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Intermittent outbreaks of global pandemic disease have spurred new sensors and
medicines development for the prevention of disease spread. This perspective
specifically covers recent advances, challenges, and future directions in virus-mimetic
polymeric nanostructures and their application in biological medicines with a special
emphasis on subunit vaccine development. With tailorable compositions and properties,
polymers facilitate the ingenious design of various polymeric nanostructures. As one type
of polymeric nanostructures, virus-mimetic polymeric nanostructures have been
developed as an attractive platform for enhanced immune responses, since they
combine the merits of polymer nanocores with the biomimetic characteristic of virus
which displays multivalent epitopes on their surfaces. This perspective also provides an
applicative approach to rationally design virus-mimetic polymeric platforms based on
nanostructures that are self-assembled by using polymers as templates and the antigens
and metal oxide clusters loaded on their surface to mimic viruses in size and surface
antigenicity. Sub-200 nm virus-mimetic polymeric nanostructures are in a relatively lower
level of endotoxins and can promote the antigens to elicit potent humoral and cellular
immune responses against pathogenic bacteria. The promising development of virus-
mimetic polymeric nanostructures will continue to protect human health from common
pathogens and emerging infectious threats.

Keywords: subunit vaccines, virus-mimetic polymeric nanostructures, multivalent epitope, molecular adjuvants,
enhanced immune responses
INTRODUCTION

Vaccination activates immune responses against infectious disease by prevention of infection,
reduction in disease severity or the rate of hospitalization, which has been demonstrated in
improving global human health (1, 2). In general, vaccines are classified as live, non-live or other
recent developed platforms, such as virus-like particles (VLPs), nucleic acid-based (RNA and DNA)
vaccines, and subunit vaccines. Live and live attenuated vaccines still raise safety concerns due to the
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potential reversion to their pathogenic forms that are capable of
replicating in an uncontrolled manner (3). These issues are
particularly aggravated in immunocompromised individuals,
which restricts the wide application of live vaccines. Non-live
vaccines are composed of antigenic proteins or polysaccharides
from the organism, recombinant proteins, or the killed whole
organisms, and can provide comparable and beneficial immunity
effects in most cases. For instance, inactivated whole virus
vaccines (InWVV) induce humoral immunity and generate
high-titer specific IgG antibodies, except that cellular immune
response induced by InWVV is usually too low to provide
effective and long-lasting protection. Excessive stresses have
been imposed on vaccinated animals because of the high
immunizing doses and potential severe side effects of InWVV
(4–8). These disadvantages dampen the enthusiasm of scientists
for the design of InWVV.

One class of nucleic acid vaccines, mRNA vaccine, the
sequence of which can code a specific protein, represents a
promising alternative to conventional vaccine by modulating
the post-translational modifications and inducing transient
protein expression. Because of the beneficial features above-
mentioned, mRNA has been developed rapidly and become
mature in the fields of nucleic acid vaccines (9). Various
materials, including lipids, lipid-like materials, polymers, and
hybrid systems, have been applied for mRNA delivery (10, 11).
BNT162b2 and mRNA-1273 vaccines are lipid nanoparticle-
formulated both of which have shown high efficacy at preventing
the coronavirus disease 2019 (COVID-2019) (12, 13). Polymeric
nanoparticles deliver antigen-encoding replicon mRNA into
mice, so that the mounted cellular and antibody responses
protect mice from H1N1 influenza and Ebola virus as well as
Toxoplasma gondii parasite (14). Delivered by polymeric
nanoparticles, mRNA molecules specifically reach target cells
and sufficiently produce interest proteins. Nonetheless, high
production costs and safety problems are still challenging for
mRNA vaccine (15). Thus, safe and effective mRNA delivery
materials are in urgent need of vaccine development.

