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Abstract

Global climate change increasingly contributes to large changes in ecosystem structure.

Timely management of rapidly changing marine ecosystems must be matched with meth-

ods to rapidly quantify and assess climate driven impacts to ecological communities. Here

we create a species-specific, classification system for fish thermal affinities, using three

quantifiable datasets and expert opinion. Multiple sources of information limit potential data

bias and avoid misclassification. Using a temperate kelp forest fish community in California,

USA as a test case for this new methodology, we found the majority of species had high

classification agreement across all four data sources (n = 78) but also a number of low

agreement species (2 sources disagree from the others, n = 47). For species with low agree-

ment, use of just one dataset to classify species, as is commonly done, would lead to high

risk of misclassification. Differences in species classification between individual datasets

and our composite classification were apparent. Applying different thermal classifications,

lead to different conclusions when quantifying ‘warm’ and ‘cool’ species density responses

to a marine heatwave. Managers can use this classification approach as a tool to generate

accurate, timely and simple information for resource management.

Introduction

Climate change is one of the greatest challenges natural resources will face over the next cen-

tury. While species are generally predicted to shift their ranges in response to warming condi-

tions, individual ecosystems will have unique responses depending on local environmental

variables and species’ sensitivities to environmental conditions [1–3]. As species disappear

from or arrive into ecosystems as a function of shifting climate, the ecosystem services pro-

vided will likely be altered and managers must develop adaptive strategies to meet manage-

ment goals (e.g., optimal take for stocks, MPA placement for conservation; [1, 4–6]). In order

for resource management to be timely and responsive to climate changes, effective
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methodologies must be available to track changes in ecosystem components, such as commu-

nity structure or function.

Classifying species by their affinities for environmental conditions can improve our ability

to understand how local ecological communities are changing in response to acute and

chronic climatic events and to contextualize any changes relative to specific environmental

drivers. Because physiological data on most species’ thermal tolerances is absent, the most

commonly used classifications are based on species thermal tolerances as inferred from bioge-

ography in situ [4, 7, 8]. However, some classification schemes use a variety of data metrics

including life history traits [9], other (non-thermal) environmental sensitivities and even co-

occurring human activities [10]. Classification schemes create using readily available datasets,

such as abundance or distribution monitoring data, can facilitate rapid information generation

and quick management decision-making. Species classification schemes that are easily under-

stood will best facilitate management communications with stakeholders and ultimately man-

agement action [11].

The most useful classification scheme for management uptake will not only be intuitive but

also reliable. Reliability is dependent on the classification accuracy and sensitivity to detect

changes that resource management would be concerned about. Classification schemes with

high levels of erroneous classification could lead to overreaction or inaction. The risk of error

and bias is especially high for schemes that use just a single data source to classify species or

those that relay information in a single, composite indicator, such as the commonly employed

Community Thermal Indicators (CTI; [7, 8, 12]). To alleviate spatial and temporal shortcom-

ings of individual, often site-based or single time point data sources, researchers should utilize

multiple data sources to build thermal classification schemes, including the expert opinion of

local researchers, traditional resource users and naturalists.

In order to help regional resource managers understand climate impacts, we developed a

robust thermal classification for a kelp forest fish community off the coast of California, USA.

We created a composite classification using multiple sources of information and investigated

agreement between the results of each individual source. Fishes were sorted into warm-affinity

and cool-affinity (hereafter ‘warm’ and ‘cool’) species classifications using information from

four different data sources (i.e., Expert Opinion, Range Limits, Museum Collections, and In

Situ Density, see methods for details). Species were classified using each data source separately,

and then a final aggregate classification was given to each species based on the majority agree-

ment of classifications across the four data sources. An agreement score between the classifica-

tion based on the four different sources was quantified to assess potential uncertainty in the

classification scheme. The classification scheme was then used to evaluate changes in fish com-

munities in the Santa Barbara channel before and after a marine heatwave event.

Materials and methods

Site

The Santa Barbara Channel is a marine thermal transition zone between the cooler California

Current and the warmer California Countercurrent (See S1 Fig). The region extends up to

Point Conception, a well-established biogeographic break along the Northeast Pacific. Given

that this area is a marine transition zone, we expect that fish species will be at the edge of their

physiological thermal width [13] and may be able to quickly respond to climate impacts. The

mainland coast is primarily south-facing with a series of nearshore kelp forest and rocky reefs.

