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Abstract: The diffusion rate for proper nutrition of the inner retina depends mainly on four factors
which are discussed in this review: 1. The diffusion distance between blood and retinal ganglion cells
shows morphological variants in different mammalian species, namely a choroidal nutrition type,
a retinal nutrition type, and a mixture of both types. 2. Low oxygen concentration levels in the inner
retina force the diffusion of oxygen especially in the choroidal nutrition type. Other nutrients might
be supplied by surrounding cells, mainly Müller cells. 3. Diffusion in the eye is influenced by the
intraocular pressure, which is vital for the retinal ganglion cells but might also influence their proper
function. Again, the nutrition types established might explain the differences in normal intraocular
pressure levels among different species. 4. Temperature is a critical feature in the eye which has to be
buffered to avoid neuronal damage. The most effective buffer system is the increased blood turnover
in the choroid which has to be established in all species.
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1. Introduction

Retinal ganglion cells are the innermost neurons in the retina which receive their input mainly
from bipolar and amacrine cells. They are the first cells to initiate an action potential and to project to
the brain. Since the hydrostatic pressure in the eye (referred to as intraocular pressure) is slightly higher
than in the surrounding tissue, they need a specifically developed supply of nutrients to maintain
proper function. Interestingly, there are different ways to solve this problem that can be distinguished in
different mammalian species. In this review I describe the adult anatomical and physiological situation
in various mammals used in retinal research and highlight functional consequences that should be
considered when using specific animals as models for human ocular pathologies. Developmental
aspects reviewed previously [1,2] and pathophysiological aspects were not included.

At large, the diffusion rate (transport of nutrients from the blood to the target cells) is mainly
influenced by four factors: 1. diffusion distance (location and density of capillaries), 2. difference in
concentration of substrates/nutrients (mainly oxygen and glucose), 3. diffusing and host materials
(e.g., density/viscosity of the tissue due to various kinds of pressure), and 4. temperature.

2. Diffusion Distance: The Impact of Vascularization on Retinal Ganglion Cell Nutrition

The vascularization of the retina shows a great variety between different mammalian species.
In contrast to the grouping of the literature [3], I differentiated the groups according to the necessity of
choroidal supply of the inner retina. Three groups can be distinguished (Table 1): in the paurangiotic
and merangiotic pattern, the retina is mostly dependent on the choriocapillaris. Within the holangiotic
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pattern, two situations can be distinguished: the inner retina is either completely supplied by the retinal
vasculature or is partly dependent on the choriocapillaris. The latter situation is present in the human eye.

Table 1. Classification of various laboratory mammals due to their vascular supply of the inner retina
and their normal range of intraocular pressure.

Species
Vascular Supply of the Inner Retina Normal Intraocular

Pressure RangeChoroidal Chorioretinal Retinal

Guinea pig X 10–15 mmHg [4]

Rabbit (Visual streak) 8–16 mmHg

Pig X no in vivo data

Cat X 16–21 mmHg

Dog X 15–21 mmHg

Primate/Human X Majority 14–16 mmHg

Mouse X 15–20 mmHg

Rat X 15–25 mmHg

2.1. Choroidal Type of Retinal Ganglion Cell Nutrition

The guinea pig has a complete avascular retina; in the rabbit, most parts of the retina are avascular
and retinal vessels are restricted to the central visual streak (merangiotic retina [5]). Thus, the retinal
ganglion cells are completely dependent on the choroidal blood supply (Figure 1A). Interestingly,
changes in choroidal blood flow do not affect substantially the oxygen distribution within the retina [4].
There seems to be a maximal diffusion distance from the choriocapillaris to the inner retina layers of
around 180 µm [6]. The retinal thickness is therefore restricted in these animals.

