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ABSTRACT
Estradiol, a major female steroid produced during pregnancy, has been reported to protect ovariectomized animals
against H1N1 influenza infections via its anti-inflammatory effects. However, it remains unclear why pregnant women
with high gestational estradiol levels are highly susceptible to influenza infections. This study was aimed to investigate
the effects of pregnancy level of estradiol on female immunity against H5N1 infection in Balb/c mice. A sex-
dependent susceptibility to H5N1 infection (higher morbidity and higher mortality) was observed in both pregnant
and non-pregnant female mice as compared to male mice. Subcutaneous implantation of estradiol pellets increased
serum estradiol concentrations of non-pregnant female mice to the pregnancy level. These mice were protected from
H5N1 infection through downregulation of pulmonary pro-inflammatory cytokines. However, the production of virus-
specific antibodies after infection was significantly delayed in estradiol-implanted mice when compared to placebos.
Virus-specific IgG-secreting and IL-4-secreting cells were also reduced in estradiol-implanted mice. Similarly, lower
antibody titers to seasonal vaccine antigens were found in pregnant women as compared to non-pregnant females
without hormone usage. Our results indicate that estradiol levels equivalent to those found during pregnancy have
divergent effects on female immunity against influenza, highlighting the importance of vaccination during pregnancy
to prevent severe influenza infections.

ARTICLE HISTORY Received 17 May 2019; Revised 9 July 2019; Accepted 19 July 2019

KEYWORDS Pregnancy level of estradiol; avian influenza; humoral immunity; Th2 response; sex-biased

Introduction

Influenza viruses cause 3–5 million cases of infections
and approximately 650,000 associated deaths world-
wide every year [1]. Women, particularly pregnant
women, are susceptible to influenza infections and
have been reported to be disproportionately more
likely to experience severe influenza-like illness and
deaths than men, especially during pandemics [2–5].
For instance, the overall mortality rate of the 1918
“Spanish Flu” was 2.5%, but 27% of all deaths occurred
in pregnant women [3,5,6]. Similarly, during the 2009
H1N1 pandemic, 5% of all deaths occurred in pregnant
women, yet pregnant women accounted for only 1% of
all cases [5,6]. From November 2003 to May 2008, 383
laboratory-confirmed H5N1 infections had been
reported by the WHO, 51% of which occurred in
females with a mean age of 22.1 years [7]. Compared
to adult males, females of reproductive age including

pregnant women were more likely to die from H5N1
infections [8–10].

Sex steroids such as testosterone, estrogen (estrone,
estradiol and estriol) and progesterone are known to
not only determine sexual dimorphism but also modu-
late immune responses [3,11–15]. In females, estradiol
and progesterone fluctuate over the course of the men-
strual cycle. Following the uterine implantation of an
embryo, the corpus luteum in the ovary begins to pro-
duce more estrogen and progesterone. The levels of
estrogen and progesterone continue to rise and peak
in the second and third trimesters when the placenta
takes over the secretion. Unlike progesterone, which
is generally immunosuppressive [16], estradiol has
multifaceted, dose-dependent immunomodulatory
functions [17]. At normal physiological levels, estradiol
is immunostimulatory and augments B cell function
and survival [18]. Thus, women tend to mount higher
antibody responses than men after vaccinations
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[19,20]. After conception, estradiol levels rise steadily
when pregnancy progresses, which suppresses Th1-
biased pro-inflammatory responses resulting in Th2-
polarized shift of maternal immunity that promotes
immune tolerance and prevents fetal rejection
[11,17,21].

Elevated estradiol has been reported to have anti-
inflammatory protection against H1N1 influenza infec-
tions in animal models [15,22–24]. This notion appar-
ently contradicts the clinical observations of female-
biased vulnerability to influenza infections, especially
in pregnant women [2–5,8–10,22,25–27]. The
protective effect of elevated estradiol has been demon-
strated mainly in ovariectomized animal models
[15,23,24,28], and the ovary is one of the major female
reproductive organs to produce estradiol and other
essential female hormones. Additionally, the elevated
estradiol concentrations in those ovariectomized ani-
mals were considerably lower than those present
during pregnancy [15,17,23,24,28]. These differences
may have contributed to the disparate findings between
ovariectomized animal models and human clinical
observations.

