

Ts = 0.6s.
In the simulation teleoperation system, the master robot

and the slave robot controller adopt Formula (9) and Formula
(10). After repeated debugging, the controller parameters in the
remote operation system are Km = Ks = diag (3, 3) , Bm = Bs =
diag (3, 3),αm = αs = diag(1, 1),βm = βs = diag(1, 1), εm =

εs = diag(3, 3), γm = γs = diag(1.5, 1.5),ρm = ρs =

diag(1/3, 1/3). The adaptive law is equation. After repeated
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debugging, its parameters are3m1 = 3s1 = diag(2, 2),3m1 =

3s1 = diag(0.5, 0.5).
In order to further observe whether the teleoperation system

can keep stable if the external force changes due to the
interaction between the robot and the environment, in the
simulation, we reset f ∗e =

[

0&0
]T
as f ∗e =

[

20&20
]T

at
runtimet = 4s. Meanwhile, we reset Ke = 1, 000 as
Ke = 1, 100.

In order to explain the advantages of the continuous
adaptive terminal sliding mode bilateral controller objectively,
comparative experiment is carried out. In the simulation, after
repeated debugging, the parameters Lm, Ls, Nm, Ns in the
controller are Lm = Ls = diag(100, 100),Nm = Ns =

diag (100, 100), respectively.
The bilateral PD controller proposed in Reference 16 is chosen

for comparative simulation. The expression of the controller is
as follows:

τm = −Lm(qm(t) − qs(t − Ts)) − Nmq̇m + Gm (24)

τs = −Ls(qs(t) − qm(t − Tm)) − Nsq̇s + Gs (25)

RESULTS

In order to illustrate the effectiveness of using the continuous
adaptive terminal sliding mode control bilateral controller in the
closed-loop teleoperation system with time-delay force feedback,
the simulation results are shown in Figures 2, 3. Figure 2 shows
the tracking performance between the master and slave robots of
the teleoperation system. Figure 3 shows the input torque signals
of Joint 1 and Joint 2 of the master robot and the slave robot in
the system,

In order to further observe whether the teleoperation system
can continue to maintain stability when the external force
changes due to the interaction between the robot and the
environment, the simulation results of position tracking error
and the environmental force change are shown in (a) and (b) in
Figure 4.

In order to explain the advantages of the continuous
adaptive terminal sliding mode bilateral controller objectively,
comparative experiments were carried out, and the experiment
results are shown in Figures 5, 6. Figures 5, 6 show the
comparison of angular position tracking errors of the Joint 1
and Joint 2 of the master robot and the slave robot under the
control method in this paper and the traditional PD control
method, respectively. “ATSMCGFT” refers to “adaptive terminal
sliding mode bilateral controller with guaranteed continuous
finite time”; “TPDC” refers to “traditional proportional and
derivative bilateral controller.”

In addition, Figure 6 shows the comparison diagram of the
contact force tracking error between the master robot and the
slave robot.

DISCUSSION

The controller of the master robot and the slave robot is designed
based on the non-singular terminal slidingmode control method,

FIGURE 6 | Comparison of master-slave robot contact torque error.

and the neural network adaptivemethod is also incorporated into
the controller to approximate the uncertainty of the teleoperation
systemmodel so as to eliminate the influence of the systemmodel
uncertainty on the system stability. Based on Lyapunov stability
theory and terminal sliding mode control theory, the stability
of the teleoperation system with time-delay force feedback and
the tracking error of the master robot and the slave robot
can converge to 0 in limited time. Based on the theory of
the terminal sliding mode control, the non-linear sliding mode
variable is defined, and the appropriate controller algorithm is
designed to solve the chattering and singularity problems. The
ASMCGFT method proposed in the manuscript has a smaller
convergence time. The experimental data results show that
using the time-delay force feedback teleoperating system of this
method, although the joint position tracking error of the master
and slave robots can converge to 0 in a limited time, that is,
the convergence time of the tracking error has been improved,
the average tracking error index is slightly lower. There exists a
decrease in error accuracy.

CONCLUSION

Through experiments, we can see that the robot can track the
movement of the upper master robot in 2 s, and from the
simulation experiment results that the position tracking error of
the master robot and the slave robot of the teleoperation system
in this paper can quickly converge to zero, and the system is
globally stable and has good instantaneous characteristics.

Besides, we also can observe that the input torque of each
joint of the master and slave robot under the control method
designed in this paper is bounded. At the same time, we can also
see that the slave robot can track the upper master robot in 2 s.
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The experimental results show the control method designed in
this paper has good performance.

It can be seen from the results that, when t = 4 s, after the
environmental force becomes larger, the tracking error of the
teleoperation system can also be adjusted to the area near 0 in
a limited time, while maintaining the stability of the system.

It also can be seen from the results that the convergence time
of the position tracking error em of the master robot under the

control method in this paper is about
[

2 2
]T
, and that of the

position tracking error es of the slave robot is about
[

2 2.5
]T
.

While the convergence time of the master robot position tracking
error em under the traditional PD control method is about
[

6 5
]T
, and the convergence time of the slave robot position

tracking error es is about
[

4.5 5.2
]T
.

To sum up, from the comparison of experimental results, we
can observe that the control method in this paper has better
performance; the tracking error of its position and contact force
can converge to near 0 in a short time; at the same time, it has
good performance of force feedback-tracking control.
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