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Patterns of dispersal behavior are often driven by the composition and configuration of suitable habitat in a matrix of unsuitable habi-
tat. Interactions between animal behavior and landscapes can therefore influence population dynamics, population and species distri-
butions, population genetic structure, and the evolution of behavior. Spatially explicit individual-based models (IBMs) are ideal tools for 
exploring the effects of landscape structure on dispersal. We developed an empirically parameterized IBM in the modeling framework 
SEARCH to simulate dispersal of translocated American martens in Wisconsin. We tested the hypothesis that a time-limited disperser 
should be willing to settle in lower quality habitat over time. To evaluate model performance, we used a pattern-oriented modeling 
approach. Our best model matched all empirical dispersal patterns (e.g., dispersal distance) except time to settlement. This model 
incorporated a required search phase as well as the mechanism for declining habitat selectivity over time, which represents the first 
demonstration of this hypothesis for a vertebrate species. We suggest that temporal plasticity in habitat selectivity allows individuals 
to maximize fitness by making a tradeoff between habitat quality and risk of mortality. Our IBM is pragmatic in that it addresses a man-
agement need for a species of conservation concern. However, our model is also paradigmatic in that we explicitly tested a theory of 
dispersal behavior. Linking these 2 approaches to ecological modeling can further the utility of individual-based modeling and provide 
direction for future theoretical and empirical work on animal behavior.

Key words: habitat specificity, home range, individual-based model IBM, Martes americana, movement ecology, pattern-ori-
ented modeling.

INTRODUCTION
Interactions between landscape-level patterns and animal decision-
making behaviors can regulate important ecological and evolution-
ary processes for both species and communities (Lima and Zollner 
1996). For example, much research has focused on how patterns 
of  animal movement are affected by the composition and con-
figuration of  landscapes (Schick et al. 2008). Animals often adjust 
the speed and/or straightness of  their movement as a result of  
factors such as vegetation type (Roshier et  al. 2008), disturbance 
(Anadón et al. 2012), and patchiness (Johnson et al. 2001). These 
fine-scale effects may ultimately drive major demographic or eco-
logical processes including invasions of  non-native species (Holway 
and Suarez 1999) or spatial and temporal variations in foraging 
behavior (Johnson et  al. 2001; Launchbaugh and Howery 2005). 

Likewise, interactions between animal movement and landscape 
structure can shape the connectivity and distribution of  popula-
tions through dispersal and settlement (Bowler and Benton 2005; 
Burgess et al. 2012).

Animal dispersal comprises a complex series of  events that begin 
with the decision to emigrate from one’s current habitat patch and 
end with immigration to a new settlement patch. Between emigra-
tion and immigration, individuals undergo an exploratory phase 
wherein they travel among habitat patches in search of  a suitable 
home range (Bowler and Benton 2005). Home range selection 
is critical to the long-term survival of  the individual because the 
home range provides essential benefits (e.g., food and cover) that 
ideally outweigh daily maintenance costs (Powell 2000). Dispersal 
behavior is therefore critical to the long-term survival of  the indi-
vidual, and also to the demographic and genetic viability of  the 
population. Benefits of  successful dispersal include inbreeding 
avoidance, increases in individual fitness, range (and resource) 
expansion, and genetic and demographic rescue, among others 
(Bowler and Benton 2005). Given the importance of  dispersal to 
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animal populations, one would expect individuals to employ disper-
sal strategies that maximize their likelihood of  success.

The ability to understand and evaluate the complexities of  ani-
mal dispersal can have important implications for the conservation 
and management of  animal populations. However, describing these 
strategies has proven difficult, likely because animal behavior is 
driven by underlying decision-making processes and latent behav-
ioral states that are more difficult to describe than the behaviors 
themselves (Nathan et al. 2008; Lichti et al. 2017). Classic models 
of  dispersal assumed that individuals would distribute themselves 
according to an Ideal Free Distribution, whereby distribution would 
be directly correlated with resource availability (Fretwell and Calver 
1970; Fretwell 1972). Subsequent work identified additional factors 
that affect the quality and timing of  home range selection includ-
ing natal experience (Mabry and Stamps 2008), body size (Stamps 
1988), and conspecific attraction (Muller et  al. 1997). Such work 
has improved our understanding of  the processes that regulate dis-
persal and home range selection.

Another interaction that has the potential to affect dispersal 
behavior exists between the timing of  home range establishment 
and the quality of  the selected home range. Ward (1987) built on 
the experimental (Knight-Jones 1951, 1953; Wilson 1953) and 
theoretical (Levins 1968; Levins and MacArthur 1969; Jaenike 
1978) work of  others to propose a model of  dispersal whereby 
selectivity in habitat selection declines over time for time-limited 
dispersers (i.e., dispersers with a finite amount of  time to establish 
a home range). Under this model, the probability of  selecting the 
best location for a home range is dependent on the likelihood of  
encountering and accepting similar (or better) habitat in the future. 
A suboptimal location that is initially rejected by the disperser may 
be accepted at a later time once some threshold of  habitat selectiv-
ity is reached. This is in contrast to the null hypothesis that home 
range criteria remain static throughout the dispersal period. Ward’s 
(1987) hypothesis has received support from studies on the foraging, 
oviposition, and dispersal of  larval marine invertebrates and insects 
[e.g., Qian (1999) and Toonen and Pawlik (2001)]. However, the 
hypothesis has not been tested with more behaviorally complex ver-
tebrate species and has not been evaluated within spatially explicit 
frameworks. If  the hypothesis accurately describes dispersal behav-
ior, one would expect that the minimum threshold for what consti-
tutes suitability would be inversely correlated with the amount of  
time required for dispersal.

