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Abstract

Single nucleotide polymorphisms (SNPs) associated with average daily gain (ADG) and dry matter intake (DMI), two major
components of feed efficiency in cattle, were identified in a genome-wide association study (GWAS). Uni- and multi-SNP
models were used to describe feed efficiency in a training data set and the results were confirmed in a validation data set.
Results from the univariate and bivariate analyses of ADG and DMI, adjusted by the feedlot beef steer maintenance
requirements, were compared. The bivariate uni-SNP analysis identified (P-value ,0.0001) 11 SNPs, meanwhile the
univariate analyses of ADG and DMI identified 8 and 9 SNPs, respectively. Among the six SNPs confirmed in the validation
data set, five SNPs were mapped to KDELC2, PHOX2A, and TMEM40. Findings from the uni-SNP models were used to develop
highly accurate predictive multi-SNP models in the training data set. Despite the substantially smaller size of the validation
data set, the training multi-SNP models had slightly lower predictive ability when applied to the validation data set. Six Gene
Ontology molecular functions related to ion transport activity were enriched (P-value ,0.001) among the genes associated
with the detected SNPs. The findings from this study demonstrate the complementary value of the uni- and multi-SNP
models, and univariate and bivariate GWAS analyses. The identified SNPs can be used for genome-enabled improvement of
feed efficiency in feedlot beef cattle, and can aid in the design of empirical studies to further confirm the associations.
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Introduction

Optimization of feed efficiency in livestock production demands

the consideration of the system inputs and outputs. In feedlot beef

cattle enterprises, feed consumption dominates the input (and

costs) and weight gain dominates the output (and return). Average

daily gain (ADG) per animal, computed as the difference between

final and initial trial weight divided by the number of days in the

trial, is a frequently used indicator of weight gain. The cost of feed

represents 62% to 84% of the total costs in a beef cattle production

unit [1]. Dry matter intake (DMI) per day and animal is a

frequently used indicator of feed consumption. In addition, 70 to

75% of the total energy feed intake is spent on maintenance

functions (e.g. body temperature, digestion) in beef cattle [2].

Metabolic body weight (MBW) per animal, computed as BW0.73, is

an accepted indicator of maintenance requirements.

Genomic improvement of feed efficiency in beef cattle relies on

the identification of genomic variants (single nucleotide polymor-

phisms or SNPs) associated with feed efficiency components. A

genome-wide association study (GWAS) can be used to identify

SNPs to be included in genome-enabled selection decisions. The

study of feed efficiency requires the consideration of output (ADG)

and input (DMI) indicators, adjusted for maintenance require-

ments (MBW).

The majority of the SNPs reported to be associated with feed

efficiency were identified from the analysis of each component

(ADG or DMI) separately, or functions thereof such as residual

feed intake and residual average daily gain [3–5]. On one hand,

the analysis of feed efficiency components separately may fail to

exploit the covariation between the components and consequently

loose statistical precision to detect SNPs. On the other hand, the

feed efficiency functions adjust either component by the other,

thus imposing the selection of one component as the response and

the assumption that the other component is an explanatory

variable measured without error. Furthermore, the analysis of

these functions fails to consider the uncertainty of the adjusted

values. Bivariate analysis can augment the statistical precision to

detect SNPs associated with both feed efficiency components. This

gain stems from the consideration of covariation between the

components that can augment the SNP signal relative to the noise

or error [6–12]. No bivariate GWAS of feed efficiency compo-

nents in beef cattle has been reported. The objectives of this study

were: 1) to identify and characterize SNPs associated with feed

efficiency components in a feedlot beef cattle population using
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bivariate analysis; 2) to compare the results from bivariate and

univariate analyses; 3) to evaluate the results from uni- and multi-

SNP models identified in a training data set on a validation data

set; and 4) to enhance the interpretation of the results using

functional genomic analyses and network visualization. Single

nucleotide polymorphisms that exhibited favorable associations

with both feed efficiency components, or that exhibited a favorable

association with either component while minimizing a disfavorable

trend on the other component were highlighted. These SNPs are

well-suited for genome-enabled selection programs to improve

feed efficiency and for follow-up empirical confirmation.

Materials and Methods

Ethics statement
All procedures were conducted following the guidelines

recommended in the Guide for the Care and Use of Agricultural

Animals in Agricultural Research and Teaching [13] with the

approval of the University of Illinois Institutional Animal Care and

Use Committee. The respective owners of the animals granted

permission for their use in this study.

Beef cattle steers studied
Measurements were collected from 1,321 feedlot steers from five

ranches in Montana between 2005 and 2008. The combination of

ranch, harvest group, and harvest year resulted on 27 contempo-

rary groups (CGs). Pedigree and breed information from 3,331

animals [14] were used to define the breed composition of each

steer and to infer the relationship matrix. Steers pertain to one of

five breed compositions: purebred Angus (AN), 3/4 Angus (3/

4AN), crossbred Angus and Simmental (ANSM), 3/4 Simmental

(3/4SM), or purebred Simmental (SM). The trial lasted an average

(6 standard deviation) of 165 (616) days. Each steer received one

of the twelve diets [15]. The diets were further grouped into five

dietary treatments according to the main ingredient, total net

energy, and non-degradable fiber (Table 1, [15]).

Measurements
Two feed efficiency components, ADG and DMI, were

analyzed. Individual steer ADG (kg) was the difference between

adjusted final weight (FW) and initial weight (IW) in the trial

divided by days in the trial. The FW was estimated by dividing the

individual hot carcass weight by the average dressing percentage of

the harvest group. Individual daily DMI (kg) was measured using

the GrowSafe automated feeding system (GrowSafe Systems Ltd.,

Airdrie, Alberta, Canada). Individual MBW was calculated using

the estimated BW mid-trial. The age of the steer at mid-trial (mA;

days) was also recorded. The average (6 standard deviation)

ADG, daily DMI, IW, FW, MBW, and mA were: 1.6160.24 kg,

10.4861.42 kg, 310.10640.08 kg, 597.50648.43 kg0.73, 366.406

40.12 kg, and 332.58629.32 days, respectively.