2.2. Retinal Type of Retinal Ganglion Cell Nutrition

The mouse and the rat, two widely used animal species in ophthalmic research, show both a
central retinal thickness of over 200 µm and only a mild decrease to roughly 180 µm at the ora serrata [6].
Due to this fact, a multilayered vascular bed develops within the whole retina up to the ora serrata
(mouse [7–9], rat [10,11]) which uncouples completely the retinal ganglion cell nutrition from the
choroid (Figure 1B). This inner nutrition might even be supported by persisting hyaloid vessels [12].

2.3. Chorio-Retinal Nutrition of Retinal Ganglion Cells

Several mammalian species show a prominent decrease of retinal thickness toward the ora serrata.
These species include pig/miniature pig, cat, and dog. The vascular bed of the retina undergoes
characteristic changes from central/posterior to peripheral/anterior: if the retina reaches a critical
thickness of less than 180 µm, the multilayered capillary bed reduces to one layer located in the inner
part of the retina (pig [13–15], cat [16], dog [17]). In the pig, a prominent anterior border venule marks
the end of retinal vascularization toward the ora serrata, where the retina smoothly changes to the
nonpigmented epithelium of the pars plana region [18].

Toward the ora serrata, the inner retinal capillary net shows an increased distance between the
single capillaries to over 90 µm, which is known to be the critical perfusion distance for vessels within
neuronal tissue [19]. For comparison, in the cat brain, the mean capillary distance is 40 µm [20]. In the
peripheral retina, the inner retinal capillaries create regions within the inner layers which have to be
supplied by the choriocapillaris (Figure 1C). In the central region, the choroid has a fibrous (pig) or
cellular tapetum (cat, dog). This tapetum is, however, no longer present in the peripheral regions where
the choroid has to supply the whole retina. Therefore, these specific choroidal morphological features
of the central/posterior region do not influence choroidal function in the peripheral/anterior regions.

In the primate and human eye, a small avascular retinal spot develops in the fovea centralis
surrounded by an increased thickness of the parafoveal rim (300–350 µm thickness). From there,
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a continuous decrease of the retinal thickness appears down to roughly 100 µm in the ora region [21,22].
Only within a radius of 30 and 40 degrees from the optic disc, a deep retinal capillary layer is
present [23]. The more peripheral regions of the retina show only one inner layer of retinal capillaries
and numerous choriocapillary-dependent columns [23]. The most peripheral retina next to the ora
serrata is completely avascular.

Figure 1. Schematic drawing of a flat-mounted sagittal section through the posterior eye showing
the different vascular supplies for the inner retina (retinal ganglion cells). (A). In the choroidal type,
the whole retina is supplied by the choriocapillaris (green). (B) In the retinal type, two capillary
layers in the retina supply the whole inner retina (pink). Only the outer retina is supplied by the
choriocapillaris (green). (C) In the chorio-retinal type, two retinal capillary layers are only present in
the central part. In the periphery, the inner retina is only partly supplied by retinal vessels (pink); other
parts are supplied by the choriocapillaris (green). PCA = posterior ciliary artery. VV = vortex vein.

3. Concentration Difference of Nutrients

Little information exists about the quantity of nutrients in the inner retina. Most data on oxygen
levels which are continuously dependent on blood supply were gained from one group of scientists,
reviewed in [24]; glucose consumption of retinal ganglion cells was not quantified but a large depot of
glycogen in the inner part of the Müller cells seems to maintain sufficient levels of glucose [25,26].

3.1. Oxygen Tension

Oxygen measurements in both species with grossly avascular retina (guinea pig and rabbit)
revealed low oxygen tension levels (around 1 mmHg) in the inner retina, even in the region of the
visual streak [5,27]. Under normal conditions, the retinal ganglion cells in these species are adapted to
low oxygen levels. Temporary hyperoxia, however, showed marked differences between both species:
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while the inner retina was not altered in guinea pig eyes, the avascular retina of the rabbit showed
increased oxygen tension levels [28]. In the rat with a fully vascularized retina, the oxygen tension
levels in the inner retina are much higher (roughly 20 mmHg) but the retinal ganglion cells do not
react substantially to hyperoxia [29]. The specific reaction of the rabbit eye to an increased oxygen offer
has to be elucidated further.