Subunit vaccines pose no risk to the immunocompromised
individuals since they have lost the potential to replicate in an
uncontrolled manner (16). However, a trade-off lies between
strong immunogenicity and sufficient safety. To improve the
ability to induce an immune response, subunit vaccines are often
combined with an adjuvant which can enhance the immune
response against the antigen by providing danger signals to the
innate immune system. Emergence of new adjuvanted vaccines
suggests that the provision of additional signals to the immune
system by certain adjuvants can overcome the decline in immune
function (17). Among them, polymeric nanostructures as vaccine
platforms have attracted special attention due to their high
tailorability. This perspective will focus on the virus-mimetic
polymeric nanostructures (VMPNs) as vaccine platforms,
exemplify virus-mimetic polymeric platforms for subunit
vaccines, and discuss the challenges faced by virus-mimetic
polymeric vaccines. Moreover, a virus-mimetic nanostructure
composed of polymers and molecular adjuvants is presented in
the end of this perspective, aiming to demonstrate the
Frontiers in Immunology | www.frontiersin.org 2
convenience and flexibility of co-assembly strategy in designing
polymeric nanostructure-based subunit vaccines.
POLYMERIC DELIVERY VEHICLES

Owing to rich chemistry (tailorability), biocompatibility and
biodegradability, polymer-based nanostructures have been
developed against various emerging diseases. Nanostructures
based on polymers are promising vehicles (18) to transport
medicines, contrast agents, and gene vectors. For example, a
pH-responsive polymer nanoparticle was designed to respond to
acidic lysosomes by increases in diameters from 200 to 500 nm
when the pH was dropped from 7.4 to 4.9 to disrupt the
membranes of acidic lysosomes for cytosolic drug delivery
(19). Most importantly, polymeric nanostructures can be
modularized as adjuvants to adopt immunological cues by
mimicking biophysical and biochemical characteristics of
pathogens to elicit robust and protective immune responses
upon vaccination. Polymer-based delivery vehicles include
solids, polymeric nanospheres, nanogels, polymersomes (20),
micelles, and virus-mimetic nanostructures (Figure 1), where
various antigens are encapsulated into the core or displayed onto
the surface. The polymeric delivery strategy can load/assemble
not only antigens but also molecular adjuvants into
the particulates.
VIRUS-MIMETIC POLYMERIC
NANOSTRUCTURES

Polymeric delivery vehicles provide strategies for engineering the
antigenic components to particular immune cells and lymphatic
tissues. The physical and biochemical features of polymeric
delivery vehicles, including size and shape of the polymeric
delivery vehicles, the number and physical position of the
antigens, can be engineered to modulate their cellular uptake
and tissue distribution (21, 22). VLPs are nanostructures
constructed of viral proteins that mimic the authentic virus but
lack the viral genome. Analogously, polymeric nanostructures
decorated with spikes, such as VMPNs, have unique impacts on
immune activation. Spatial repetition on surface of VMPNs is an
intrinsic feature to virus, meanwhile, immune system of
recipients has evolved to recognize the feature and respond to
it with high sensitivity. Therefore, virus-mimetic nanostructures
are engineered to advance the vaccine strategies against
infectious diseases.

In nanomedicine and nanopharmacology, virus-mimetic
nanoparticles are designed by mimicking viral assembly for
advanced disease diagnosis and therapy (23, 24). Virus-
mimetic polymeric micelles that carried dual-functional
moieties on their surfaces for cell-specific recognition and
enhanced cell penetration, were developed for cancer therapy
(Xiong and Lavasanifar, 2011). Decorating nanoparticles with
protein antigens or recombinant antigens as a simple approach
January 2022 | Volume 12 | Article 804416
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was frequently proposed. Generally, VMPNs for vaccine delivery
are facilely obtained based on the self-assembly of the polymers
with protein antigens and adjuvants in solutions. The
physiochemical properties of polymers can be fine-tuned by
advanced polymer synthesis and processing technologies.
Engineered polymers are programmed to organize into specific
nanoarchitectures that are responsive upon exposure to various
external stimuli for efficient vaccine delivery (25). VMPNs have
been employed to develop nanodelivery strategies for enhanced
cancer immunotherapy (26, 27) based on the property of
polymeric nanostructures that can direct immunomodulators
to tumors and lymphoid organs. VMPNs also can be engineered
with multivalent interaction sites, improving their engagement
with the immune system.
ANTIGEN PROCESSING AND
PRESENTATION IN DENDRITIC CELLS