Genotyping and quality control
The DNA was extracted from blood samples using the salting

out method [16]. The SNP genotypes were obtained from

IlluminaH BovineSNP50 BeadChips v1 and v2 platforms (Illumina

Inc., San Diego, CA) that include 54,001 and 54,609 SNPs,

respectively. Quality control was performed in two steps on the

52,340 SNPs present in both platforms. In the first quality control

step, SNPs not assigned to chromosomes, according to the

Bos_taurus_UMD_3.1 assembly [17], and having a GenCall

score ,0.2 (suggesting unreliable genotype [18]) were filtered.

From this step, 519 and 16 SNPs were excluded. The software

PLINK v.1.07 [19] was used to perform the second quality control

step. In this step, SNPs and steers were removed when not meeting

either one of the following criteria: missing steer per SNP ,20%)

[20]; Hardy-Weinberg equilibrium test P-value .0.00001 [21];

missing SNP per steer ,10% [22]; and minor allele frequency

.5% [22]. After the second quality control step, 264 SNPs, 1,202

SNPs, 9 steers, and 9,811 SNPs were not considered for further

analysis applying the previous criteria, respectively. The final data

set included 1,312 steers, 40,528 SNPs, and a total genotyping rate

of 99.55%.

Statistical analyses
Uni- SNP model, univariate and multivariate analyses. Uni-

variate (ADG or DMI) and bivariate (ADG and DMI) analyses

of uni-SNP mixed-effect models were used to detect SNPs

associated with feed efficiency. The uni-SNP model for the

univariate analysis (Equation 1; Eq.1) was:

Yijklmn~mzSNPizBjzDkzCGlzb1(mAijklm{mA)

zb2(MBWijk ln{MBW )zaijklmnzeijklmn

ð1Þ

where Yijklmn denoted the observed ADG or DMI, m denoted the

overall mean, SNPi denoted the fixed effect of an individual SNP

genotype, Bj denoted the fixed effect of breed (5 levels), Dk denoted

Table 1. Description of the diets received by the beef cattle steers analysed.

Diets

Item A B C D E

TNE, Mcal/lb 1.40 1.15 1.15 1.15 1.09

NDF, % 18.5 39.2 41.5 40.1 45.1

DM, % 66.7 63 65 54 49

CP, % 13.9 18.8 14.4 17.7 21.4

ADF, % 7.8 21.9 23.6 22.8 25.6

TDN, % 75.7 67.5 68 68 66

Main ingredients Dry-rolled corn and
stored wet distiller
grain

Distiller grains with
solubles and fresh wet
corn gluten feed

Dry-rolled corn and
corn gluten feed

Fresh wet distiller
grains and wet corn
gluten feed

Stored wet distiller grains
and hay

TNE, Total net energy; NDF, Non-degradable fiber; DM, Dry matter; CP, Crude protein; ADF, Acid detergent fiber; TDN, Total digestible nutrient.
doi:10.1371/journal.pone.0078530.t001

Bivariate GWAS of ADG and DMI for Feed Efficiency
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the fixed effect of diet (5 levels, Table 1), CGl denoted the random

contemporary group effect (27 levels) that has a Normal

distribution (0, s2
CG ), b1 denoted the fixed effect regression

coefficient for the covariate mA, b2 denoted the fixed effect

regression coefficient for the covariate MBW, aijklmn denoted the

random animal polygenic effect that has a Normal distribution (0,

As2
a) where A denoted the additive relationship matrix, and eijklmn

denoted the random normal distributed error (0, s2
e ). The

corresponding bivariate analysis (Eq. 2) was:

YADG

YDMI

" #
~

XADG 0

0 XDMI

" #
bADG

bDMI

" #

z
ZuADG 0

0 ZuDMI

" #
uADG

uDMI

" #
z

ZaADG 0

0 ZaDMI

" #
aADG

aDMI

" #

z
eADG

eDMI

" #
ð2Þ

where YADG and YDMI denoted the vectors of observed ADG and

DMI, respectively; XADG and XDMI denoted the incidence matrices

for the fixed effects for ADG and DMI, respectively; bADG and bDMI

denoted the vectors of solutions associated with XADG and XDMI,

respectively; ZuADG and ZuDMI denoted the incidence matrices for

the random contemporary groups for ADG and DMI, respective-

ly; uADG and uDMI denoted the vectors of solutions associated with

ZuADG and ZuDMI; respectively; ZaADG and ZaDMI denoted the

incidence matrices for the random animal polygenic effects for

ADG and DMI, respectively; aADG and aDMI denoted the vectors of

solutions associated with ZaADG and ZaDMI, respectively; and eADG

and eDMI denoted the vectors of random errors associated with

YADG and YDMI, respectively; assuming random effects distributed

as multivariate Normal that had mean equal to zero and

covariance matrix:

aADG

aDMI

uADG

uDMI

eADGI

eDMI

2
666666666664

3
777777777775
~

As2
aADG AsaADG,DMI 0 0 0 0

AsaADG,DMI As2
aDMI 0 0 0 0

0 0 Is2
GC ADG 0 0 0

0 0 0 Is2
GC DMI 0 0

0 0 0 0 s2
e ADG seADG,DMI

0 0 0 0 seADG,DMI s2
e DMI

2
666666666664

3
777777777775

where s2
aADG and s2

aDMI denoted the random animal polygenic

variance for ADG and DMI, respectively; saADG,DMI denoted the

random animal polygenic covariance between ADG and DMI;

s2
CG ADG and s2

CG DMI denoted the random contemporary group

variance for ADG and DMI, respectively; I denoted the identity

matrix; s2
eADG and s2

eDMI denoted the random error variance for

ADG and DMI, respectively; and seADG,DMI denoted the random

error covariance between ADG and DMI. The models used in the

univariate and bivariate analyses included the same explanatory

variables.