In this study, we used an estradiol-implanted mouse
model with intact ovaries to investigate how pregnancy
level of estradiol alone, independent of other preg-
nancy-associated hormones, affects host immune
responses to H5N1 infection. A human H5N1 A/Viet-
nam/1203/2004 vaccine reassortant fully virulent in
mice [29] was used as a representative H5N1 virus
for experimental infection in this study because this
H5N1 vaccine strain is no longer a select agent and
can be manipulated at Animal Biosafety Level
(ABSL)-2 level. Our results indicate that the gestational
level of estradiol could protect female mice from H5N1
infection by mitigating inflammation, while it also
delayed virus-specific humoral immunity after
infection.

Materials and methods

Viruses

All viruses including human H5N1 A/Vietnam/1203/
2004 (VN/1203) vaccine reassortant bearing a mono-
basic cleavage site in HA [29], H1N1 A/Michigan/45/
2015 and H3N2 A/Hong Kong/4801/2014 were propa-
gated in 9–11-day-old embryonated eggs at 33°C.
Infectious viral particles were determined by a plaque
assay [29,30].

Mice

Age-matched non-pregnant female and male adult
Balb/c mice, or timed-pregnant Balb/c mice (after 13
days of gestation) were purchased from Charles River
laboratories (Frederick, MD) and were infected at

approximately 16-week old. Non-pregnant female
mice were implanted subcutaneously with 21-day
slow release 17-β-estradiol pellets (35 mg/pellet/
mouse) or similar-sized placebo (Innovative Research
of America, Sarasota, FL) [22] one week before infec-
tion. All mice were infected intranasally with H5N1
VN/1203 at 500 PFU/50 µl/mouse (a dose pre-deter-
mined to be sublethal in male adult mice). Body weight
(BW) was monitored daily for up to 14 days post infec-
tion (p.i.). Mice reaching humane endpoints (e.g. 30%
BW loss) were promptly euthanized. All procedures
were performed under protocols approved by the
FDA White Oak Animal Program Animal Care and
Use Committee. All animal experiments were repeated
2–3 times. Representative results of multiple exper-
iments were reported. See additional information in
Supplementary Materials online.

Antibody determination

Sera were pre-treated with receptor-destroying enzyme
(Denka-Seiken, Tokyo, Japan) and were subjected to
hemagglutinin (HA) inhibition (HAI) assays as
described [29,31]. Turkey erythrocytes (0.5%), guinea
pig erythrocytes (0.75%) and horse erythrocytes (1%)
were used in HAI assays for influenza H1N1, H3N2
and H5N1 viruses respectively [29,31]. HA-specific
IgG ELISA was performed in 96-well plates pre-coated
with 0.5 µg/ml of H5 recombinant HA (rHA) (Protein
Sciences, Meriden, CT), or with 0.2 µg/ml of H1 or H3
rHA (Immune Technology, New York, NY) [32].
Bound antibodies were detected with peroxidase-con-
jugated secondary antibodies (Life technologies) and
optical density (OD) at 450 nm was measured using a
Victor V multilabel reader (PerkinElmer, Waltham,
MA).

Serum estradiol determination

Mouse serum estradiol levels were determined using an
EIA kit (Cayman Chemical, Ann Arbor, Michigan)
according to the manufacturer’s instructions.

Cytokine detection

Proinflammatory cytokines and chemokines in mouse
sera and lung homogenates were detected using MSD
multiplex kits (Meso Scale Diagnostic, Rockville,
MD) according to the manufacturer’s protocols. IFN-
β in mouse sera and lung homogenates was quantitated
using VeriKine-high sensitivity serum ELISA kits (PBL
Assay Science, Piscataway, NJ).