Given the complexities of  dispersal behavior, modeling the mech-
anisms that drive dispersal patterns can be challenging (Nathan 
2001). Heterogeneity in habitat composition can significantly affect 
movement patterns during dispersal (Schultz and Crone 2001; 
Baguette and Van Dyck 2007), mortality risk and energy reserves 
can interact with habitat distribution to regulate dispersal success 
(Zollner and Lima 1999), and perceptual range can significantly 
affect an animal’s ability to detect suitable home range locations 
(Lima and Zollner 1996). Deliberate exploration behavior may also 
be undertaken prior to and during the dispersal process (Debeffe 
et al. 2013). Long-distance dispersal, a rare yet important compo-
nent of  dispersal behavior, is another factor that can be difficult to 
measure and describe (Trakhtenbrot et al. 2005). Individual-based 
models (IBMs) of  animal dispersal—in which movements are simu-
lated at the scale of  the individual rather than the population—
provide a mechanistic approach for reproducing complex dispersal 
behaviors. Because IBMs use simple, bottom-up rules to govern 
interactions of  the disperser with the landscape and with conspecif-
ics, mechanistic patterns of  dispersal can emerge that are robust 

to alternative scenarios of  landscape structure and resource distri-
bution [e.g., Kramer-Schadt et  al. (2011)]. Given this individual 
approach, IBMs are an ideal tool for capturing individual variation 
in animal movements that produce the complex patterns of  disper-
sal observed in nature (Grimm et al. 2005).

We developed an empirically parameterized IBM of  dispersal 
behavior of  the American marten (Martes americana) in Wisconsin 
and tested the prediction by Ward (1987) that home range habitat 
requirements become less stringent throughout the dispersal period 
(i.e., declining habitat selectivity; Qian 1999). Martens are solitary 
carnivores that, like most weasel species, usually disperse from their 
natal grounds during the first year after birth (Johnson et al. 2009). 
In Wisconsin, their home ranges are associated with increasing 
canopy cover and complex forest structure (McCann et  al. 2014). 
The marten represents an excellent case study for testing predic-
tions of  dispersal behavior, for several reasons. Martens are highly 
vagile and capable of  long-distance dispersal events. They are also 
territorial and have specific habitat requirements, features that cre-
ate unique interactions among dispersers and their environment 
(Powell 1979; Dumyahn et al. 2007). Furthermore, much is known 
about marten dispersal and habitat selection in our study area, as 
they have been the subject of  conservation management programs 
since the 1970s (Wright 1999; Dumyahn et al. 2007; Williams et al. 
2007; McCann et  al. 2014). Despite continued efforts, it is possi-
ble that low survival and recruitment in some areas have resulted 
in a recovery that has been stagnant since the initial reintroduc-
tion of  martens to northern Wisconsin (Woodford et  al. 2005; 
McCann et al. 2010; Manlick et al. 2017). As dispersal and home 
range establishment are closely linked to juvenile survival, tools are 
needed that can be used to evaluate factors that may be influencing 
dispersal, habitat selection, and home range establishment.

Our primary objective was to evaluate alternative mechanisms 
for habitat selection of  translocated martens in Northern Wisconsin. 
Specifically, we evaluated Ward’s hypothesis of  habitat selection for 
its ability to explain patterns of  marten dispersal behavior. We also 
tested whether a required exploratory phase improved the ability of  
our model to match empirical patterns of  marten dispersal. To test 
these hypotheses, we developed an IBM of  fine-scale marten move-
ment with the goal of  accurately simulating broad-scale patterns of  
dispersal behavior.

METHODS
Study system

We simulated the dispersal and home range establishment of  15 
radio-collared martens translocated to the Chequamegon-Nicolet 
National Forest (CNNF) in North Central Wisconsin in 2010 
(Figure 1). These releases were part of  a larger augmentation 
that took place from 2008 to 2010 (Woodford 2010) and were in 
addition to 139 individuals translocated to the western CNNF in 
1987–1990 as well as previous translocations to the eastern CNNF 
after extirpation of  martens from Wisconsin by 1925 (Williams 
et  al. 2007). To calibrate the model, data on mortality, dispersal, 
and home range establishment for the 15 translocated individuals 
were collected using radio-telemetry (Woodford et  al. 2013) and 
compared with simulation results (Table 1).

To define the extent of  the simulation area, we extended mar-
ten release locations by 34 km, representing the upper 95% con-
fidence limit of  marten dispersal distance measured from martens 
released during an earlier translocation to the eastern CNNF (Davis 
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1983). Our resulting study area was 6956 km2 and contained por-
tions of  Ashland, Bayfield, Iron, Price, and Sawyer Counties. This 
area was comprised in large part by the CNNF and included sig-
nificant portions of  county forest, state land, tribal reservations, 
commercial/residential forested land, and urban/residential areas 
(Figure 1). Forests in the translocation areas were predominantly 
northern hardwoods dominated by sugar maple (Acer saccharum), red 
maple (Acer rubrum), and birch (Betula spp.). Stands of  quaking aspen 

(Populus tremuloides) and mixed and conifer stands including balsam 
fir (Abies balsamea), white spruce (Picea glauca), northern white cedar 
(Thuja occidentalis), eastern hemlock (Tsuga canadensis), white pine 
(Pinus strobus), and red pine (Pinus resinosa) were common as well. 
Topography was generally flat, except for where the Gogebic range 
intersected the northwest portion of  the study area, rising in some 
locations over 150 m to reach elevations greater than 570 m above 
sea level.

Release sites County forest

State forest

National forest

Tribal Reservation

Simulation extent

MN

IA

WI

MI

0 5 10 20 30 40
km

Figure 1
Study area in Northern Wisconsin, USA, where we simulated the dispersal of  15 translocated American martens in 2010.