Four islands with kelp forest and rocky reef habitat are situated offshore, separated from the

mainland by a deep basin. The Santa Barbara Channel waters are managed through a number

of state (e.g., California Fish and Wildlife, California State Lands Commission, California State
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Water Resources Control Board) and federal (e.g., National Oceanic and Atmospheric Admin-

istration, National Park Service) agencies with many mechanisms of conservation including

no take and limited take Marine Protected Areas (hereafter referred to as MPAs).

Kelp forest monitoring data

Dive surveys (<70 ft) have been conducted in the Santa Barbara Channel annually beginning

in 1999 and continuing through present. The fish species list (n = 134) for this study was gen-

erated from all species counted in these surveys. The data used in this study were from a long-

term dataset collected from 59 sites that were sampled annually by the Partnership for Interdis-

ciplinary Studies Coastal Oceans (PISCO) from June to October; however, not all sites were

surveyed in all years. At each study site divers conducted 8 to 12 transects that were 30x2x2m

at each of three levels in the water column: benthic, midwater and kelp canopy (when the can-

opy was present at a site). Transect locations were selected through a stratified random design

with multiple non-permanent transects located in fixed strata (e.g., outer, middle, and inner

rocky reef). On each transect, a single SCUBA diver counted and estimated the total length in

centimeters for each fish, excluding small cryptic fishes. Full techniques for subtidal dive sur-

veys can be found online at www.piscoweb.org.

PISCO also measures recruitment using artificial larval fish collectors known as Standard

Monitoring Units for Recruitment of Fishes (SMURFs) [14]. At each of seven sites in the Santa

Barbara Channel, three replicate SMURFs were sampled bi-weekly and each fish recruit was

identified to the lowest taxonomic level possible [15]. An additional 18 species detected in

SMURF samples, but not observed during PISCO dive surveys, were considered and classified

as part of this effort, bringing the total number of species included in this study to 152.

Classification scheme

Each fish species was assigned a thermal classification of warm or cool based on the species’

biogeographic distribution patterns relative to Point Conception. Three sources of quantitative

data were compiled: in situ densities, museum/aquarium collection events, and geographic

range midpoints. A fourth, categorical data source, was collected using an expert opinion poll.

Expert opinions are an additional source of information that can be incorporated without the

limitations of missing data or potential bias from artificially extended range limits. Final classi-

fication of a species to warm or cold thermal groups was based simply on the majority case for

each of these four data sources.

1. Density data used for classification were from a California wide SCUBA survey using meth-

ods described above. We used data from 2009–2010, two years where all sites across the

entire California Coast were sampled. While surveys were conducted as part of the same

monitoring program (i.e., PISCO), this larger scale snapshot does not overlap the timeframe

of the data used for the community change analysis described below and therefore should

not be influenced by the 2014 marine heatwave or lead to redundancies in the analysis. If

the density for any given species was greater above Point Conception (see S1 Fig), the spe-

cies was classified as cool; if lower the species was classified as warm. If a species was not

present in the data, then it was unclassified.

2. Locations of species from museum and aquarium collections were gathered from Vertnet.

org, a public online database. Vertnet has collection data from many museums and aquaria

worldwide; the major collecting groups in the California Current region are Birch Aquar-

ium, California Academy of Sciences, Aquarium of the Pacific, Seattle Aquarium, Monterey

Bay Aquarium, Natural History Museum of Los Angeles. These collections span a long time
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period and allow this dataset to capture spatial data across a variety of climatic conditions

in the region. The number of collection events north and south of Point Conception were

counted and compared for each species to assign a thermal classification.

3. Range limit data were collected from www.FishBase.org; field guides were used when range

limits were not available in Fishbase. The midpoint was calculated to be the average of the

upper and lower range limit’s latitude. Species with midpoints above Point Conception

were classified as cool while those below Point Conception were classified as warm.

If counts were equal above or below Point Conception for spatial data sources, the species

was considered eurythermal. Eurythermal species were not used in further analysis. If data

was not available to determine a classification, the species was deemed unclassified for that

data source.

4. In addition to sources described above, we collected categorical data using two online

expert opinion polls that were distributed to ichthyologists along the U.S. West Coast at a

number of academic institutions (i.e., University of California Santa Barbara, University of

California Santa Cruz, California State University Northridge, California State University