Antigens carried in polymeric particles can be digested by
dendritic cells (DCs), and the resultant antigen peptide
fragments are presented on the surfaces of DCs against the
backdrop of major histocompatibility complexes (MHCs). Two
pathways for antigen presentation are shown in Figure 1, both of
which have significant roles in inducing humoral and cellular
Frontiers in Immunology | www.frontiersin.org 3
immunities: (i) the class II MHC (MHC II) antigen presentation
pathway for CD4+ T cell activation, and (ii) the class I (MHC I)
antigen cross-presentation pathway for CD8+ T cell activation.
Nanoparticles can be used to modulate the lymph node follicles
capture and antigen retention to induce germinal centers and
long-lived humoral immunity. Large nanoparticles are more like
to be opsonized by complements more than small ones, which
lead to enhanced nanoparticle retention, antigen presentation on
follicular DCs, and more robust germinal center reactions (28).
Therefore, the density and spatial distribution of surface antigens
distinctly affect their ability in inducing T helper cell responses,
since multivalent interactions are required for fully eliciting
downstream signaling pathways (29).

It has been demonstrated that polymeric nanovaccines based
on protein-delivering dendrimers show promise for effective
antigen cross-presentation and cancer immunotherapy (30).
Appropriate packaging of antigens is critical to increase their
presentation to DCs, and to prevent the systemic toxicity of the
whole vaccines. Surface topography, like spiky nanostructures on
viruses, is capable of activating innate immunity during
interaction and phagocytosis by DCs. A surface modified
polymeric structure consisting of poly(lactic-co-glycolic acid)
(PLGA) is able to deliver tumor-specific proteins to antigen-
presenting cells (APCs), resulting in an expansion of CD8+

cytotoxic T cells and the improved immunotherapeutic effect (31).
FIGURE 1 | Schematic illustration of different polymeric structures for vaccine development and the antigen processing and presentation of virus-mimetic polymeric
nanostructures in a dendritic cell.
January 2022 | Volume 12 | Article 804416
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VIRUS-MIMETIC POLYMERIC
NANOSTRUCTURES IN SUBUNIT
VACCINES

A subunit vaccine consists of certain antigenic components
including antigens based on carbohydrates, lipids, peptides and
proteins, or bacterial lysates. Immune response by subunit
vaccine differs due to the different antigens carried. Protein
antigens usually give rise to T-cell dependent adaptive immune
responses, while polysaccharide antigens generate T-cell
independent responses. A subunit vaccine with the SARS-CoV-
2 spike protein receptor-binding domain stimulated robust and
durable neutralizing-antibody response against SARS-CoV-2 in
rhesus macaques (32). Fragments of protein shells mimicking the
coronavirus’ outer coat also were developed into subunit
vaccines, which protected monkeys against the coronavirus
infection but haven’t been tested in people (33). No risk is a
distinct advantage of subunit vaccines; however, they are less
immunogenic than live attenuated vaccines which may not
confer protection for the individuals with B cell or combined
immunodeficiency. Subunit vaccines with multivalent epitopes
have been developed to deal with the weak immunogenic issue.
Haemagglutinin inserted at the interface of the adjacent subunit
spontaneously assembled and generated eight trimeric viral
spikes on its surface. Immunization with this nanoparticle
vaccine produced haemagglutinin inhibition antibody titers
tenfold more than those from the licensed inactivated vaccine
(34). Various particulate carriers have been developed for
subunit vaccines, and understanding the fluid dynamics of
these carriers is the key to improving the bio-distribution and
antigen presentation (15).