Table 1
Patterns evaluated for calibration of  a model of  American marten dispersal following a translocation in Northern Wisconsin in 2010

Pattern Hierarchical level Weight Observed pattern Pass/Fail Rank-sum TI D2

Dispersal distance mean Individual High 13.9 km x x x x
Dispersal distance SD Population Medium 13.2 km x x x
Days to HR establishment mean Individual Medium 37.3 days x x x x
Days to HR establishment SD Population Medium 10.3 days x x x
Average neighbor distance mean Individual High 26.4 km x x x x
Nearest neighbor distance mean Individual Medium 11.5 km x x x x
Mortality rate Population Low 0.17 x x x
M:F Dispersal distance Population Low M > F x
M:F Days to establishment Population Low M > F x

An “x” in the last 4 columns indicates whether a given pattern was evaluated using that column’s method for pattern-matching analysis. All patterns were 
derived from empirical data from translocated martens in Northern Wisconsin. Hierarchical level indicates whether the pattern was averaged across individuals 
or was a characteristic of  the population. Weight indicates the importance of  each pattern as assigned by the authors. Pass/Fail represents a binary matching 
criterion and assigned points to a model based on whether a given pattern was successfully matched. Rank-sum ranked each model according to its ability 
to match each pattern and then summed the resulting ranks. TI (Total Indicator) ranked models based on their root mean square deviation from empirical 
patterns. D2 (Mahalanobis distance) ranked models based on a multivariate measure that accounts for covariance among patterns.
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Model description

To simulate the dispersal and home range establishment of  trans-
located martens, we combined a habitat suitability model (Wright 
1999, Dumyahn et  al. 2007) with an IBM of  animal dispersal 
[e.g., Kramer-Schadt et al. (2011) and Kanagaraj et al. (2013)] in 
the modeling framework Spatially Explicit Animal Response to 
Composition of  Habitat (SEARCH; Pauli et  al. 2013; Mutascio 
et  al. 2017). In SEARCH, solitary dispersers move across a spa-
tially explicit landscape, querying four independent, vector-based 
spatial layers that govern the following sets of  parameters during 
each time step: food availability, predation risk, movement, and 
habitat suitability/sociality (see Supplementary Appendix S1 for a 
schematic of  model processes). Each of  these sets of  parameters 
may vary both spatially and temporally. For example, food avail-
ability may vary spatially by vegetation type, but can also vary 
daily, seasonally, or annually. Dispersers navigate their environ-
ment while locating prey, minimizing predation risk, and search-
ing for suitable habitat that is unoccupied by a conspecific of  the 
same sex (Supplementary Appendix S1). When an area of  con-
tiguous suitable habitat ≥ 10% of  the minimum home range size 
is encountered, the location is added to a list of  potentially suitable 
locations stored in the individual’s memory. When the individual 
decides to attempt home range establishment, it sorts the existing 
list of  stored locations based on a combination of  factors including 
food availability, predation risk, and proximity to present location. 
The disperser then travels to the top-ranked site and attempts to 
establish a home range. If  the amount of  available (i.e., unoccu-
pied) suitable habitat at that site is inadequate to support a home 
range, the individual either continues searching or reevaluates 
the list of  sites and orients toward the new top priority. This pro-
cess continues until the individual successfully establishes a home 
range, dies from predation or starvation, or dies at the end of  the 
dispersal season (Supplementary Appendix S1).

In our application of  SEARCH, we simulated a 60-day disper-
sal period divided into 5760 time steps of  15  min each. Martens 
actively dispersed for an average of  9.1 h per day (SD = 0.7), val-
ues that corresponded to activity periods in the fall in the same 
study area (Gilbert et  al. 2009). Release locations and sex of  the 
15 dispersers were chosen based on actual marten releases in 
2010. Except where noted, all other parameterizations were 
derived from data collected from a separate release of  martens 
that were equipped with radio-collars in 2009. This allowed us 
to maintain independence between data used for parameterizing 
model agents and data used for calibration and pattern-matching. 
Parameterization of  the 4 spatial layers (described below) followed 
methods used by McCann (2011).

Spatial layers: habitat suitability

We defined habitat suitability according to the habitat model 
described by Wright (1999) and implemented this model in 
SEARCH as a binary layer of  suitable/unsuitable habitat. Previous 
work in our study area demonstrated that at least 70% of  mar-
ten home ranges were composed of  preferred or neutral (i.e., 
nonavoided) habitat types (Bissonette et  al. 1997; Wright 1999; 
Dumyahn et  al. 2007). According to our habitat model (Wright 
1999), suitability was dependent on both cover type (i.e., primary 
forest type) and size of  the trees (i.e., Diameter at Breast Height) 
in each stand (Wright 1999). To determine cover type and tree size 
for public lands on our study area, we retrieved all available stand-
level data within the simulation extent from the Wisconsin Forest 

Inventory and Reporting System (WisFIRS), the CNNF, and the 
Bad River Band of  the Lake Superior Chippewa Tribe. These data 
included both the primary cover type (e.g., northern hardwood, 
lowland conifer, and upland conifer) and size of  the trees in the 
stand. We then classified each of  these stands as preferred, neutral, 
or avoided habitat types based on Wright’s (1999) classification. 
Preferred and neutral stands (i.e., nonavoided stands) received a 
suitability value of  1, whereas avoided habitat types received a suit-
ability value of  0. For the proportion of  the landscape for which we 
lacked stand data (48.8%), we used the remotely sensed Wisconsin 
Land Cover Data set (Wiscland) Level III. These data provided 
cover type but not tree size data. Because habitat suitability varied 
with tree size, we assigned habitat suitability values relative to the 
proportions of  the corresponding stand-level data that were con-
sidered nonavoided. For example, 17% of  aspen on public lands 
were nonavoided cover types (i.e., saw log class); therefore, pixels 
with the aspen cover type from the Wiscland data received a suit-
ability value of  0.17. After assigning suitability values, we used the 
Focal Statistics tool in ArcGIS 10.3 (Esri, Redlands, CA) to iden-
tify pixels where 70% of  the surrounding area in a 1 km2 buffer 
represented nonavoided cover types. To test Ward’s hypothesis of  
declining habitat selectivity over time, we adjusted the 70% value to 
represent varying degrees of  habitat suitability as perceived by dis-
persing martens. The resulting rasters were then converted to vec-
tor as binary habitat suitability layers in order to be implemented in 
SEARCH (Figure 2).

Because martens are territorial, the spatial distribution of  
resident martens can influence dispersal behavior. We created a 
resident population of  martens with home ranges using a combi-
nation of  known and simulated resident locations. First, we popu-
lated an unoccupied landscape with 22 known home ranges based 
on 100% minimum convex polygons (JH Gilbert unpublished 
data; Dumyahn et al. 2007). To populate the rest of  the landscape 
with resident home ranges, we simulated the release and home 
range establishment of  an additional 78 martens based on a pre-
translocation population estimate of  100 martens for the study 
area (Figure 2; Gilbert JH, unpublished data). Release locations 
for these simulated residents were distributed randomly through-
out suitable habitat and individuals were allowed to establish a 
home range immediately upon release. We conducted these ran-
domized establishment runs for each alternative model of  habitat 
suitability.