Long Beach and Scripps Institute of Oceanography) and a professional society, the South-

ern California Association of Ichthyological Taxonomists and Ecologists (SCAITE). The

first survey focused on species recorded in subtidal diver surveys and we received seven

completed surveys from fish biologists across four institutions. The second follow-up sur-

vey, which focused on species counted in SMURFs but not present in subtidal dive surveys,

had four participants from SCAITE. Online expert survey participants were asked to select

one option from six available to categorize each species: Temperate, Sub-Temperate, Cen-

tral, Sub-Tropic, Tropic and Cosmopolitan. Terms were not defined for participants in

order to limit bias. Our intent was to gauge the expert’s qualitative expectations of species

thermal affinities beyond their current and past distributions (e.g., taking into account phy-

logeny and other characteristics). While we did not explicitly tell experts to not use tools,

such as FishBase, to identify species ranges,—they were encouraged to rely on their natural

history insight. Post hoc comparisons suggest it is unlikely that experts gathered informa-

tion from other sources; the number of cool and eurythermal species classified by expert

opinion and ranges from Fishbase were the two most dissimilar. For this study, these ther-

mal classifications were then simplified to warm, cool and eurythermal to align expert opin-

ion data to the classification terms assigned using the quantitative data sources: Temperate

and Sub-Temperate were assigned cool, Subtropic and Tropic were assigned warm, and the

remaining two were assigned eurythermal.

Data from the expert opinion poll and the three sources of biogeographic data were com-

bined to create a single composite thermal classification for each fish species. Here we gave

equal weight to each data source and a species was given a final classification of warm, cool, or

eurythermal based on the classification most frequently assigned across the four data sources.

For species that did not have representation in all data sources (for example not counted on

dive surveys), we used any remaining available data to classify them. If classifications from dif-

ferent data sources were evenly split between warm and cool, the final classification was

eurythermal.

A classification agreement rank for each species was made to quantify the agreement across

data sources. If all four data sources produced the same classification, agreement was consid-

ered high. For species with one data source that was in disagreement with the others, the spe-

cies was considered to have Moderate agreement. A species was considered to have Low

agreement when 2 data sources disagreed from the others or no consensus was apparent.
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Community response comparisons

In 2014, the Santa Barbara Channel experienced a marine heatwave that led to anomalously

high-water temperatures that persisted until 2016 [16]. Using the marine heatwave as an in
situ experiment to compare the performance of composite classification with the classifications

resulting from single data sources, we truncated the subtidal survey data to the years immedi-

ately before (‘pre-heatwave’; 2012–2013) and during (‘heatwave’; 2014–2015) the marine heat-

wave. The warm and cool fish densities from subtidal diver surveys were averaged across

survey sites in the Channel Islands and sums of site averages were plotted as percent change

for the pre-heatwave and heatwave timeframes for each thermal group. Pre- and post-heat-

wave densities of individual species were plotted against one another, for each classification

metric (including the composite metric) separately, and qualitatively described. Density met-

rics were selected to test the thermal classification for any response to the heatwave because

density measures will be inclusive of a number population and demographic responses includ-

ing larval recruitment, increased survivorship adult migration and increased habitat use.

Results

In the composite classification of all species (n = 152), 59 species (38.8%) were considered

warm and 74 species (48.7%) were considered cool (S1 Table). Across each classification data

source, the number of species falling in each group varied greatly: 44–59 for warm species, 32–

83 for cool species and 1–29 for eurythermal species. Each of the data sources had a number of

unclassified species; however, the ‘diver surveys’ was the data source with the highest number

of unclassified species (n = 61).

We ranked the level of agreement of thermal affinity classifications (warm, cold, euryther-

mal) for each species across the four different data sources (i.e., Expert Opinion, Range Limits,

Museum Collections, and Diver Surveys). While the majority of species had High classification

agreement across all four data sources (n = 78, 51%), some species had Moderate (1 data

source is in disagreement from the others, n = 27, 18%) or Low agreement (2 sources disagree

from the others, n = 47, 31%).

All data sources captured the increase in warm species and the decrease in cool species after

the onset of the marine heatwave except for range limits, which did not show a decrease in

cool species (Fig 1). Warm species tended to show larger percent changes compared to cool

species. Dive Surveys was also the data source with the smallest increase in density of warm

water species (127.07% increase in density) but also showed the largest decrease in cool water

species (47.34% decrease in density). Museum Collections showed the largest increase in warm

water species (134.38% increase in density). The composite score was in the middle of the

recorded changes for the four data sources both warm and cool species. In the ten species that

had the largest differences pre and post heatwave (Fig 2), six were of high agreement, two were

moderate agreement and two were low agreement (Fig 2). These strongest species responses

were split pretty evenly between warm (n = 6) and cool species (n = 6). The summed changes

in fish density responses to the heatwave were heavily driven by these top 10 species which was

6 times total observed change in density for the remaining species (Fig 2).