ELISPOT

Mouse IFN-ɣ, IL-4 or IgG ELISPOTs were performed
using Mabtech’s ELISPOT BASIC kits (Cincinnati,
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OH). Briefly, the 96-well Multiscreen plates (EMD
Millipore, Billerica, Massachusetts) were pre-coated
with 15 µg/ml of mouse-specific anti-IFN-ɣ, anti-IL-4
or anti-IgG antibody, or with 15 µg/ml of H5 rHA.
Spleens harvested from H5N1-infected placebo or
estradiol-implanted female mice were dissociated and
lysed of red blood cells. After washing, resuspended
splenocytes were added to anti-mouse IFN-ɣ or IL-4
antibody pre-coated plates at 2.5 × 105 cells/100 µl/
well and were incubated with PMA/ionomycin
(PMA/IM,1 µg/ml PMA plus 0.75 µg/ml IM) or H5
rHA (10 µg/ml) at 37°C for 40 h. Cells incubated
with medium only served as negative controls. For
mouse IgG ELISPOT, splenocytes were pre-activated
with R848 (1 µg/ml) and mIL-2 (10 ng/ml) before
being added to plates coated with anti-mouse IgG or
H5 rHA. Spot-forming cells were detected using bioti-
nylated secondary antibodies and counted using the
Immunospot Analyzer equipped with Biospot Version
5.0 software (Cellular Technology Ltd, Cleveland, OH).
The number of antigen-specific spots were determined
by subtracting the number of spots in unstimulated
negative control wells and were expressed as number
of spots per 106 cells. Each mouse sample was assayed
in triplicates.

Cell proliferation

Splenocyte proliferation was assessed using a Bro-
modeoxyuridine (BrdU)-based Chemiluminescent
ELISA kit (Roche, Indianapolis, Indiana). Briefly,
dissociated splenocytes were resuspended in RPMI
1640 complete media containing 20 U/ml of mouse
recombinant IL-2 and were seeded at 1 × 104 cells/
100 µl/well in black 96-well ViewPlates (Perkin
Elmer, Waltham, Massachusetts) in the presence of
PMA/IM mixture (1 µg/ml PMA plus 0.75 µg/ml
IM) or H5 rHA (5 µg/ml). BrdU labeling solution
was added at 90 h later. Following cell fixation,
incorporated BrdU was detected using peroxidase-
conjugated anti-BrdU monoclonal antibody
according to the manufacturer’s instructions. Cell
proliferation was reported as fold induction com-
pared with luminescence intensity of unstimulated
control cells.

Quantitative RT-PCR

Total lung RNA was extracted from placebo or estra-
diol-implanted mice using the RNeasy microarray tis-
sue mini kit (QIAgen, Germantown, MD). A total of
100 µg high-quality RNA was reverse transcribed
using RT2 Easy First Strand Kit (QIAgen). Resultant
cDNA was then used as the template along with Profi-
ler™ PCR Array Mouse Signal Transduction Pathway-
Finder™ kit (QIAgen) to perform real-time PCR in
Stratagene MX3000p qPCR system with the following

conditions: hold for 10 min at 95°C, followed by 40
cycles of 15 s at 95°C and 60 s at 60°C. Individual
gene expressions based on threshold cycle (CT) values
were normalized to the average of five internal house-
keeping genes (Actb, B2 m, Gapdh, Gusb and
Hsp90ab1) and were calculated for fold changes fol-
lowed by scatter plot generation using Qiagen’s RT2

Profiler PCR Array Data Analysis Webportal according
to instructions.

Human sera

Sera from eight pregnant (mean age = 29.6 ± 1.5
years) and seven non-pregnant women without any
type of hormone-based birth control (mean age =
32.7 ± 2.2 years) were collected approximately eight
months after 2017/18 Northern Hemisphere seasonal
influenza vaccination. Archived anonymized sera
were analyzed for H1N1 vaccine prototype virus –
A/Michigan/45/2015 and H3N2 vaccine prototype
virus – A/Hong Kong/4801/2014 specific total IgG
and HAI titers as described above. Specimens were
obtained under protocol HP-00040025 approved by
the University of Maryland Institutional Review
Board.

Statistical analysis

Statistical analysis with p value calculation was per-
formed using unpaired Student t-test with Welch’s cor-
rection, two-way ANOVA or Mann–Whitney test as
specified in individual figure legends (Prism 6.0,
GraphPad, San Diego, CA).

Data availability

Quantitative RT–PCR array data are available on NCBI
Gene Expression Omnibus (GEO) under the accession
number GSE128447.