Spatial layers: movement

Inputs that informed the movement layer included distance moved 
per time step (mean step length, MSL), average turning angle per 
time step (expressed as mean vector length, MVL; Benhamou, 
2004), perceptual range, and probability of  crossing between veg-
etation types. We calculated MSL and MVL for each cover type 
by snow-trailing martens on the study area during winters 2008–
2009 and 2009–2010 [see McCann et  al. (2014) for a full treat-
ment of  these data]. These values differed by cover type and by sex 
(Moriarty et al. 2016). Females averaged shorter MSL and sharper 
turning angles than males, and we calculated the female:male ratios 
to be 0.9:1 for MSL and 0.97:1 for MVL. We set perceptual dis-
tance at 100 m for all cover types (Gardner and Gustafson 2004). 
We assumed that dispersing martens crossed freely between forested 
cover types, but rarely (with a 1% probability) crossed into unfor-
ested cover types (e.g., clearcuts, lakes, and urban areas; Chapin 
et al. 1998; Hargis et al. 1999; Moriarty et al. 2016).
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Spatial layers: food availability

Inputs that informed the food availability layer included probability 
of  prey capture and mean (±SD) energy acquired given a successful 
predation event. Each of  these parameters varied spatially accord-
ing to the cover type occupied by the disperser in each time step. 
This layer affected dispersal because failure to locate prey over time 
could result in starvation and thus a failed dispersal attempt. Food 
availability was also considered when a marten was selecting among 
multiple potential home range locations. We calculated probability 
of  prey capture and species of  prey acquisition from the previously 
described snow-trailing data (McCann et  al. 2014). Mean energy 
acquired (kJ) from a predation event was derived from estimates 
reported by Cumberland et al. (2001). Martens began each simula-
tion with an initial energy reserve of  5491 kJ, calculated by multi-
plying the average mass of  a marten by the average fraction of  a 
marten composed of  fat (Gilbert et  al. 2009). Martens expended 
10.5 kJ of  energy per time step (1006 kJ/day; Gilbert et al. 2009). 
Individuals died from starvation after energy reserves reached 0 kJ.

Spatial layers: predation risk

The predation risk layer also varied spatially by cover type. The 
only parameter associated with the predation risk layer was prob-
ability of  mortality due to predation. We calculated this probabil-
ity per time step based on mortality data collected from an earlier 
translocation during which martens were monitored for an aver-
age of  70  days on the CNNF (Davis 1983). We allocated risk to 
each cover type based on indices of  relative abundance of  the pri-
mary predators of  martens (i.e., fishers [Pekania pennanti] and owls; 
McCann et  al. 2010). We calculated these indices based on the 
presence of  fisher tracks (McCann et  al. 2014) and relevant owl 

calls (PAZ, unpublished data) in each cover type. We distributed 
unknown causes of  mortality equally across all cover types.

Study design

To test our hypotheses of  marten habitat selection, we implemented 
3 rounds of  the modeling cycle (Grimm and Railsback 2005), build-
ing additional complexity into the model after each round (Table 
2). First, we tested 3 alternate versions of  a static habitat suitability 
map using a 50%, 60%, and 70% nonavoided habitat type crite-
rion for home range establishment (see Spatial layers: habitat suit-
ability and Figure 2; Table 2). In these scenarios, martens were 
allowed to establish a home range immediately, with no required 
exploratory period (Static scenarios). Second, we tested these same 
scenarios but required individuals to undergo an “exploration 
phase” of  2 weeks prior to attempting home range establishment 
(Delay scenarios; Debeffe et  al. 2013). We chose 2 weeks because 
that matched the minimum time to home range establishment 
from our empirical data set (Figure 3). Third, we implemented a 
dynamic rule for habitat suitability following Ward’s hypothesis, 
in which the selectivity criterion for habitat selection was relaxed 
over time (Dynamic scenarios). Using this dynamic model of  habi-
tat suitability, we tested 2 progressions of  the selectivity threshold 
for nonavoided habitat types: (70% to 60% to 50%) and (80% to 
70% to 60%; Figure 2; Table 2). In each of  these 2 scenarios, the 3 
separate home range criteria rules were distributed in equal periods 
throughout the 60-day dispersal period (i.e., 80% rule for 20 days 
and then 70% rule for 20 days). For the latter progression, we also 
tested 2 alternative timing scenarios: one in which the timing for 
changing habitat suitability maps started immediately, and one in 
which timing initiation was delayed until after the 2-week explora-
tion phase (Table 2).

0 5 10 20 30 40
km

Unsuitable Suitable

(a) (b) (c)

Figure 2
Examples of  alternative rules used for habitat suitability in SEARCH modeling of  American marten dispersal in Northern Wisconsin. Panels illustrate the 
dynamic progression of  habitat selectivity over time from the 70% (a), to the 60% (b), and to the 50% (c) threshold rules. Percentages represent the proportion 
of  an area around a pixel in the cover type data that must be represented by nonavoided cover types to be classified as suitable. Therefore, as the percentage 
decreases over time, martens perceive an increasing proportion of  the landscape as suitable and habitat selectivity declines.
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Table 2
Primary model scenarios tested for their ability to reproduce patterns of  dispersal behavior in American martens

Scenario Habitat selectivity Percent rule Exploration phase? Dynamic habitat timing

Static 50 Static 50 No NA
Static 60 Static 60 No NA
Static 70 Static 70 No NA
Static 50 Static 50 Yes NA
Static 60 Static 60 Yes NA
Static 70 Static 70 Yes NA
Dynamic 70 Dynamic 70, 60, 50 Yes Immediate
Dynamic 80 (1) Dynamic 80, 70, 60 Yes Immediate
Dynamic 80 (2) Dynamic 80, 70, 60 Yes Delayed