Interestingly, hypercapnia increased the oxygen tension levels in all experimental settings of
several animals with vascular and avascular retinae [24], indicating a sufficient feedback control for
critical conditions. Furthermore, in the vascularized cat retina, it was shown that the choroid is able to
supply the inner retina sufficiently if the retinal vessels do not function properly [30].

3.2. Glucose Metabolism

The retina as a neuronal tissue gains its energy mainly from glucose metabolism. The constant
glucose availability is provided by glycogen storage which is present in numerous cells located in the
inner retina. Therefore, retinal ganglion cells are not solely dependent on the glucose transport by
nearby blood vessels but are included in a network of other neurons and glial cells being able to satisfy
nutritional needs.

Müller cells play a key role for retinal ganglion cell support. Their presence and distribution are
largely independent of the state of retinal vascularization [31]. Although some species differences exist
in the relative amount of glycogen in the retina [32], fairly high amounts of glycogen are reported to be
stored in Müller cells [33,34] as well as in retinal ganglion cells [35] of several mammalian species.

Little experimental data is available for the nonvascularized retina. In the rabbit eye, the amount
of glycogen, mainly stored in the inner part of the Müller cells [36], changes with the blood supply of
the choroid [37]. A recent review highlighted the metabolic partnership of retinal ganglion cells and
Müller cells in the vascularized retina [38]. Müller cells do not only provide glucose for the neurons
but also establish a lactate shuttle [39]. Other teammates in tissue homeostasis of vascularized retinae
are the pericytes [40]. In addition, a local renin–angiotensin circuit [41] is involved in neurovascular
coupling. A lot of data constituting this view were raised in vitro, for example, in the rat, but
only data from isolated retinae were investigated [42]. A second source is indirect evidence from
pathological conditions, where lactate was used as a marker for anaerobic metabolism (e.g., in the
pig [43] and cat [44]).

While in general the outer retina uses mainly aerobic metabolism [45], the inner retina, even if
vascularized, establishes the anaerobic way using lactate [46], as established also in the brain. It is not
known if this lactate type of metabolism is especially useful for neurons gaining action potentials.

A more specific differentiation between retinal and chorio-retinal type of retinal ganglion cell
nutrition has not yet been considered. It is tempting to speculate that this might establish a specific
vulnerability in certain peripheral retinal areas in the chorio-retinal type as being existent in the
human retina.

3.3. Amino Acids and Lipids

Unfortunately, only limited data exists regarding the consumption or turnover of other nutrients
like amino acids or lipids.

There is some data about the amino acid taurine, which, however, is not involved in nutrition but
rather retinal cell homeostasis under normal and pathological conditions [47–49] (primary data mainly
from rats, partly from mice and cats). Taurine in this respect has a stabilizing role; a lack of taurine
renders the inner retina more vulnerable to conditions like hypoxia or elevated intraocular pressure.

The role of lipids in certain pathological conditions of the retina concerns mainly the outer part
(photo receptors and retinal pigmented epithelium). Concerning the role of polyunsaturated fatty acids
and cholesterol, the inner retina was investigated in rats with elevated intraocular pressure [50–52].
The functional role of these lipids under normal conditions remains to be determined.
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4. Diffusing and Host Materials: The Impact of Intraocular Pressure on Retinal Ganglion
Cell Nutrition

Normal intraocular pressure keeps the eye inflated and preserves two main factors: the physical
conditions for vision during outer eye muscle movement, and the nutrition of the outer retina (function
of photo receptors) by pressing the neuroepithelium (retina) against the retinal pigment epithelium.
This is in addition to the retinal pigment epithelium fluid pump, which supports the adhesion, too.