Results

Sex-dependent differences in mice infected with
H5N1 virus

Following the sublethal H5N1 infection, both male and
female mice showed significant morbidity and lost
approximately 16% and 26% initial BW, respectively
(p < 0.001, Figure 1(A)). While age-matched male
mice quickly recovered from H5N1 infection and
exhibited 0% mortality, H5N1-infected female mice
showed a delayed recovery and experienced 42.8%
mortality (Figure 1(A)). H5N1 infection induced
strong pro-inflammatory cytokine secretion in the
lungs of infected male and female mice 3 days p.i.
(the peak pulmonary virus replication): female mice
had a 6-fold higher pulmonary IL-5 production (p <

1148 C. L. Finch et al.



0.05 vs. male mice) whereas no substantial differences
were seen in the other pro-inflammatory cytokines
tested (Figure 1(B) and Supplementary Figure S1).
Like age-matched non-pregnant female mice, pregnant
dams infected with H5N1 on gestational day 18 also
lost >20% of initial BW and exhibited 37.5% mortality
after infection (Figure 1(C)). Pregnant dams had serum
cytokines measured on day 10 p.i. (7 days after deliv-
ery) to ascertain duration of systemic inflammatory
responses beyond viral clearance. Pregnant dams that
survived H5N1 infection retained higher serum levels

of pro-inflammatory cytokines on day 10 p.i., including
mKC remaining significantly higher than those of sur-
viving non-pregnant female mice (p < 0.05, Figure 1(D)
and Supplementary Figure S2). Pups born to H5N1-
infected dams not only experienced retarded growth
but also had 64.7% mortality (Figure 1(E)). These
results confirm a sex-dependent difference in mouse
response to H5N1 infection, with female mice (includ-
ing pregnant) being more susceptible to H5N1 infec-
tion than male mice, consistent with human clinical
observations [7–10].

Figure 1 . Sex-dependent differences in response to H5N1 infection. (A) Body Weight (BW) (n = 5–7 mice/group) and (B) radar chart
of pulmonary cytokines on Day 3 post infection (p.i.) (n = 6 mice/cytokine/group) of age-matched male and female Balb/c mice. (C)
BW (n = 5–8 mice/group) and (D) radar chart of serum cytokines on Day 10 p.i. (n = 5–8 mice/cytokine/group) of pregnant and age-
matched non-pregnant female Balb/c mice. (E) BW of pups born to naïve and H5N1-infected dams (n = 23–34 pups/group). BW data
are expressed as mean ± SEM. Individual cytokines are shown as fold inductions vs. male mice (B) or vs. non-pregnant female mice
(D). BW, pulmonary cytokines and serum cytokines were analyzed by two-way ANOVA and unpaired Student’s t-test, respectively.
*p < 0.05 and ***p < 0.001. Data are representative of 2–3 independent experiments with similar results.
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Pregnancy level of estradiol protected against
H5N1 infection

To investigate how pregnancy level of estradiol, inde-
pendent of other pregnancy-associated steroids, affected
host immunity against H5N1 infection, non-pregnant
female mice were implanted subcutaneously with 35-
mg estradiol pellets. Their serum estradiol concen-
trations were increased above the placebos (Figure 2
(A)) and reached levels comparable to those of pregnant
mice [22,33]. While H5N1-infected placebo mice exhib-
ited nearly 30% BW loss and 47% mortality, non-preg-
nant female mice with pregnancy level of estradiol
showed transient BW drop and were 100% protected
from H5N1 infection (Figure 2(B)). There was no differ-
ence in the kinetics of pulmonary virus replication
between estradiol-implanted mice and those receiving
placebo (Figure 2(C)). These results suggested that estra-
diol-mediated protection could not be attributed to
reduced virus replication in the lungs.