Percent rules indicate the percentage of  habitat in an area required to be a non-avoided cover type in order to be suitable for home range establishment. Higher 
percentages represent higher selectivity by dispersing martens. Where multiple percentages are listed, this indicates that a dynamic percent rule was used, 
allowing for habitat selectivity to decline over time. Exploration phase indicates whether martens were required to search for suitable habitat for 2 weeks prior to 
attempting to establish a home range. Dynamic habitat timing indicates whether the timing of  dynamic habitat selectivity was implemented at the start of  the 
simulation (immediate) or following the exploration phase (delayed). Each of  these scenarios was replicated 5 times for each of  3 potential movement rates of  
10, 20, or 30 bounds per minute.
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Figure 3
Performance of  the best-performing model scenario from each presented configuration based on the ability to match empirical patterns of  dispersal by 15 
martens translocated to Northern Wisconsin in 2010. Asterisks denote the top performing model overall. Patterns matched that are displayed here include 
(a) dispersal distance mean and SD, (b) time to home range establishment mean and SD, (c) mean average neighbor distance, and (d) mean nearest neighbor 
distance. Dashed lines represent empirical means, whereas dashed–dotted lines represent empirical means with one outlier removed (time to home range 
establishment had no outlier). Means and standard deviations from actual martens with and without a single outlier included are represented by hollow 
bars. For model simulations, the mean of  means and mean standard deviations across 5 replicates are presented. Static and Delay scenarios incorporated a 
single habitat suitability map with the 50%, 60%, or 70% habitat suitability rule. Delay represents an imposed 2-week exploratory phase prior to settlement. 
Dynamic scenarios incorporated the 2-week delay as well as a progression of  habitat suitability maps over time ([70%, 60%, 50% rules] or [80%, 70%, 60% 
rules]) to represent a decline in habitat selectivity by the disperser. Bound rates are not displayed here because only the overall best performing bound rate for 
each scenario is presented.
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For each of  the 9 scenarios described above (Table 2), we con-
ducted 5 replicates. For each set of  replicates, we also tested 3 
alternate values for mean rate of  movement (MSL) since it was 
impossible to derive speed of  movement from snow-trailing data. 
This technique, whereby we derived an unknown parameter 
through model calibration, is known as inverse modeling (Wiegand 
et  al. 2003). We selected 3 distances for MSL that corresponded 
to an average of  10, 20, or 30 bounds per minute for each sex 
(McCann et al. 2017). In total, we ran 27 sets of  simulations com-
prising 9 alternative home range establishment criteria crossed with 
3 alternative values for MSL (Table 2).

Data analysis

We used a pattern-oriented modeling approach to evaluate model 
calibration success (Wiegand 2003; Grimm et al. 2005; Grimm and 
Railsback 2011). Pattern-oriented modeling requires the identifica-
tion of  a number of  observed patterns usually derived from empiri-
cal data that are then used collectively as a benchmark to assess 
model performance. As alternative hypotheses and mechanisms 
are tested within the IBM, they can each be retained or rejected 
until a model is identified that successfully matches the selected pat-
terns. This pattern-oriented approach can also be used to calibrate 
specific uncertain parameters by selecting the parameter values 
that result in the best model performance (i.e., inverse modeling; 
Wiegand et al. 2003; Grimm and Railsback 2011). Since complex 
systems can rarely be described by a single pattern (Grimm et  al. 
2005), matching multiple patterns increases the likelihood that the 
model is reproducing the bottom-up (i.e., individual-based) mech-
anisms driving the system—each pattern acting to filter out poor 
models and ensure that the best performing model is selected.

We analyzed data collected from translocated individuals that 
were radio-collared and radio-tracked during dispersal (Woodford 
et  al. 2013) and identified 9 empirical patterns to match as a 
result of  our analysis (Table 1). Seven patterns were matched to 
an empirical estimate and the other 2 (male to female ratios of  

dispersal distance and time) were evaluated based on a binary 
matching criterion (Table 1). Because pattern-matching meth-
ods vary widely across studies, we used multiple pattern-matching 
methods to evaluate which simulation scenarios matched empiri-
cal patterns, including pass/fail, weighted pass/fail, rank-sum, 
weighted rank-sum, Total Indicator (TI) based on root mean square 
deviation, and a multivariate measure (Mahalanobis Distance, D2). 
Using multiple methods allowed us to assess the level of  corrobora-
tion for our model selection across a variety of  methods used in the 
pattern-oriented modeling literature, and to assess the effect of  the 
selection of  a pattern-matching method on model selection results. 
To select the best model scenario, we ranked all model scenarios 
according to each ranking method and summed their totals (Table 
3; Supplementary Appendix S2). Not all patterns could be evalu-
ated by each pattern-matching method (Table 1).

We used the pass/fail method to assign points to each simulation 
scenario based on its ability to match (i.e., pass) each of  the 9 pat-
terns. Matching criteria for the numerical patterns were based on 
1.96 times the standard error of  the mean value from empirical data, 
as 95% of  population means should fall within that range (i.e., 95% 
confidence interval; Bauduin et  al. 2016). We could not calculate 
empirical standard errors for population-level patterns (i.e., mortality, 
days to home range establishment SD, and dispersal distance SD); 
therefore, we bootstrapped empirical data using the “asbio” package 
in R to estimate 95% confidence intervals and compare with simula-
tion results (Aho 2016; R Core Team 2017). To penalize models that 
failed to represent differences in dispersal behavior between males 
and females, we included 2 patterns associated with timing of  and 
distance to home range establishment by sex. To match these pat-
terns of  males dispersing farther and taking more time to settle than 
females, all 5 replicates of  a scenario/bound combination had to 
reproduce the pattern. After all patterns were evaluated, we ranked 
models based on the number of  patterns matched out of  9. We used 
the same process for the weighted pass/fail method, except that 
we assigned an importance value of  low, medium, or high to each 
pattern, corresponding with a score of  1, 2, or 3 points (Table 1; 

Table 3
A subset of  model ranking results from pattern-oriented modeling

Model rankings

Scenario
Bounds/  
Minute

Exploration  
Phase Rank-sum

Weighted  
Rank-sum Pass/Fail

Weighted  
Pass/Fail

Mahalanobis  
(D2)