The GWAS was implemented using Qxpak v.5.05 [23] and

SNPs exhibiting associations with the feed efficiency components

at an unadjusted P-value ,0.0001 were deemed significant. The

additive and dominance effects were estimated for SNPs on

autosomal chromosomes, and the additive effect was estimated for

SNPs located on chromosome X. The additive effect estimate was

computed relative to the less frequent (minor) allele among the

steers studied. The additive effect estimate was defined as the

change on the feed efficiency component per additional minor

allele in the SNP genotype. The dominance effect estimate was

defined as the difference on the feed efficiency component

between the heterozygous and homozygous steers. Model

assumptions including independence of residuals, homogeneity

of variance, and normality were evaluated.

Multi-SNP model selection. A multi-SNP model was

developed for the univariate and bivariate analyses. Starting with

the SNPs detected at P-value ,0.001 in the uni-SNP models and

all other explanatory variables equal, a stepwise feature selection

approach was used. The final multi-SNP model included the SNPs

that entered (were added to the model) and stayed (were kept in

the model after consideration of all other SNPs in the model) in the

multi-SNP model at P-value ,0.0001.

Training and validation of the uni- and multi-SNP

results. The SNPs were first identified using complementary

models and analyses on a training data sets. Subsequently, the

findings were evaluated on a validation data set that included a

separate group of steers. Training and validation data sets were

generated from the records that passed the quality control based

on sire family [4,24,25]. Steers were randomly assigned to either

the training set (976 steers; 75%) or the validation set (336 steers;

25%; Table 2). Data partitioning ensured that each sire was

represented in only one of the data sets to minimize potential

confounding between SNP and individual associations [4,24].

The SNPs detected (P-value ,0.0001) in the training data set

using the uni-SNP model and univariate and bivariate analyses

were validated at P-value ,0.05 [24]. The trend (sign) of the

genetic estimates was also compared between the training and

validation data sets. For the multi-SNP models, the SNPs were

validated based on the change in the model prediction accuracy,

termed model adequacy (MA), between training and validation

data sets. For the univariate analyses of ADG and DMI, the square

root of the mean square error (RMSE) was used to indicate the

difference between the observed and predicted values and thereof,

model inadequacy. The change in MA for the univariate analyses

of ADG and DMI (Eq. 3) was:

MA~
RMSEV {RMSET

RMSEV

� �
|100% ð3Þ

Table 2. Number (proportion) of steers by breed and diet in
the training and validation data sets.

Training (n = 976) Validation (n = 336)

Breed Diet Breed Diet

AN 102 (0.10) A 232 (0.24) AN 35 (0.10) A 83 (0.25)

3/4AN 115 (0.12) B 300 (0.31) 3/4AN 67 (0.20) B 88 (0.26)

ANSM 640 (0.66) C 111 (0.11) ANSM 190 (0.57) C 48 (0.14)

3/4SM 39 (0.04) D 257 (0.26) 3/4SM 19 (0.06) D 105 (0.31)

SM 80 (0.08) E 76 (0.08) SM 25 (0.07) E 25 (0.07)

doi:10.1371/journal.pone.0078530.t002

Bivariate GWAS of ADG and DMI for Feed Efficiency
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where RMSEV is the RMSE from the validation data set and

RSMET is the RMSE from the training data set. For the bivariate

analysis, model inadequacy was the average of three root mean

(co)variance terms: RMSE for ADG, RMSE for DMI, and the

root means square covariance (RMSC) between ADG and DMI.

The change in MA was computed as for the univariate analysis.

Linkage disequilibrium. Some of the SNPs detected could

be an artifact of the dependency between SNPs that exhibit high

linkage disequilibrium (LD). This situation is the result of the

average probe spacing (49.4 kb) of the platform [26] and the large

number of SNPs tested. Statistical dependencies between signif-

icant SNP pairs located less than 500 kb apart that could suggest

LD was assessed using the standard r2 statistic [27] in PLINK. The

LD extent in cattle is estimated to be 500 kb [28].

Genetic parameters. The genetic parameters of ADG and

DMI were estimated to assess the potential amount of genetic

variability that could be associated to SNPs. Heritability and

genetic and phenotypic correlations between ADG and DMI were

estimated using an animal model and univariate and bivariate

analyses implemented in WOMBAT [29,30]. The explanatory

variables included in the animal models encompassed those

described in Eq. 4.

Functional and gene network analyses. The detected

SNPs were mapped to harboring or proximal (within 2 kb of the

59 untranslated region or 0.5 kb of the 39 untranslated region of a

gene) genes in the Bos_taurus_UMD_3.1 assembly. The SNP

mapping and gene information was obtained from the National

Center for Biotechnology Information, SNP and Gene databases

[31].

Functional analysis of the genes corresponding to the SNPs

detected (P-value ,0.01) in the bivariate analysis offered insights

into the categories enriched among the genes. The consideration

of genes from the bivariate analysis was motivated by the goal of

identifying functional categories among genes that could have

pleiotropic effects on both feed efficiency components. Genes

farther upstream and downstream from the detected SNPs were

not included in the functional analysis because the number of

spurious (false positive) genes added to the functional analysis

could have overwhelmed the fewer real (true positive) loci,

potentially biasing the results. The enrichment of Gene Ontology

(GO) FAT categories and KEGG pathways among the genes was

investigated using Fisher’s exact test in DAVID [32,33]. The GO

FAT categories are a subset of the broadest GO terms, filtered to

minimize overshadowing of more specific terms due to repetition

of more general categories. Functional annotation charts were

considered significant at P-value ,0.001 using the Bos Taurus

genome as background.

Gene networks associated with feed efficiency were visualized

using the genes affiliated to the enriched functional categories. The

network was visualized using the BisoGenet plug-in Cytoscape

[34], with default settings. Identified (or target) genes and

intermediate connecting genes from the NCBI database genes

were represented by nodes. The final pathway included target

genes separated by at most two intermediate genes. Edges denoted

known relationships between genes.