Pregnancy level of estradiol suppressed
pulmonary pro-inflammatory responses to
H5N1 infection

To determine which signal transduction pathways were
activated by estradiol implantation immediately after
H5N1 infection, we performed quantitative RT-PCR
array on lungs harvested on day 1 p.i. While most
genes remained unchanged as compared to the placebo
group (within the 2-fold diagonal dashing lines), estra-
diol-implanted mice showed significant up-regulation
of Vegfa (Hypoxia signaling), Hey1 and Jag1 (Notch
signaling), Bmp4 and Wnt3a (Hedgehog signaling),
Olr1 (PPAR signaling), and Axin2 (WNT signaling)
and significant downregulation of ifng (NF-kB signal-
ing) (Figure 3(A)). Meanwhile, the pulmonary cytokine
profiling revealed significantly reduced pro-inflamma-
tory cytokines/chemokines (MIP-1α, MIP-1β, IFN-γ,
IL-5, IL-12total, IFN-β and IL-10) in estradiol-
implanted mice as compared to placebos on day 3
p.i., (p < 0.05, Figure 3(B) and Supplementary Figure
S3). While the differences in most lung cytokines/che-
mokines disappeared after this acute phase of infection,
estradiol-implanted mice continued to show significant
reductions in pulmonary MIP-1α and MIP-1β levels
than placebo mice after day 6 p.i. (data not shown).
The reduced lung inflammation along with unaltered
viral load in estradiol-implanted mice suggested that
estradiol-induced anti-inflammatory effects likely con-
tributed to the protection against H5N1 infection.

Pregnancy level of estradiol reduced antibody
responses after H5N1 infection

We next investigated if pregnancy level of estradiol
affected virus-specific antibody development after

H5N1 infection. Compared to the surviving placebos,
estradiol-implanted mice exhibited significantly lower
serum IgG titers (p < 0.05, Figure 4(A)) and substan-
tially lower H5-specific HAI titers (p = 0.05, Figure 4
(B)) at 2 weeks p.i. The reduced H5-specific antibody
response in estradiol-implanted mice, which was
observed as early as 9 days p.i. (Supplementary Figure

Figure 2. Female mice implanted with estradiol pellets were
protected from H5N1 infection. Non-pregnant female Balb/c
mice implanted with estradiol or placebo pellets were infected
with H5N1 as described above. (A) Serum estradiol levels (n =
9–17 mice/group/time point); (B) Body Weight (BW) (n = 17
mice/group) and (C) pulmonary viral load (n = 7 mice/group/
time point). Data are expressed as mean ± SEM. Serum estra-
diol levels and BW were analyzed by two-way ANOVA. Pulmon-
ary viral titers were analyzed by Mann–Whitney test after log
transformation. ***p < 0.001. Data are representative of 2–3
independent experiments with similar results.
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S4) lasted up to 8 weeks p.i. (Figure 4(A,B)). IgG sub-
class analysis revealed that estradiol-implanted mice
had a slightly higher H5-specific IgG1 but significantly
lower IgG2a response (p < 0.01) compared to placebo
controls (Figure 4(C)). The reduced antibody response
in estradiol-implanted mice was H5-specific since these
mice and the placebo group had similar levels of non-

specific total IgG after H5N1 infection (Figure 4(D)).
Additionally, serum estradiol concentrations appeared
inversely correlated with H5-specific antibody titers:
higher estradiol levels, lower antibody titers (Sup-
plement Figure S5A, S5B & S5C). These results indicate
that the pregnancy level of estradiol, despite induction
of anti-inflammatory protection against H5N1 infec-
tion (Figures 2 and 3(B)), attenuated virus-specific
antibody development in implanted mice.

Pregnancy level of estradiol suppressed H5-
specific IgG and IL-4 ELISPOT responses

Cell proliferation and ELISPOT assays were performed
to reveal the effects of pregnancy level of estradiol on
cellular immunity in response to H5N1 infection. Sple-
nocytes from estradiol-implanted or placebo mice after
H5N1 infection showed no difference in cell prolifer-
ation toward H5 or PMA/ionomycin (PMA/IM) re-
stimulation in vitro (Figure 5(A)). However, estra-
diol-implanted mice had significantly lower H5-
specific IgG-secreting cells than placebo mice (p <
0.05) while non-specific IgG response toward R848/
mIL-2 stimulation remained unaffected (Figure 5(B)).
Estradiol-implanted mice also exhibited significantly
reduced frequencies of H5-specific IL-4 (p < 0.01,
Figure 5(C)) but not IFN-γ secreting cells as compared
to placebo mice (Figure 5(D)). In contrast, splenocytes
from estradiol-implanted or placebo mice showed no
difference in IL-4 or IFN-γ secretion in response to
non-specific PMA/IM stimulation (Figure 5(C,D)).
These results suggest that pregnancy level of estradiol
suppressed H5-responsive IgG-secreting cells and IL-
4-secreting cells after H5N1 infection.