Factors that influence intraocular pressure measurements are the head position during
measurement (e.g., [53]), the type of measurement (e.g., [54]), possible narcotics (e.g., [55]), and the
time point (a circadian rhythm has been found in all animals studied and in humans). It is therefore
problematic to compare absolute values between different study designs. Obviously no correlation
exists between the size of the eye and the level of intraocular pressure. Taking the difficulties in
comparing absolute numbers of intraocular pressure into account, a tendency of correlation might be
found between normal circadian intraocular pressure levels and type of retinal ganglion cell nutrition
(Table 1): while animals with a choroidal type of nutrition have lower intraocular pressures (guinea pig
10–15 mmHg [54,56], rabbit 8–16 mmHg [57,58]), animals with a retinal type of nutrition show higher
intraocular pressures (mouse 15–20 mmHg [59–63], rat 15–25 mmHg [64], cat 16–21 mmHg [53,65,66],
dog 15–21 mmHg [67,68]). In the human, the normal range of intraocular pressure is 10–21 mmHg,
with the majority showing levels of 14–16 mmHg.

It is tempting to speculate that constant higher normal levels of intraocular pressure and thus
more mechanical stability of the eye can only be tolerated in vascularized retinae, where the inner
layers and retinal ganglion cells are generally not dependent on choroidal nutrition. It is known that
increase of intraocular pressure dilates the retinal vessels [69] to increase the substrate concentrations
and maintain proper nutritional support. In humans, the mildly higher levels of intraocular pressure
in comparison to animals with an avascular retina might cause the human-specific age-related changes
of the peripheral visual field [70] over a long period of time, which is not present in all other listed
animals. Thus, animals with a shorter life span can even tolerate slightly higher normal intraocular
pressure levels (e.g., rats with a life span of two years have normal intraocular pressure levels up
to 25 mmHg).

5. Temperature

Even more complex than measuring intraocular pressure is the measuring and rating of intraocular
temperature. Therefore, most considerations about the influence of temperature in the eye gain from
indirect experiments, since local measurements in vivo are not established.

In general, a rise in temperature increases the diffusion rate and thus might support proper nutrition
of the retinal ganglion cells. Since temperature is correlated with the consumption of nutrients [71],
retinal ganglion cells benefit from lower temperature levels under ischemic conditions [72–76]. On the
other hand, preconditioning with higher temperatures leads to an increase of chaperones in the neurons
and protects them from future critical conditions [77].

The high energy demands in the outer retina (photoreceptors) implicate a high metabolic rate and
thus the production of heat [78]. This is considered in the fovea centralis by a lower thermal activity
of cones making them less sensitive to temperature changes [79]. Most likely, the heat production is
buffered by the retinal pigmented epithelium and by the constantly high blood flow of the choroid
functioning like a water-cooling system with a closed circuit in cars. Retinal ganglion cells might
therefore not be affected by this process.

External heat seems to have no major influence on the retinal neurons [80]. However, massive
heat produced due to laser treatment has to be buffered to avoid protein degradation and neuronal
damage of both the outer and inner retina [81,82].
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6. Conclusions

Ranking the factors influencing the diffusion rate for retinal ganglion cells discussed in this
review, it becomes obvious that the crucial factor above all is the morphology of the capillary beds,
which differs substantially among mammalian species. The other factors should not be overlooked
particularly if they become altered under pathological conditions. They might be primarily causative
for pathological changes while vascular changes follow these conditions.

The specific importance of the choriocapillaris for the retinal ganglion cells has been partly
underestimated and its careful examination might broaden concepts of mechanisms in various clinical
conditions (e.g., glaucoma) and in the understanding of physiological changes during aging.

Retinal ganglion cells are affected in a number of pathological conditions (extensive review [83]).
Concerning the nutrition of retinal ganglion cells discussed in this review, some conditions might be
animal-specific and should be considered when choosing an appropriate animal model.