Total  
Indicator Sum

Dynamic 80 (2) 30 Yes 1 1 1 1 4 1 9
Dynamic 80 (1) 30 Yes 2 2 1 1 5 2 13
Dynamic 80 (2) 20 Yes 3 3 3 3 2 3 17
Dynamic 80 (1) 20 Yes 7 9 3 4 6 4 33
Delay 70 30 Yes 5 4 7 4 10 8 38
Delay 70 10 Yes 5 6 7 8 7 7 40
Delay 60 30 Yes 4 5 7 6 12 10 44
Dynamic 80 (2) 10 Yes 12 14 5 13 1 6 51
Static 70 30 No 9 10 5 8 16 11 59
Dynamic 80 (1) 10 Yes 16 16 7 3 3 5 62

Model scenarios shown here were selected as a top 5 model by at least one of  the pattern-matching methods. The exploration phase column indicates 
implementation of  a 2-week exploratory threshold preventing individuals from settling. The Percent Rule column indicates the proportion of  the area around 
a cover-type pixel that must be nonavoided to be considered suitable, whether that proportion was static or dynamic (Ward’s prediction) during the simulation, 
and whether onset of  dynamic habitat map swapping was delayed (2) or not (1). Rank-sum ranked each model according to its ability to match each pattern 
and then summed the resulting ranks. Pass/Fail represents a binary matching criterion and assigned points to a model based on whether a given pattern was 
successfully matched. TI (Total Indicator) ranked models based on their root mean square deviation from empirical patterns. D2 (Mahalanobis distance) ranked 
models based on a multivariate measure that accounts for covariance among patterns. The Sum column indicates the rank-sum for each model across ranking 
methods. See Supplementary Appendix S1 for full list of  model rankings.
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Stenglein et al. 2015). After evaluating the models for each pattern, 
we assigned scores corresponding to the pattern’s importance value 
which we then summed across all patterns.

Here we describe 4 additional methods used to rank model 
performance based on pattern-matching. We used the rank-sum 
method to rank the performance of  each of  the 27 model scenarios 
based on their accuracy in reproducing observed patterns (Table 1). 
We assigned each model scenario a ranking for each of  the 7 nonbi-
nary patterns and then summed those rankings across all patterns. 
The weighted rank-sum method was the same as the nonweighted 
rank-sum method, except we weighted the model rankings using 
the same weighting system as described for the weighted pass/
fail method (Table 1). The Total Indicator (TI; Piou et  al. 2007; 
Semeniuk et  al. 2012) measure was also used to rank model per-
formance. We calculated this metric by calculating the root mean 
square deviation (RMSD) for each pattern,

RMSD =

√∑Nrep

r=1 (Obs − Sim)2

Nrep
 (1)

where r is the replicate, Nrep is the number of  replicates, Obs is the 
observed mean of  a given pattern, and Sim is the simulated mean 
of  the same pattern. We then calculated the TI for each model sce-
nario by summing the ratio of  each RMSD to the RMSD of  the 
best performing scenario for a given pattern,

TI =
n∑

p=1

RMSDp

RMSDbest
 (2)

where p represents a given pattern and n is the total number of  pat-
terns evaluated. Finally, we calculated the mean Mahalanobis dis-
tance (D2; Mahalanobis 1936) across replicates between each model 
scenario and observed data using the pooled covariance matrix (S; 
Legendre and Legendre 2012),

D2 = dobs,sim · S−1 · d ′obs,sim
Here d represents the vector of  differences between the means of  
the observed and simulated data for each pattern. Unlike the other 
approaches used, this approach accounts for covariance among 
patterns. Because D2 uses the covariance matrix, only patterns 
recorded at the scale of  the individual could be evaluated using this 
metric (Table 1). We ranked models based on D2 in ascending order.

After pattern-matching and calibration were complete and we 
had selected our best model, we evaluated that model for its ability 
to reproduce the general distribution of  dispersal distance kernels 
(kd(r); Nathan et  al. 2012). This was important because this was a 
pattern that we selected to be independent of  the calibration pro-
cess. Thus, if  our best model produced a classic dispersal distance 
distribution, this would provide independent evidence that our 
model was producing realistic dispersal behavior. For martens and 
across most taxa, dispersal distance kernels are generally leptokurtic 
(more concentrated around the mean than a normal distribution) 
and fat-tailed (i.e., positively skewed) due to occasional long-distance 
dispersal events (Broquet et al. 2006; Nathan et al. 2012). We evalu-
ated our model results for these characteristics by fitting simulated 
dispersal distances across all replicates from our top model to a 
Weibull distribution using a maximum likelihood estimator (Paradis 
et  al. 2002). We then conducted the Anderson–Darling Goodness-
of-Fit test to measure how well our simulated dispersal distance 
distribution matched the Weibull distribution. We selected the 
Anderson–Darling statistic because it gives equal weight to the tails 
and main body of  the distribution (D’Agostino and Stephens 1986).

RESULTS
We completed 135 simulation runs of  15 dispersing martens each. 
Of  the 9 combinations of  home range establishment rules we eval-
uated, the scenario that included the 2-week delay to home range 
establishment (i.e., required exploratory phase) and temporally 
dynamic habitat selectivity (i.e., Ward’s hypothesis) was consistently 
the top-ranked model across all methods used to evaluate pattern-
matching (Table 3). The longer delay in timing of  changing the hab-
itat suitability maps (Dynamic 80 (2)) also matched patterns better 
than the scenario with no delay (Dynamic 80 (1); Table 3). All 6 pat-
tern-matching methods consistently selected the 2-week exploration 
phase prior to settlement over the same scenarios with no required 
exploration phase. For bounds per minute of  20 and 30, the dynamic 
habitat selectivity scenarios performed best (Table 3). However, for 
10 bounds per minute, the 70% static habitat scenario performed 
best (Table 3), although rates of  failure to establish a home range 
were highest under this scenario. Across both dynamic and static 
habitat selectivity rules, the scenarios with higher habitat selectivity 
(i.e., more selective martens) matched patterns better than the sce-
narios with lower habitat selectivity (e.g., 80%, 70%, and 60% rules 
over the same scenarios with 70%, 60%, and 50% rules; Table 3).