Discussion

Species classifications based on traits that are responsive to climate change (e.g., thermal and

otherwise) may be prone to biases depending on the classification method employed and these

biases can lead to inconsistencies among studies [8, 11, 17, 18]. Species responses to tempera-

ture shifts will vary both on temperature tolerance width, maximum survivable temperature,

preferred temperature and the plasticity around these traits [4, 6]. In our system, thermal
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Fig 1. Changes in average annual fish densities. Percent changes in average annual fish densities for warm (red bars) and cool (blue bars)

species are shown for each classification data source for the years prior to (2012–2013) and after (2014–2015) the onset of the marine

heatwave.

https://doi.org/10.1371/journal.pone.0250792.g001

Fig 2. Variations in species response by classification metric. Scatterplots of individual species responses to the

marine heatwave are shown with pre-heatwave (2012–2013 summed density) on the x axis and post-heatwave (2014–

2015 summed density) on the y axis. Points that fall below the black line are species that responded with density

declines while points above the line experience density increases in response to the heatwave. Points are colored

according to their classification (red for warm, green for eurythermal, blue for cool and purple for unclassified) for the

A) composite classification B) expert opinion C) range limits D) museum Collections and E) diver surveys. In the

composite classification, point size enlarge as agreement among classification data rises.

https://doi.org/10.1371/journal.pone.0250792.g002
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driven change to fish community composition appears to be heavily driven by the ten most

responsive species. Fortunately, the composite scores for the majority of these top ten species

were in high agreement and we can be confident in the utility of the thermal classification

scheme as a tool for accurately tracking community-level response. As research and manage-

ment aims to rapidly detect and respond to climate-driven ecological changes, users of classifi-

cation schemes must have confidence that each response group is constructed such that all

members respond similarly to a climate driver, but is inclusive of the range of intensity of

responses species can display. Further work describing ecosystem response to the marine heat-

wave in this region can be found in Freedman et al. 2020 [19]. In this study, the number of

kelp forest fish species classified as having warm and cool affinities differed by the data source

used for classification. Differences in temporal and spatial resolution for each data source

likely contributed to the number of species in each classification group and the number left

unclassified due to data gaps.

The number of species left unclassified (e.g., present in the ecosystem but not captured in

the classification data source) was highest (n = 61) for the subtidal diver survey data source.

Recall that we used only two years (2009–2010) of the full SCUBA survey data for the classifi-

cation in part to achieve complete spatial coverage of California, and also to avoid circularity

in using the same data for classification as we are using to test the classification. Thus, 61 spe-

cies were observed in the complete dataset that were not observed in 2009 or 2010. Researchers

wanting to use in situ, field surveys in their composite classifications might have some issues

because long running continuous surveys are uncommon across the world and are rarely con-

ducted across large spatial domains [20]. The other two spatial datasets, museum collections

and range limits, contained data from longer time periods and had fewer species left

unclassified.

Museum collection records have spatial and temporal biases as well that may limit their

effectiveness as a data source to determine thermal affinity when used in isolation. While

Museum collections may encompass very long time periods, effort by collectors likely are

infrequent, inconsistent and may not span the entire range of an individual species. This

means collection events are likely affected by sampling bias and may lead to incorrect classifi-

cations alone. However, incorporating sampling events over a long time period allows classifi-

cations to incorporate historic variability in ecosystem structure.

Data sources can be biased in other ways that users of classification schemes should con-

sider when implementing classification schemes on their data. Caution should be used when

community indices are based on a single source of information as they are potentially error

prone. For example, in the California Current Large Marine Ecosystem, El Niño events cause

pulses of species recruitment northward of their typical ranges [21, 22] where they might

establish but in very low densities; thus, biasing range limits as a data metric. Used alone, this

could cause warm- affiliated species to be mis-classified as eurythermal or cool. In fact, in this

study, range limits had the highest proportion of species classified as cool. Misclassification of

some warm species may also explain why the range limits-based classification method was the

only method that had cool water species increasing in abundance in response to the marine

heat wave. Marine heatwaves, which have occurred locally [23, 24], also could drive warm spe-

cies range expansion and alter classification findings [25]. Using older data prior to the preva-

lence of these phenomena will help establish community change from a relevant baseline in

the Anthropocene.