Results and Discussion

General results
The heritability estimates of ADG and DMI were 0.14 and

0.25, respectively. These heritability estimates confirmed the

opportunity for genome-based improvement of these feed

efficiency components. The phenotypic and genetic correlations

between ADG and DMI were 0.52 and 0.18, respectively. These

estimates were consistent or slightly lower than in previous reports

[35,36]. The positive genetic correlation supports the hypothesis

that SNP alleles that have positive association with ADG and

negative association with DMI could be identified and could assist

with genome-based improvement feed efficiency in beef cattle.

A summary of the number of significant SNPs (and corre-

sponding genes) detected by the univariate and bivariate analyses

is presented in Table 3. Among the 28 SNPs detected (P-value

,0.0001), 19 SNPs overlapped between the univariate and

bivariate analyses. The bivariate analysis detected the highest

number of SNPs (11 SNPs) followed by the univariate analyses of

DMI (9 SNPs) and ADG (8 SNPs). Similar associations between

SNPs and ADG or DMI have been previously reported [37,24].

The partial overlap of SNPs confirmed the complementary

information offered by the univariate and bivariate analyses. For

certain SNPs, the bivariate analyses could gain precision through

the consideration of covariation between ADG and DMI relative

to univariate analyses. For other SNPs, univariate analyses

benefited from lower noise of each trait studied separately, relative

to the bivariate analysis. Associations with SNPs were identified on

10 chromosomes (Tables 4 and 5): BTA 2, 4, 6, 13, 14, 15, 17, 22,

23, and 26. The highest number of SNPs was identified on BTA15

(10 SNPs) followed by BTA13 (3 SNPs) and BTA17 (3 SNPs).

The potential relationship between feed efficiency and the genes

harboring or in the proximity of the detected SNPs was

investigated. The connection between the feed efficiency compo-

nents and genes was based on gene annotation information

available at the National Center for Biotechnology Information,

Gene database [31]. This information was complemented with

literature review where relevant.

Univariate uni-SNP analysis of ADG
Previous studies reported genomic regions associated with ADG

on BTA 2, 4–7, 9, 11, 14–20, 22, 23, 26, and 28 [38–52]. The

SNPs associated with ADG in the present study (Table 4) were

mapped to chromosomes previously linked to ADG, with the

exception of rs41629972 located on BTA13. This SNP is located

approximately 33 kb upstream Kruppel-like factor 6 (KLF6) and is

within the 500 kb LD span reported in cattle [28,29]. The zinc

finger protein encoded by this gene has been associated with cell

proliferation, differentiation, signal transduction, and cell death

[31,53,54]. KLF6 regulates genes in the transforming growth

factors b signaling pathway [55]. Transforming growth factors b
superfamily members affect both muscle development and

postnatal skeletal muscle mass [31,56,57]. Every additional T

allele was associated with 0.04 kg higher ADG relative to the C

allele. Also associated with ADG but not mapped to a gene,

rs41565199 was mapped on BTA14 within LD reach (464 kb

downstream) of zinc finger and homeobox 2 (ZHX2). This QTL

Table 3. Number of detected SNPs and corresponding genes
across P-value thresholds by analysis.

P-value ,0.0001 P-value ,0.001 P-value ,0.01

Analysis SNPs Genes SNPs Genes SNPs Genes

ADG 8 6 53 21 413 153

DMI 9 3 58 18 560 206

Bivariate 11 5 84 34 587 236

Total1 19 9 146 51 1126 419

1Unique SNPs and genes.
doi:10.1371/journal.pone.0078530.t003

Bivariate GWAS of ADG and DMI for Feed Efficiency
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Table 4. P-values and estimates1 of the SNPs detected2 by the uni-SNP univariate analysis of feed efficiency.

P-value4

Trait SNP BTA Allele Gene Symbol Gene Name Additive3 Dominance3 T V

ADG rs109934193 2 C*/T NCKAP5 NCK-associated protein 5 0.0360.01 0.0360.01 1.91E-05 9.04E-01

rs110787048 4 A*/G DPP6 Dipeptidyl-peptidase 6 0.0360.01 0.0660.01 5.40E-05 8.31E-01

rs41629972 13 C/T* 0.0460.01 0.0160.01 7.22E-05 3.20E-02

rs41565199 14 C*/T 0.0360.01 20.0460.01 5.16E-05 9.42E-01

rs41620774 15 A/C* ELMOD1 ELMO/CED-12 domain containing 1 20.1560.04 20.1860.04 2.99E-05 3.01E-01

rs108964818 15 C/T* KDELC2 KDEL (Lys-Asp-Glu-Leu) containing 2 20.4060.09 20.3960.09 6.52E-06 3.60E-02

rs41768978 15 A*/C PHOX2A Paired-like homeobox 2a 0.0160.01 0.0660.01 1.18E-05 1.03E-01

rs42342964 23 G*/T PAK1IP1 PAK1 interacting protein 1 0.0160.01 0.0660.01 9.04E-05 4.63E-01

DMI rs41663978 6 A*/C 20.2260.05 20.0160.06 6.33E-05 8.71E-02

rs41588990 6 A*/G CNOT6L CCR4-NOT transcription complex,
subunit 6-like

0.0160.06 0.2960.07 3.55E-05 1.37E-01

rs41632270 13 G/T* 20.1360.09 20.4060.10 9.00E-05 9.41E-01

rs42128656 15 A*/G 20.1960.05 20.1060.06 2.20E-05 9.52E-01

rs43291568 15 A*/G CLMP CXADR-like membrane protein 20.2560.05 20.0460.06 3.42E-06 8.44E-01

rs43291603 15 C/T* CLMP CXADR-like membrane protein 20.2960.09 0.1460.10 4.18E-05 7.44E-01

rs111010038 17 A*/C 0.3560.18 20.5060.19 2.41E-05 8.95E-01

rs108942504 22 A/G* TMEM40 Transmembrane protein 40 0.3160.09 20.0260.11 2.26E-05 1.69E-02

rs41624569 26 A*/G 20.0460.05 20.2760.06 1.94E-05 7.41E-01

1Additive estimate relative to the minor allele;
2P-value ,0.0001;
3Estimate 6 standard error;
4T, training data set; V, validation data set;
*Minor allele.
doi:10.1371/journal.pone.0078530.t004

Table 5. P-values and estimates1 of the SNPs detected2 by the uni-SNP bivariate analysis of feed efficiency.