Pregnant women had lower antibody titers than
non-pregnant females after seasonal influenza
vaccination

Since our data revealed that pregnancy level of estradiol
suppressed influenza-specific antibody response in
non-pregnant female mice with intact ovaries, we
asked whether this observation would be relevant to
pregnant women receiving influenza vaccines. Com-
pared to age-matched non-pregnant women who did
not take birth control medications, pregnant women
who were vaccinated during pregnancy developed sig-
nificantly lower IgG titers toward both H1N1 and
H3N2 vaccine strains of the 2017/18 seasonal influenza
vaccines (p < 0.01 toward A/Michigan/45/2015 H1,
and p < 0.05 toward A/Hong Kong/4801/2014 H3,
Figure 6(A)). Pregnant women also exhibited approxi-
mately 70% and 40% lower post-vaccination HAI geo-
metric mean titers (GMTs) than non-pregnant female
subjects against H1N1 A/Michigan/45/2015 (GMT:
13 vs. 40) and H3N2 A/Hong Kong/4801/2014
(GMT: 57 vs. 98), respectively (Figure 6(B)). These

Figure 3. Pregnancy levels of estradiol suppressed pulmonary
pro-inflammatory responses to H5N1 infection. (A) Quantitative
RT-PCR of pulmonary gene expression of mice implanted with
estradiol or placebo pellets on Day 1 post infection (p.i.) with
H5N1 virus. The average fold changes of individual genes vs.
placebo group are presented in the correlation scatter plot
with the dash lines indicating 2-fold change (n = 4 mice/
group). (B) Radar chart of pulmonary cytokines on Day 3 p.i.
(fold inductions vs. placebos, n = 7 mice/cytokine/group). *p
< 0.05 and *** p < 0.001 compared to placebo by unpaired
Student’s t-test, respectively. Data are representative of 2–3
independent experiments with similar results.
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results, though obtained with small sample size, suggest
that pregnant womenmay likely experience suppressed
antibody responses toward influenza vaccination than
non-pregnant females without hormone treatments.

Discussion

Sex-dependent and pregnancy-associated vulnerability
to influenza infections has been well documented in
humans [2,3,6,34]. Pregnant women are particularly
susceptible to avian influenza H5N1 infections and
are more likely to develop severe complications
[3,8,9,10]. Studies have been conducted in animal
models to understand sex-biased differences and preg-
nancy-associated susceptibility to seasonal influenza
infections, mainly on H1N1 viruses
[15,22,26,27,35,36]. However, limited experimental
evidence is available to understand H5N1-related sex
bias and pregnancy-associated susceptibility. In this
study, we demonstrated heightened susceptibility of
female and pregnant mice to avian influenza H5N1
infections (higher morbidity and higher mortality
than male mice). H5N1 infection also induced stronger
local or systemic inflammatory reactions in infected

female and pregnant mice. Others also reported that
female and pregnant mice infected with H1N1 viruses
had significantly higher pulmonary secretion of pro-
inflammatory cytokines/chemokines than H1N1-
infected male and non-pregnant female mice, respect-
ively [15,25,26]. Moreover, elevated pro-inflammatory
cytokines have been linked to increased disease severity
and death in pandemic H1N1-infected pregnant
women [37]. Together, these results suggest that cyto-
kine dysregulation is a heightened risk of influenza
infections in both non-pregnant and pregnant
women. Similar to a previous report on H1N1-infected
female rats [38], our study also indicates that female
mice, unlike male mice, appeared to mount Th2-biased
proinflammatory reactions (higher pulmonary IL-5) to
H5N1 infection. These sex-related differences likely
reflect differential modulation of male and female hor-
mones on host immunity, with female sex steroids such
as estradiol and progesterone favoring a Th2-biased
immunity [11,16,17,39,40,41].