To enhance subunit vaccine immune responses, a variety of
approaches, including the presentation of epitopes in multimeric
format (e.g., above-listed nanoparticle vaccine, and VLPs) or the
use of immunostimulatory adjuvants, have been designed and
utilized in preventing infectious diseases. Virus-mimetic subunit
vaccine composes of one or more antigenic proteins that mimic
the shape and size of the native virions by co-assembling with
adjuvant materials. Since virus-mimetic subunit vaccine is safer
than infectious attenuated and inactivated vaccines with the ability
to efficiently elicit humoral and cellular immune responses (35,
36), it has been one of the most promising vaccine candidates.
Especially, virus-mimetic polymeric nanostructure loaded with
various vaccine components in a nano-size range can mimic viral
or bacterial not only in size but also in topology, facilitating their
co-delivery and the pathogen recognition by APCs. Polymers from
the nanostructure can be acted as direct delivery vehicle or delivery
vehicle and adjuvants together, or loading with other adjuvants as
vaccines. Polymer as the direct delivery vehicle in vaccine platform
has been reported as follows: a polymer-templated protein
nanoball (PTPNB) with controlled orientation of hemagglutinin
1 (H1) on its surface was designed at the similar size with viruses
without the addition of adjuvant. H1-PTPNB efficiently promoted
H1-specific immune activation and cross-protective activities, due
to the exposure of H1 head group on the surface and a similar size
to that of influenza virus (37).
Frontiers in Immunology | www.frontiersin.org 4
The protein-coated polymeric structure displays protein antigens
with controlled orientation and repetitive structures mimicking the
surface features of virus or a bacterium via the self-assembly of the
polymers either in viro in bulk solutions or in viro in engineered
bacteria. Poly(ϵ-caprolactone) (PCL) was grafted with pyridine,
which provided a docking site for linking PCL with the dengue
virus serotype-2 envelope protein (DV2EP) or Plasmodium
falciparum malaria circumsporozoite protein (CSP) antigens
through hydrogen bonding upon nanoparticle formation (38, 39).
ForDV2EPandCSPmice groups, the trials demonstrated significant
increasesof antigen-specific IgG1and IgG2a titers comparedwith the
antigens alone. As an emerging material for particulate vaccines, the
bacterial biopolymer poly(3-hydroxybutyric acid) (PHB) enables
rapid design and cost-effective manufacture at scale. To date,
protein-coated PHB particles have been developed as a vaccine
platform for the delivery of infectious-disease associated antigens
originated from viruses (e.g., hepatitis C virus) and bacteria (e.g.,
Streptococcus pneumoniae, Mycobacterium tuberculosis, and
Neisseria meningtidis). Mice immunized with antigen-coated PHB
particles demonstrated robust humoral- and cell-mediated immune
responses. In an attempt to develop vaccines against tuberculosis,
multi-antigenic PHB composed of threeMycobacterium tuberculosis
(TB) antigens (H28) and adjuvanted with dioctadecyl ammonium
bromide (DDA)micelleswas subcutaneously injected intomice.This
formular induced highly antigen-specific IgG1 and IgG2c titers with
strong cytokine profiles (40). The multi-antigenic features and
large scale manufacture make PHB particle vaccine strategy
suite to respond to pandemic causing SARS-CoV-2 (41). A
polyamidoamine dendrimer modified with guanidinobenzoic acid
(DGBA) was reported to serve as an effective protein antigen carrier.
DGBA allows efficient surface adsorption of the antigen proteins to
form core-shell nanoparticles (30) that show enhanced intracellular
deliveryandeffective endosomal/lysosomal escape, thereby leading to
effective antigen cross-presentation by DCs. Apparently, this virus-
mimetic hierarchical structure synergistically combines the merits of
polymer cores (physical stability, antigen-encapsulation space,
payload for molecular adjuvants and controlled release properties)
with the biomimetic characteristics of bacterial or viral surfaces, to
enhance antigen-specific immune responses. The rational design of
virus-mimetic polymeric nanostructure platforms for subunit
vaccines meets the need to achieve control over humoral and cell-
mediated immune responses.
CHALLENGES AND PERSPECTIVE

In preclinical studies, polymeric nanostructures against many
diseases show promising futures, but only a few have met the
standards of the clinical applications. It is challenging for polymeric
delivery vehicles to achieve clinical application andultimately reach
the market because of their weak polymeric nanostructures. First,
the complex layers of polymeric nanostructures pose huge
challenges, including scaling up production, setting wallet-
friendly prices, and maintaining batch-to-batch reproducibility.
To reach clinical trials, poly(ethylene imine) (PEI) polyplexes for
HIV are synthesized by the self-assembly betweenPEIwith cationic
January 2022 | Volume 12 | Article 804416
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charges andDNAwithanionic charges,which exhibits scale-upand
process simplicity (42). Thus, a simple fabrication process is the
preferred method. Second, several polymeric delivery vehicles
composed of temperature-sensitive units (e.g., recombinant
protein antigens) keep their stability via cold chains, which brings
problems to be solved in global distribution, storage, and
administration. To reduce dependence on cold chains, single-
dose polymeric implant via melt-processing (43), microneedle-
basedpatches (44), and thinfilm-basedvaccines (45) are developed.
Third, safety significantly does matter in this issue. For several
polymers, the biodegradation products may stir up cyto-toxicity
and unexpected nonspecific immune responses. Last but not least,
long-lasting protective immunity needs to be established for
inducing strong and specific immune responses. Polymeric
delivery vehicles served as rapid response platforms have been
fast developing, aiming to reach the market and combat the
emerging pandemic threats.
DISCUSSION