ADG DMI P-value4

SNP BTA Allele
Gene
Symbol Gene Name Additive3 Dominance3 Additive3 Dominance3 T V

rs109934193 2 C*/T NCKAP5 NCK-associated protein 5 0.0460.01 0.0360.01 0.0660.05 0.1560.06 6.84E-05 9.60E-01

rs41629972 13 C/T* 0.0460.01 0.0160.01 0.2060.05 0.0260.06 6.82E-05 1.07E-01

rs41722387 14 G*/T 20.0460.01 20.0160.01 20.0460.05 0.1460.06 9.27E-05 1.69E-01

rs108964818 15 C/T* KDELC2 KDEL (Lys-Asp-Glu-Leu)
containing 2

20.4060.09 20.3960.09 20.0260.01 20.0560.48 3.71E-07 4.05E-02

rs42128656 15 A*/G 20.0360.01 0.0360.01 20.1960.05 20.1060.05 2.07E-05 2.85E-01

rs43291568 15 A*/G CLMP CXADR-like membrane
protein

20.0260.01 20.0160.01 20.2560.05 20.0560.06 5.85E-05 5.62E-01

rs41768978 15 A*/C PHOX2A Paired-like homeobox 2a 0.0160.01 0.0660.01 0.1360.07 0.1160.08 1.90E-05 8.35E-03

rs111010038 17 A*/C 20.1360.04 0.1260.05 0.3460.16 20.4860.17 6.64E-06 3.66E-01

rs110522962 17 C/T* 0.0860.03 20.0560.03 20.4760.18 0.3060.20 5.89E-05 3.81E-02

rs108942504 22 A/G* TMEM40 Transmembrane protein 40 20.0260.01 20.0460.02 0.3760.10 20.0460.12 7.92E-05 9.32E-02

rs41624569 26 A*/G 20.0160.01 20.0160.01 20.0360.05 20.2460.06 5.88E-05 1.80E-01

1Additive estimate relative to the minor allele;
2P-value ,0.0001;
3Estimate 6 standard error;
4T, training data set; V, validation data set;
*Minor allele.
doi:10.1371/journal.pone.0078530.t005
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region has been linked to ADG in Japanese Black (Wagyu) cattle

[47]. Homozygous CC steers exhibited the highest ADG.

The remaining six SNPs associated with ADG were mapped to

known genes. Steers heterozygous for rs109934193 on BTA2and

rs110787048 on BTA4, had higher ADG than the average

homozygous steer. These SNPs were mapped to NCK-associated

protein 5 (NCKAP5) and dipeptidyl-peptidase 6 (DPP6), respec-

tively. The three SNPs on BTA15 associated with ADG were:

rs41620774 mapped to engulfment and cell motility/CED-12

domain containing 1 (ELMOD1), rs108964818 mapped to Lys-

Asp-Glu-Leu containing 2 (KDELC2), and rs41768978 mapped to

paired-like homeobox 2a (PHOX2A). Both rs41620774 and

rs108964818 were mapped less than 1 Mb apart, and for both

SNPs, steers homozygous for the minor allele (CC and TT,

respectively) had the lowest ADG. The protein encoded by

ELMOD1 has a GTPase-activator function on small G proteins of

the arf family [58]. These proteins have a central role in the

organization of the secretory and endocytic pathways [59].

Mapped 4 Mb from a QTL previously associated with ADG

[45], steers heterozygous for rs41768978 exhibited 0.060 kg

higher ADG than the average homozygous steer. This SNP was

mapped to the intronic region of PHOX2A, a gene associated with

respiratory rhythm (and thus biochemical energy) and autonomic

nervous system development [31,60]. Lastly rs42342964, mapped

to the PAK1 interacting protein 1 (PAK1IP1) on BTA23, was

associated with ADG. The p21-activated protein kinase-interact-

ing protein 1 encoded by this gene has been associated with cell

proliferation and signal transduction [31,60].

Univariate uni-SNP analysis of DMI
The SNPs associated with DMI are presented in Table 4.

Previous reports indicate genomic regions associated with DMI on

all chromosomes, except BTA 19, 27–29, and X

[3,45,48,50,51,61–63]. The SNPs detected in the present study

were mapped to BTA previously reported, with the exception of

rs108942504 and rs41624569 on BTA 22 and 26, respectively. In

particular, rs41624569 was mapped within the 500 kb LD region

of several genes including: ATPase family, AAA domain contain-

ing 1 (ATAD1), lipase, family member J (LIPJ), 39-phosphoadeno-

sine 59-phosphosulfate synthase 2 (PAPSS2), phosphatase and

tensin homolog (PTEN), and renalase, FAD-dependent amine

oxidase (RNLS). These genes play roles in mechanisms related to

energy expenditure, including ATAD1 role on ATP catabolism

[60], LIPJ role on lipid catabolism [60], and PTEN role on inositol

phosphate metabolism [64]. Steers heterozygous for rs41624569

exhibited the lowest daily DMI, approximately 0.270 kg less than

the average homozygous steer.

Four additional SNPs associated with DMI were not mapped to

genes. Every additional C allele on rs41663978 was associated

with lower daily DMI (20.2260.05 kg) relative to the A allele.