Given that biases exist are likely to exist in any source of data typically used to classify ther-

mal affinity, using a composite classification scheme is one option to mitigate bias. Using only

species densities is often limited by sampling design and the potential for “double dipping”–

that is, using the same dataset to classify species as to track them. Although we included
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density datasets in our classification and went on to use this classification to assess trends

through time, using additional classification methodology in equal weights and a temporally

limited sample allows us more confidence in testing the scheme on density trends. Including

Expert Opinions into the composite score also allows for potential data biases to be cross-

checked with the understanding of experts in the field. In this study, most species had high

agreement (n = 78) between datasets, however a large number of species (n = 47) had low

agreement between techniques. This means that these 47 species had a high likelihood of being

classified differently depending on which dataset was used. High levels of species misclassifica-

tions would limit the scheme’s utility and could lead to incorrect conclusions about true com-

munity responses to climate change [20, 26, 27]. By using the majority classification across all

datasets, a composite score limits the potential a species is misclassified by spreading misclassi-

fication risk across multiple sources of data.

In our study, the composite classification method resulted in density responses of warm

and cool species that were less extreme compared to single data source techniques and as

expected, did not have any of the maximum or minimum community responses to the marine

heatwave. For most individual data sources, warm water species increased and cool water spe-

cies decreased in response to the marine heatwave [25, 28]; however the magnitude of change

was variable and using only Range Limits as a data source, we found the opposite pattern, that

cool water species increased in abundance. False or inflated extreme responses to acute climate

drivers could cause overcompensation with conservation measures [29–31]. By using the com-

posite classification, there is a risk reduction of lost resource use opportunities, potential unde-

sired ecological outcomes or potentially not intervening quickly enough to limit

environmental impacts.

While we used a composite score based on agreement between four data sources, other

means of averaging could be used as well as differential weighting schemes (we weighted all

four data sources equally). For example, if one data source was deemed of higher ‘quality’ than

another, it could be weighted more highly in the creation of a composite. Here we provide a

simple example of a composite thermal indicator that uses data from multiple sources and that

captured changes in fish communities over a thermal event in our region.

Conclusion

Classification schemes offer a quick, easy to interpret, and functional way to quantify commu-

nity responses to climate change. Commonly used single trend measures, such as Community

Thermal Index (CTI), can mask ecological complexity and make it difficult to make alternate

management decisions for groups that respond differently to climate change [4, 8]. Because

CTI is a single number metric, further analysis will always be warranted, to understand the

actual structural changes driving CTI shifts. By splitting species into groups that likely will

have differential responses to climate drivers, conservation practioners can create finer resolu-

tion conservation measures and attempt to mitigate direct pressures on each group indepen-

dently (Fig 3). In contrast, traditional ecological community analysis metrics (e.g., PCA, CCA,

regression trees) may be too complex for managers to make actionable conservation decisions

as they can create too many groups that may confound responses to drivers of interest or not

be amenable to policy or management actions [11, 17].

There needs to be flexibility to increase, maintain and relax management strategies where

appropriate and single number ecological metrics are not able to provide adequate informa-

tion to inform complex management strategies [32–34]. Managers could mix restoration

efforts [35, 36], species removal [37–39], fisheries management [34], and other management

methods to mitigate changes in ecosystem structure. However, careful thought is required in
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the creation and use of classification schemes to ensure findings are consistent with known

ecological phenomena [8, 17]. Combining sources of data to minimize temporal and spatial

limitations is one way to address potential biases that could potentially misinform important

management decision and lead to unintended outcomes. As managers struggle to keep up

with rapidly increasing temperatures and more frequent marine heat waves, rapid assessment

of local ecology with accurate classification strategies will be valuable to maintain critical eco-

system function and design effective conservation measures.

Supporting information

S1 Fig. A map of the study area and relevant biogeographic boundaries. This map depicts

the biogeographic break of Point Conception (shown in purple) in relation to the study area

(bounded by the red box) where data was collected to assess ecosystem response to the marine

heatwave.

(TIF)

S1 Table. The species classification methods. The classifications of species (n = 152) are

shown below across data sources and their resulting composite classification and agreement

ranking. Species below the second black line are found in the recruitment dataset but not the

Fig 3. Comparisons between CTI and our multi-data source, thermal classification scheme. The single trend line for Community Thermal Index (CTI)

obscures the responses of specific groups of species to environmental drivers challenging management decision-making. The Y-axis on each of these graphs

would represent some indicator of ecosystem change such as density or biomass. Because CTI is a single trend line, it masks the potentially different

contributions of species or species groups to the trend. For example, the three scenarios on the right could all result from the single CTI trend shown on the

left. The additional resolution offered by thermal classification gives managers finer scale information to enact specific actions that either benefit or boost

populations at risk (e.g., decreased fisheries take, restoration action, marine protected) or increase resource use on populations experiencing increases (e.g.,

increased fisheries take, species culling).

https://doi.org/10.1371/journal.pone.0250792.g003
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diver survey data. Blank spaces denote that data was not available to create a classification and

species are unclassified.
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