There is a lack of clinically approved adjuvants that can elicit antigen-
specificeffectorand long-livedCD4+andCD8+Tcells (46).Todesign
vaccines that recapitulate the efficacy of nanostructures and metal
oxideclusters (MOCs),biocompatiblepolymersareusedas templates
to load ultra-small MOCs and antigens separated from pathogens to
Frontiers in Immunology | www.frontiersin.org 5
co-assemble the nanostructures. MOC is rich in hydrogen bonding
donor sites (47), and it shares the common structural feature with
most biomacromoleculeswhich can bridgeMOCswith polymers via
multiple hydrogen bonds onto the co-assemblies (48, 49). Thus, the
co-assembly profile provides a universal method (Figure 2A) to
construct colloidal nanostructures serving as complex nano-vaccines
(50), which carry two moieties (MOCs as the molecular adjuvants
and proteins extracted from pathogens as the subunit antigens).

Due to their high surface areas, the synthesized virus-mimetic
co-assemblies exhibit high antigen loading and entrapment
efficiency. Scanning electron microscopy (SEM) studies confirm
that the virus-mimetic co-assemblies possess uniform size
distribution with distinct roughness (Figure 2B), since the
antigens and MOCs were closely packed on the surface of virus-
mimetic co-assemblies. Cytotoxicity tests (Figure 2C) verify that
MOCs and the used polymers are safe as vaccine adjuvants. The
antigens presented on the surfaces provide multivalent epitopes for
enhancing local DCs uptake and subsequent antigen presentation,
followed by the activation and differentiation of naive T
lymphocytes, CD4+ Th cells and CD8+ cells. Humoral immunity
inducingantibody-mediated immune responses ismainly regulated
by B lymphocytes. While T lymphocytes regulate the cellular
immunity and induce cell-mediated immune responses. Mice
inoculated with the virus-mimetic co-assemblies have almost
equal titers of antibodies compared with BCG group over time
(Figure 2D). The high titers of serum anti-TB antibody indicate the
A B C

D E F

FIGURE 2 | (A) Schematic illustration of self-assembly of virus-mimetic polymeric structures (Ag/MOC@polymer supra-molecular particle assemblies; Ag abbreviated
from antigens) for the construction of subunit vaccine (50). (B) SEM image of virus-mimetic polymeric structures. Inset: magnified SEM image of one virus-mimetic
polymeric structure. (C) Cytotoxicity of virus-mimetic polymeric structures on murine bone marrow derived dendritic cells (BMDC) assessed using the colorimetric cell
counting kit-8 (CCK-8). (D) Serum TB-specific IgG titres over time after inoculation of virus-mimetic polymeric structures. Count rates of CD8+ (E) and CD4+ cells (F)
in Balb/c mice spleen by flow cytometry one week after inoculation. Each data shows mean ± s.e.m. from a representative experiment (n = 6 for each group) out of
three independent experiments. *p < 0.05, are analyzed by one-way ANOVA. * Indicates statistically significant differences between tested groups and saline groups.
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promoted humoral immunity.Meanwhile, the production of CD4+

and CD8+ cells is distinctly increased in virus-mimetic co-
assemblies-injected mice (Figures 2E, F), suggesting the
enhanced cellular immune response. The elevated productions of
CD4+ and CD8+ cells also verify the enhanced immunogenicity of
the virus-mimetic co-assemblies.Besides, the riskof subunit vaccine
based-on virus-mimetic co-assemblies is low since these subunits
cannot replicate in the vaccine recipients and cause severe side
effects. To sum up, MOCs exhibit the synergy with polymers, and
they together enhance the immunogenicity of the antigens (50).Co-
assemble of subunit antigens and molecular adjuvants provides
multiple conjugation sites, increases the presentation of antigens to
targeted cells, and impacts the magnitude and durability of the
immunogenicity induced by antigens.
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