This SNP was mapped on BTA6, approximately 5 Mb from a

QTL previously associated with DMI [45]. In addition,

rs41663978 is located within 500 kb from ADAM metallopepti-

dase with thrombospondin type 1 motif, 3 (ADAMTS3), group-

specific component vitamin D binding protein (DBP), and

neuropeptide FF receptor 2 (NPFFR2). These genes have been

associated with protein processing [60], leanness [31], and obesity

[31], respectively. Similarly, rs41632270 was mapped to a QTL

region on BTA13 associated with DMI [63] and within 500 kb of

several genes including kinesin family member 16B (KIF16B), N-

acetylneuraminic acid phosphatase (NANP), otoraplin (OTOR),

phosphoribosylaminoimidazole carboxylase pseudogene (PAICSP),

and small nuclear ribonucleoprotein polypeptide B (SNRPB2). In

particular, NANP muschlparticipates on the amino sugar and

nucleotide sugar metabolism [31]. Heterozygous steers for

rs41632270 exhibited the lowest daily DMI (20.4060.10 kg)

relative to the average homozygous steer.

Although rs42128656 was associated with DMI, this SNP was

not mapped to a known gene. This SNP was 600 kb from other

two SNPs (rs43291568 and rs43291603) on BTA15 also associated

with DMI. This pair of SNPs were mapped within 27 kb of each

other, however the pairwise LD among these SNPs was low

(r2 = 0.052). These two SNPs are in the intronic region of the

coxsackie virus and adenovirus receptor-like membrane protein

(CLMP). This gene encodes for a type I transmembrane protein of

the CTX family and transmemrane proteins have activating or

suppressing roles on cell growth [65].

Among the SNPs associated with DMI and mapped to known

genes, rs108942504 was found on a gene on BTA22 that encodes

a structural protein, the transmembrane protein 40 (TMEM40).

Similarly, rs41588990 was mapped to the intronic region of

CCR4-NOT transcription complex, subunit 6-like (CNOT6) on

BTA6. This gene plays a role in the deadenylation of mRNAs in

the cytoplasm and deadenylation has been associated with cell

growth [66]. The results from the univariate GWAS offer a first

glimpse of SNPs that could be used in genomic improvement of

feed efficiency. However, univariate analyses may miss detecting

SNPs because these analyses do not exploit the correlation

between ADG and DMI. This situation could be especially

detrimental in scenarios with limited data size, limited effect of the

SNP or limited disequilibrium between the SNP and the QTL

influencing the feed efficiency components. Bivariate uni- and

multi-SNP analyses shed additional light on these SNPs.

Bivariate uni-SNP analysis of ADG and DMI
The SNPs simultaneously associated with ADG and DMI (P-

value ,0.0001) were presented in Table 5. Many of these SNPs

that have a pleiotrophic association with both feed efficiency

components were also found in either univariate analysis. The

SNPs that overlapped between the univariate and bivariate

analyses were summarized in Table 6. Four of the eleven SNPs

detected in the bivariate analysis were also detected in the

univariate ADG analysis and other five SNPs were detected in

univariate DMI analysis (Table 6). The two additional SNPs

detected by the bivariate analysis but not detected by the

univariate analyses were rs41722387 and rs110522962. These

results emphasize the need to consider the results of multivariate

Table 6. SNPs detected1 bymultiple analyses using uni-SNP
models.

SNP BTA Gene Symbol Phenotype

rs109934193 2 NCKAP5 ADG, Bivariate

rs41629972 13 - ADG, Bivariate

rs108964818 15 KDELC2 ADG, Bivariate

rs42128656 15 - DMI, Bivariate

rs43291568 15 CLMP DMI, Bivariate

rs41768978 15 PHOX2A ADG, Bivariate

rs111010038 17 - DMI, Bivariate

rs108942504 22 TMEM40 DMI, Bivariate

rs41624569 26 - DMI, Bivariate

1P-value ,0.0001.
doi:10.1371/journal.pone.0078530.t006
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and univariate GWAS to precisely detect and characterize SNPs

associated with feed efficiency.

Among the SNPs uncovered by the uni-SNP bivariate analysis,

rs41722387 was mapped approximately 450 kb from rs41565199,

a SNP associated with ADG on BTA14 (Table 4). Despite being

physically close, the LD between these SNPs was low (r2 = 0.046).

Furthermore, rs41565199 was mapped to pseudo metalloendo-

peptidase (OMA1) that inhibits growth and approximately 400 kb

upstream from hyaluronan synthase 2 (HAS2) that mediates

cellular growth [31]. Homozygous TT steers for rs41565199

exhibited the highest feed efficiency due to higher ADG and lower

DMI relative to steers that had other genotypes. The other SNP

detected solely by the bivariate analysis was rs110522962. Mapped

on BTA17, this SNP was approximately 4 Mb from a QTL region

previously associated with ADG [48]. Homozygous TT steers

exhibited the highest ADG and lowest daily DMI relative to steers

that had other genotypes.

Among the remainder nine SNPs detected by the bivariate uni-

SNP analyses, rs42128656, rs111010038, and rs108942504 were

also associated with DMI in the univariate analyses. Six additional

SNPs were detected by the bivariate analyses and had the same

signs for both feed efficiency components. Positive associations of

the same allele with both feed efficiency components are not

always undesirable because a significant increase in ADG could

compensate for a less significant increase in DMI. For example,

rs108964818 (that maps to KDELC2) had positive associations with

ADG and DMI albeit a much higher additive estimate for ADG

than DMI. The SNPs detected by the one univariate and the

bivariate analyses (Table 6) were also detected at a less stringent

threshold (P-value ,0.01; data not shown), by the other univariate

analysis.