(1) Ischemia. The diffusion distance from the vasculature to the retinal ganglion cells is crucial
for ischemic conditions. One should keep in mind that the mainly avascular retina in guinea pigs
and rabbits is adapted to this low-oxygen condition. Interestingly, systemic changes of oxygen levels
in a wide range have almost no effect on the inner retina [28]. Despite the higher oxygen levels in
vascularized retinae, the lactate type of metabolism is the major source used in the inner retina to
maintain the necessary energy level. The lactate cycle is buffered by Müller cells, which are supported
by both the retinal and choroidal blood supply. Therefore, there is only a relative dependence of oxygen
for retinal ganglion cells in the vascularized retina and slowly occurring changes as in chronic diseases
might lead to unhindered adaptation. This might also include the levels of neuroglobin and cytoglobin
as respiratory proteins [84]. Excessive supply of oxygen is known to disturb the morphological
and functional organization of the retina and their vessels during development (latest reviews for
retinopathy of prematurity [85,86]). On the other hand, chronic hypoxic conditions in the vascularized
retinae induce high levels of vascular endothelial growth factor, leading eventually to pathological
vascularizations in other regions of the eye, resulting in rubeosis iridis and secondary neovascular
glaucoma [87,88]. Blood supply can, however, not be reduced to oxygen supply but implicates a
number of other functions like buffering the extracellular environment.

(2) Toxicity. As in nervous tissue in general, retinal ganglion cells have to be protected from
excitotoxicity and potentially toxic substances. While the retinal vascularization supports the buffering
aspect of glia cells and therefore potential hazardous levels of, for example, glutamate [89], it allows
toxic substances like formic acid from methanol to enter the retina more directly and thus concentrate
more easily in potentially toxic levels. Neurotoxicity and neuro-inflammation are both discussed
as crucial steps in the pathophysiology of glaucoma [90,91] and it might be interesting to compare
vascularized and avascularized retinae in their ability to variably cope with these conditions. This
might help to understand the different abilities in the human retina due to their chorio-retinal type
of retinal ganglion cell nutrition, and it might help to explain the onset of glaucoma changes in the
periphery mainly supplied by the choroid [92].

Concerning the protection against toxic substances, the vascular retina depends on the maintenance
of the blood–retinal barrier. Several systemic pathologies (e.g., diabetes, chronic inflammation) disturb
the blood–retinal barrier and create adverse conditions for the viability of retinal ganglion cells. It would
be interesting to see if nonvascularized retinae are more protected from such conditions (e.g., guinea
pigs with diabetes as newly established [93]). On the other hand, breakdown of the blood–retinal
barrier might facilitate drug delivery in the diseased retina and therefore protect more effectively the
retinal ganglion cells.

(3) Nutritional deprivation. Little is known about the difference in nutrient supply (other than
oxygen and glucose) of the inner layers between vascularized and avascularized retinae. Studies in the
latter might establish a better idea about transcellular and paracellular routes of nutrients and their
disturbance in various pathological conditions. To date, nutrients were widely studied only in the
outer retina and in pathological conditions like age-related macular degeneration. Some information
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about the human eye is gained from storage diseases and mitochondriopathies (e.g., gangliosidosis
and Leber’s hereditary optic neuropathy [83]) but no animal models are established to incorporate the
nutrient routes and their impact for proper vitality.

(4) Pressure changes. Retinal ganglion cells are highly affected in conditions of sustained elevated
intraocular pressure. Although the major focus of glaucomatous damage is brought to the optic
nerve head and thus the loss of retinal ganglion cells described as an optic neuropathy, the elevated
intraocular pressure might also affect other aspects of retinal ganglion cell vitality. Without raising
all theories (summarized in [94]), comparative studies with different vascularized retinae might help
to distinguish between primary and secondary effects. One recent tool is the elaborated genetic
analysis [95] which might be transferred to different groups of animals.

In writing this review, it became evident that the nutrition of retinal ganglion cells which differs
due to the type of retinal vascularization is far from being comprehensively described. This includes
mainly basic comparative investigations. The tendency to favor pathological conditions (which are
a major motive for research) over healthy conditions constitutes a lack of general information and
knowledge, which should be gained to substantiate pathophysiological speculations.
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