Our best-performing model matched 7 of  9 pass/fail patterns, 
failing to match mean time to home range establishment (Figure 3) 
and male > female time to settlement (4 of  5 replicates reproduced 
this pattern). Mean dispersal distance of  actual martens (13.9  ± 
13.3 km) was 3.8 km greater than simulated martens (10.1  ± 7.1 
km), and mean time to establishment of  actual martens (37.3  ± 
10.3  days) was 17.7  days greater than simulated martens (19.6  ± 
8.0  days). One long-distance dispersal outlier (>2 standard devia-
tions from the mean) from the actual martens dispersed 46.7 km, 
and pattern-matching greatly improved with this outlier removed 
from the empirical data set (Figure 3). Although our simulations 
did not produce any dispersal distances greater than 46.7 km, we 
did record simulated long-distance dispersal events up to 36.6 km 
(Figure 4). Based on the pass/fail criteria, mean time to establish-
ment was the only pattern not matched by any model scenario. 
The dispersal distances produced by our model also fit the Weibull 
distribution (A2 = 0.40, P = 0.84), indicating that the dispersal dis-
tance kernel resulting from simulations was both leptokurtic and 
fat-tailed (Figure 4).

Results from inverse modeling indicated that actual dispersing 
translocated martens were more likely to move an average of  30 
bounds per minute than 10 or 20 bounds per minute in our study 
area (Figure 5). All pattern-matching methods except D2 selected 
30-bound simulations as the 2 best performing model scenarios 
(Table 1). D2 was more likely to select 10-bound simulations as its 
top performing model scenarios.

DISCUSSION
We found support for the hypothesis proposed by Ward (1987) 
that—for a time-limited disperser—the criteria for what constitutes 
suitable habitat (habitat selectivity) would become less stringent 
over the course of  the dispersal period (Singer et  al. 1992; Qian 
1999; Withers 1999; Toonen and Pawlik 2001; Elkin and Marshall 
2007). To the best of  our knowledge, this is the first support for 
this hypothesis for a behaviorally complex vertebrate. Without 
this mechanism of  dynamic habitat selectivity included, simula-
tions performed poorly at matching empirical patterns of  disper-
sal. For example, when testing static maps with relaxed habitat 
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requirements (i.e., low selectivity), dispersal distances and dispersal 
times were much shorter than for actual martens. On static maps 
with high selectivity, dispersers exhibited an unrealistic rate of  fail-
ure to settle prior to the end of  the dispersal period. Thus, allowing 
individuals to be temporally plastic in their perception of  habitat 
suitability resulted in simulations that best matched empirical data. 
This mechanism may allow dispersing martens to maximize fit-
ness by undergoing a tradeoff between habitat quality and risk of  
mortality. Matching empirical patterns also required an imposed 
2-week exploratory phase prior to home range establishment. We 
note here that our support for these hypotheses is based primarily 
on simulation work, and that additional field work to test our con-
clusions is an important avenue for further research.

Disperser fitness is directly correlated with home range quality 
(Powell 2000). Because we concluded that home range selectivity is 
a function of  dispersal time, dispersal time may also be an impor-
tant indicator of  fitness. Others have explored how the timing of  
home range establishment is affected by factors such as search costs 
(e.g., mortality risk), body condition, and time available for search 

(Stamps 2006; Bonte et al. 2012; Travis et al. 2012). Stamps et al. 
(2005) concluded that longer search times should be accompanied 
by higher selectivity rather than lower. For example, an individual 
with more energy reserves should be able to search longer, and thus 
be more selective. Our simulated martens were not parameterized 
to respond to increased risk of  mortality, began dispersing with 
equal energy reserves, and were time-limited, so we were unable 
to test for these effects. Nonetheless, these questions represent addi-
tional areas for future empirical and simulation work in the context 
of  Ward’s hypothesis.

Our results suggest that time-limited dispersers experience a 
tradeoff between habitat quality and risk of  mortality. This result 
may have important implications for the conservation of  martens 
and other solitary dispersers. Martens disperse in the fall and are 
time-limited because they face starvation and increased exposure 
to weather and predators if  they are unable to locate a home range 
with suitable resources prior to the onset of  winter (Bull and Heater 
2001; Johnson et al. 2009). Our results suggest that in poor habi-
tat conditions, martens will disperse farther and for longer periods, 
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Figure 4
A histogram of  dispersal distances across 5 replicates of  our top-performing model of  American marten dispersal. These data are fitted to a Weibull dispersal 
distance kernel plotted as the probability density function of  the distribution of  distances traveled by dispersing martens away from their release location.
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ultimately settling for a tradeoff between habitat quality and risk 
of  mortality. Johnson et  al. (2009) demonstrated that as natal dis-
persal distance of  martens increased, mortality risk also increased. 
This effect was increased for martens dispersing through poor 
habitat and may be further amplified for translocated martens that 
are unfamiliar with the local environment and the conditions that 
maximize fitness (Stamps and Swaisgood 2007). This phenomenon 
may provide some explanation as to why carnivore reintroduction 
programs have often been unsuccessful (Breitenmoser et al. 2001), 
since individuals released into inadequate or unfamiliar habitat may 
have longer search times and are thus subject to greater mortality 
risk (Stamps and Swaisgood 2007). Such factors should be taken 
into consideration when planning reintroductions or translocations 
(Seddon et al. 2007; Pérez et al., 2012).

Overall, our IBM succeeded in reproducing empirical patterns of  
marten dispersal. In addition to the patterns matched during model 
calibration, we also tested our output for its ability to reproduce a 
classic distribution of  dispersal distances (Figure 4). It was important 
to conduct this test after model calibration was complete, because it 
provided independent verification that our IBM accurately repre-
sented the fine-scale mechanisms driving patterns of  marten disper-
sal (Martin et al. 2013). Some deviations from empirical patterns may 
be attributed to the low frequency of  long-distance dispersal events 
during simulations. Long-distance dispersal can play an important 
role in a variety of  eco-evolutionary processes including population 
expansion, population connectivity, gene flow, and response to distur-
bance (Nathan et al. 2012), so it is important to capture long-distance 
dispersal events. Our simulations did produce long-distance dispersal 
events (Figure 4) but not at the frequency or distance exhibited by the 
actual marten population, which may be due to the finite simulation 
extent. After removing 1 outlier, discrepancies between empirical and 
simulated patterns were greatly reduced (Figure 3), since it is likely 
that our small sample of  actual marten dispersal distances overrep-
resented the effect of  long-distance dispersal in the empirical data.