Univariate and multivariate multi-SNP analyses
The polygenic nature of ADG and DMI can be adequately

described with a multi-SNP model. In turn, the multi-SNP

function can be used to predict feed efficiency or in genome-

enabled selection programs to improve feed efficiency. Findings

from the un-SNP analyses were used to develop a multi-SNP

predictive equation. A multi-SNP model was developed using

stepwise selection and 53, 58, and 84 SNPs (P-value ,0.001)

identified by the uni-SNP univariate ADG, DMI and bivariate

analyses. The final multi-SNP ADG, DMI, and the bivariate

models included nine, eight, and seven SNPs, respectively (P-value

,0.0001; Table 7). These SNPs encompassed 21 unique SNPs on

10 genes. Among these, 11 SNPs were detected by the uni-SNP

analyses.

The additional SNPs uncovered by the multi-SNP approach

were mapped on BTA 2, 7, 11, 13, 20, 22, and 29. On BTA2,

rs108939474 was associated with ADG and was within 500 kb of

heparan sulfate 6-O-sulfotransferase 1 (HS6ST1), UDP-glucose

glycoprotein glucosyltransferase 1 (UGGT1), and Sin3A-associated

protein 130 kDa (SAP130). These genes are known for their roles

on glycosaminoglycan biosynthesis pathway and cell growth [64],

metabolism of protein [64], and histone H3 acetylation [60],

respectively. Also associated with ADG, rs42433916 was mapped

approximately 160 kb downstream from the zinc finger protein

608 (ZNF608) on BTA7, and rs109945988 was mapped 4 Mb

from a QTL on BTA11 previously associated with ADG [48], and

within 500 kb from the genes baculoviral IAP repeat containing 6

(BIRC6), RAS guanyl releasing protein 3 (calcium and DAG-

regulated, RASGRP3), tetratricopeptide repeat domain 27

(TTC27), and latent transforming growth factor beta binding

protein 1 (LTBP1) that is associated with cell growth [31].

Among the SNPs included in the multi-SNP univariate DMI

analysis, rs41629972 was detected by the uni-SNP DMI analysis.

Also on BTA13, rs41577108 was proximal to CUGBP Elav-like

family member 2 (CELF2). This gene modulates the cellular

apoptosis program [31] and also proximal to enoyl CoA hydratase

domain containing 3 (ECHDC3), and USP6 N-terminal like

(USP6NL). Two additional SNPs in the multi-SNP univariate DMI

analysis were rs41577655 and rs110911295. Mapped to BTA15,

rs41577655 was located less than 250 kb upstream of apoptosis

inhibitor 5 (API5) and tetratricopeptide repeat domain 17 (TTC17)

that was associated with growth. Mapped to BTA20, rs110911295

was located 500 kb upstream from the PAP associated domain

containing 7 (PAPD7) and steroid-5-alpha-reductase, alpha poly-

peptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1;

SRD5A1), and downstream the mediator complex subunit 10

(MED10) and NOP2/Sun domain family, member 2 (NSUN2).

Both, SRD5A1 and NSUN2 have been associated with abdominal

subcutaneous and visceral fat [31].

The multi-SNP model selection for the bivariate analysis of

ADG and DMI resulted in three SNPs not detected by the uni-

SNP bivariate model. Among these, rs109945988 was associated

in the multi-SNP ADG model, and rs41600811 and rs42459305

represent new associations. In particular, rs41600811 was mapped

100 kb downstream the cell adhesion molecule with homology to

L1CAM (close homolog of L1; CHL1) on BTA22. The cell–cell

adhesion function of this gene enables cells to assemble into

organized tissues. The remaining SNP, rs42459305, was mapped

to a gene dense region on BTA29 with several predicted loci and

located less than 3 kb downstream from the olfactory receptor,

family 8, subfamily G, member 5 (OR8G5) and could impact feed

consumption.

Validation
The SNPs detected on the training data set were evaluated on

the validation data set. Findings from the uni-SNP models were

confirmed at P-value ,0.05 in the validation data set. This

threshold was used for two reasons. First, this validation constitutes

the second of the two-phase approach. The SNPs have already

been detected in the training data set at a P-value ,0.0001.

Second, a limited number of SNPs required validation. The SNPs

(and analyses) validated were: rs108942504 (univariate DMI);

rs41629972 and rs108964818 (univariate ADG); and

rs108964818, rs41768978, and rs110522962 (bivariate).

For the multi-SNP models, validation was assessed by the

change in the MA between the validation and training data sets,

relative to the validation set (Table 7). Overall, the MA in the

small validation data set was comparable to that in the larger

training data set used to detect the SNPs. This result confirmed

that the SNPs detected have a high likelihood to be replicable in

additional populations. For the multi-SNP univariate DMI (ADG)

analysis, the RMSE only increased 7.21% (11.67%) despite the

fact that the validation data set was 300% smaller than the training

data set. The higher loss in MA for the bivariate multi-SNP

analysis on the validation data set (19.4%) may be due the higher

parameterization of the model and lower precision of each

estimate relative to univariate analyses.

Functional analyses and gene networks visualization
The 236 genes corresponding to the SNPs detected at P-value

,0.01 by the uni-SNP bivariate analysis were considered for

functional analysis. The P-value threshold was selected because of

the high number of SNPs detected by the univariate analyses at P-

value ,0.01 that were also detected in the bivariate analysis.

Bivariate GWAS of ADG and DMI for Feed Efficiency

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e78530



Seven functional categories were enriched (P-value ,0.001)

among the genes corresponding to the detected SNPs (Table 8).

The most significant categories included the GO molecular

functions of cation channel activity and metal ion transmembrane

transporter activity. Both categories encompassed 10 genes.

Affiliated to these two GO categories was transient receptor

Table 7. SNPs selected1 for the multi-SNP models, corresponding gene, and model adequacy indicator.

RMSE2

Phenotype SNP BTA Gene Symbol T V MA4

ADG rs108939474 2 - 0.1049 0.1187 11.68%

rs109934193 2 NCKAP5

rs110787048 4 DPP6

rs42433916 7 -

rs109945988 11 -

rs109957444 14 FAM135B

rs42230512 14 TATDN1

rs108964818 15 KDELC2

rs41768978 15 PHOX2A

DMI rs41588990 6 CNOT6L 0.5242 0.5650 7.21%

rs41577108 13 -

rs41629972 13 -

rs41632270 13 -

rs41577655 15 -

rs43291568 15 CLMP

rs110911295 20 -

rs41624569 26 -

RMSE2

ADG DMI RMSC3

T V T V T V MA4

Bivariate rs108964818 15 KDELC2 0.0802 0.0985 0.3700 0.4672 0.0949 0.1166 19.40%

rs110522962 17 -

rs41624569 26 -

rs41600811 22 -

rs109709275 15 GRAMD1B

rs42459305 29 -

rs109945988 11 -

1P-value ,0.0001;
2Root mean square errors (RMSE) for the models using the training (T) and validation (V) data sets;
3Root means square covariance (RMSC) for the bivariate model using the training (T) and validation (V) data sets;
4MA, Model adequacy as defined in Eqs. 3 and 4, for the univariate and bivariate analyses, respectively.
doi:10.1371/journal.pone.0078530.t007

Table 8. Enriched1 Gene Ontology molecular functions from SNPs detected by the bivariate uni-SNP analysis.

Gene Ontology term Genes P-value

cation channel activity CACNB2, FGF2, KCNH1, KCNH7, KCNH8, KCNIP4, KCNK9, KCNMA1, KCNQ3, and TRPC2 6.0E-5

metal ion transmembrane transporter activity CACNB2, FGF2, KCNH1, KCNH7, KCNH8, KCNIP4, KCNK9, KCNMA1, KCNQ3, and TRPC2 2.1E-4

voltage-gated ion channel activity CACNB2, FGF2, KCNH1, KCNH7, KCNH8, KCNIP4, KCNMA1, and KCNQ3 2.6E-4

voltage-gated channel activity CACNB2, FGF2, KCNH1, KCNH7, KCNH8, KCNIP4, KCNMA1, and KCNQ3 2.6E-4

potassium channel activity KCNH1, KCNH7, KCNH8, KCNIP4, KCNK9, KCNMA1, and KCNQ3 4.2E-4

voltage-gated cation channel activity KCNH1, KCNH7, KCNH8, KCNIP4, KCNK9, KCNMA1, and KCNQ3 4.9E-4

potassium ion transport KCNH1, KCNH7, KCNH8, KCNIP4, KCNK9, KCNMA1, and KCNQ3 7.1E-4

1P-value ,0.0001.
doi:10.1371/journal.pone.0078530.t008
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potential channel 2 (TRPC2). This gene was reported to be

associated with several behavioral responses [60] and could be

related to consumption and energy maintenance requirements.

This gene corresponded to rs41603221 that was detected (P-value

= 0.0006) in the bivariate analysis. Furthermore, this SNP was

mapped 4 Mb from a QTL reported to be associate with ADG on

BTA 15 [45].

Ion channel activity was associated with maintenance of normal

gradient on plasma membranes, participation in cellular de- and

re-polarization, neurotransmitter release, immune function, insulin

secretion, and active transport mechanisms required for the

digestion and absorption of nutrients [67,68,69].

A comprehensive network of the genes affiliated to the enriched

molecular functions is reconstructed (Figure 1). In this network,

the highest numbers of connections were displayed by the target

gene FGF2 and the intermediate gene ubiquitin C (UBC). These

genes could have driver or hub role on feed efficiency components.

In addition, FGF2 was implicated on smooth muscle cell

differentiation and signaling [31,70].

Conclusions

Single nucleotide polymorphisms associated with the feed

efficiency components ADG and DMI in feedlot beef steers were

identified using uni-SNP and multi-SNP models and univariate

and bivariate analyses. The complementary set of SNPs detected

by the univariate and bivariate analyses confirmed the value of

considering both GWAS approaches. For certain SNPs, the

bivariate analyses could gain precision through the consideration

of covariation between ADG and DMI relative to univariate

analyses. For other SNPs, univariate analyses could benefit from

lower noise of each trait studied separately, relative to the bivariate

analysis. Genomic loci that had favorable associations with ADG

and DMI simultaneously, or favorable associations with either trait

with minimum detrimental association with the other trait, while

accounting for the body maintenance requirements, were identi-

fied. The validation of models and SNPs suggest that the findings

could be replicable. Functional analysis and gene network

visualization facilitated the interpretation of the association

between SNPs mapping to genes that have ion channel-related

molecular function and feed efficiency components. Results from

this study can be used for genome-enabled improvement of feed

efficiency in feedlot beef cattle, to support further empirical

confirmation of the associations, and as proof of concept of the

value of complementary association analyses.
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Figure 1. Network of genes affiliated to enriched molecular functions based on SNPs associated with feed efficiency. Connection
between genes affiliated with enriched (P-value ,0.0001) functional categories. Genes corresponding to detected (target genes; P-value ,0.01) are
represented by pink nodes, and intermediate (not-detected) genes are represented by blue nodes. Red edges represent in direct interaction with
target genes with any other gene, and golden edges represent interactions between intermediate genes. The size of the network nodes from the
target genes is a function of the P-values from the association analyses, in which larger nodes indicate more significant P-values.
doi:10.1371/journal.pone.0078530.g001

Bivariate GWAS of ADG and DMI for Feed Efficiency

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e78530



References

1. Lowe M, Gereffi G (2009) A value chain analysis of the U.S. beef and dairy

industries. Center on Globalization, Governance & Competitiveness. Duke
University, Chapel Hill, North Carolina.

2. Ferrell CL, Jenkins TG (1985) Cow type and the nutritional environment:

nutritional aspects. Journal of Animal Sciences 61: 725–741.

3. Sherman EL, Nkrumah JD, Moore SS (2010) Whole genome single nucleotide
polymorphism associations with feed intake and feed efficiency in beef cattle.

Journal of Animal Science 88: 16–22.
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