The pattern that our models deviated from most was mean time 
to home range establishment, as simulations resulted in shorter dis-
persal times than the empirical data. Model output did match the 
standard deviation of  time to home range establishment, however. 
For management purposes, we were more interested in reproduc-
ing spatial patterns of  dispersal, since spatial patterns have greater 
implications for population connectivity, gene flow, and conserva-
tion. However, this result also demonstrates that our model may not 
capture all the fine-scale mechanisms required to accurately repro-
duce marten dispersal behavior. It is also possible that subjectiv-
ity in the analysis of  timing of  home range establishment affected 
pattern-matching, as criteria used to define establishment can vary 
widely in reporting the amount of  time individuals explore prior to 
settlement (McCann 2011; Woodford et al. 2013).

Although pattern-oriented modeling has become standard for 
the evaluation of  ecological IBMs, we demonstrate a need for 
careful selection of  one’s methods for assessing pattern-matching, 
as methods vary widely across studies [e.g., Stenglein et al. (2015), 
Bauduin et  al. (2016), and Chudzinska et  al. (2016)]. Ultimately, 
individual-based ecology may benefit from an algorithmic frame-
work by which one would select the appropriate method(s) to 
assess a model’s ability to match empirical patterns (Grimm and 
Railsback 2011). In our case, we used 6 different techniques (e.g., 
rank sum and root mean square deviation) to evaluate matching 
because a consensus across alternative methodologies would pro-
vide additional support for the best model. We did identify a con-
sensus in model selection across all 6 methods in terms of  habitat 

selection rules, but the pass/fail methods were less discriminatory 
than other methods and assigning weights to patterns did not 
affect the top 3 model rankings (Table 3; Figure 3). In addition, 
Mahalanobis Distance (D2) selected a different bound rate from all 
other methods (though D2 could only evaluate 4 of  9 patterns). This 
result likely occurred because D2 inherently accounts for covariance 
among patterns (Mahalanobis 1936), and therefore, uncorrelated 
patterns carry relatively more weight. In our model, the time to 
home range establishment pattern was the least correlated with all 
other patterns, and lower bound rates led to longer and more accu-
rate dispersal times. Time to home range establishment was also 
the one pattern our models failed to match, giving greater weight 
to better performing scenarios. D2 and other multivariate statistics 
may be quite useful in pattern-matching analyses, particularly when 
researchers want to control for covariance and maintain indepen-
dence among patterns. In our case, we deliberately chose patterns 
that were likely to be somewhat correlated to give more weight to 
the spatial rather than the temporal component of  dispersal behav-
ior. Ultimately, the rank-sum and RMSD methods were the most 
informative for selecting our best model. Thus, careful consider-
ation of  factors such as the study’s objectives and the format of  the 
data should be incorporated into the selection of  one’s methods for 
assessing pattern-matching.

In addition to pattern-oriented model selection, we used inverse 
modeling (i.e., indirect parameterization) to determine that dispers-
ing martens were more likely to move an average of  30 bounds per 
minute than 10 or 20 bounds per minute (Figure 5). Because our 
movement data were collected while following marten snow tracks, 
they lacked a fine-scale temporal component, and therefore, mean 
step length was an unknown parameter in the model. However, all 
of  our competing model scenarios and pattern-matching analyses 
except D2 agreed that the 30-bound version of  the model produced 
the most accurate dispersal patterns. This result aligns well with 
observed movement rates of  a closely related species of  marten in 
North America (Moriarty et  al. 2016; Moriarty et  al. 2017). The 
use of  pattern-matching to calibrate unknown parameters is often 
used on a suite of  parameters simultaneously [e.g., Kanagaraj et al. 
(2013)] and is used less often to target a single unknown parameter 
[e.g., Rossmanith et  al. (2007)]. We demonstrate here that when 
an abundance of  empirical data is available for parameterization 
[e.g., Dumyahn et al. 2007, Gilbert et al. 2009, and McCann et al. 
(2010)], inverse modeling can be used effectively to derive infor-
mation about uncertain or unknown parameters related to demo-
graphics or behavior (Wiegand et al. 2003).

Our study highlights the power of  spatially explicit IBMs to both 
reproduce empirical patterns and test specific behavioral hypoth-
eses. In our case, we were able to use parameters assigned at a very 
fine scale (e.g., 15-min time steps) to reproduce patterns at a much 
larger scale. Such IBMs have been commonly used in both prag-
matic (i.e., associated with management goals) and paradigmatic 
(i.e., associated with underlying theory) contexts (Grimm 1999; 
DeAngelis and Grimm 2014). Although our model is essentially 
pragmatic because it addresses a management need for an endan-
gered carnivore, it is paradigmatic in that it explicitly tests a theory 
of  animal behavior. In an early review of  ecological IBMs, Grimm 
(1999) called for an increased focus on theory in individual-based 
ecology, and we add to that call the need for pragmatic models to 
test ecological theory produced by both IBMs and traditional eco-
logical models. In this way, pragmatic IBMs can maintain their role 
as important tools for the management and conservation of  wild-
life populations (McLane et al. 2011; Wood et al. 2015; Aben et al. 
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2016), while simultaneously advancing underlying ecological theory 
(Railsback and Harvey 2002).

Our application of  the SEARCH modeling framework can be 
used in a number of  future applications. For example, future work 
may include pragmatic questions associated with the response 
of  martens to land-use and climate change and to explore the 
role of  long-distance dispersal events in population connectivity. 
Paradigmatic applications may include the effects of  energy reserves 
and deferred costs on dispersal patterns, which could have impor-
tant implications for marten populations. Ultimately, researchers do 
not have to choose whether their IBM application will be entirely 
pragmatic or paradigmatic, but should take advantage of  opportu-
nities to address questions of  both management and theory in their 
use of  IBMs in ecology.
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