Estradiol at high concentrations has immunosup-
pressive effects, and elevated estradiol during preg-
nancy is believed to maintain immune tolerance to
support the embryonic implantation and prevent

Figure 4. Pregnancy level of estradiol suppressed humoral response to H5N1 infection. Sera of estradiol- and placebo-implanted
female mice (n = 5–17 mice/group/time point) were collected at different time points of H5N1 post infection (p.i.) for antibody
determination. (A) H5-specific IgG titers with geometric mean (lines); (B) H5-specific HAI titers with geometric mean (lines); (C)
H5-specific IgG1 and IgG2a titers with geometric mean (lines); (D) non-specific total IgG (OD mean ± SEM). *p < 0.05 and **p <
0.01 by Mann–Whitney test after log transformation. Data are representative of 2–3 independent experiments with similar results.
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fetus rejection [11]. In this study, we demonstrated that
pregnancy level of estradiol, independent of other preg-
nancy-associated hormones, prevented severe morbid-
ity and improved survival rate in H5N1-infected non-
pregnant female mice. This improvement of infection
outcome was not due to inhibition of pulmonary
virus replication. Instead, it was attributed to estra-
diol-induced pulmonary reduction of pro-inflamma-
tory cytokines and chemokines. Similar findings have
been reported in H1N1-infected animals, in which
estradiol reduced influenza-related lung inflammation
but had no impact on pulmonary replication of
influenza viruses [15,22,23,24,38]. Our data further
revealed that the estradiol-mediated control of lung
inflammation was apparently regulated via augmented
hypoxia and Notch signaling and down-regulated NF-
kB signaling. Under hypoxia, estradiol can boostVegfa-
dependent Notch activation to promote endothelial cell
survival, thus playing a role in cardiovascular protec-
tion [42]. Estradiol at high levels is also known to sup-
press the transcription of proinflammatory genes via
the NF-kB pathway [43]. These results seemed to indi-
cate that the anti-inflammatory properties of estradiol
(at high systemic concentrations) may be beneficial in

preventing inflammation-associated lung damage
during avian influenza H5N1 infections.

In this study, we also observed that estradiol-
implanted mice developed significantly lower virus-
specific antibody responses than placebos after H5N1
infection, despite both groups having similar pulmon-
ary viral loads during acute infection. This reduced
antibody response in mice with pregnancy level of
estradiol was antigen-specific. IgG subclass analysis
also revealed that estradiol-implanted mice had signifi-
cantly lower IgG2a (Th1 in mouse) after H5N1 infec-
tion, indicating a Th2-biased shift in virus-specific
humoral immunity. Reduced IgG2 (Th1 in human)
responses have also been observed in pandemic
H1N1-infected pregnant women [44,45]. Moreover,
the reduced H5-specific antibodies along with reduced
H5-specific IgG-secreting cells indicate an impaired B
cell response in estradiol-implanted mice after H5N1
infection. A significant reduction in IgG-specific B
cells was also observed in pandemic H1N1-infected
pregnant ferrets [27]. It has been reported that preg-
nancy levels of estradiol can reduce the production of
progenitor B cells in murine bone marrow and
adversely affect the differentiation and survival of

Figure 5. Effects of estradiol on splenocyte proliferation and cytokine ELISPOT responses to H5N1 infection. Estradiol- and placebo-
implanted female mice were infected with H5N1 as described above. Splenocytes harvested at 7 weeks post infection were stimu-
lated in vitro with H5 recombinant HA (rHA), PMA/ionomycin (PMA/IM) mixture or R848/mIL-2 mixture. (A) Splenocyte proliferation,
and (B) IgG, (C) IL-4 and (D) IFN-γ secreting cells measured by ELISPOT. Data are expressed as mean ± SEM (n = 3 mice/group) and
are representative of 2–3 repeated experiments with similar results. *p < 0.05 and **p < 0.01 by unpaired Student’s t-test.

Emerging Microbes & Infections 1153



progenitor B cells in the spleen [46,47]. This may cause
a delay in eliciting antigen-specific B cells resulting in
attenuated antibody response after pathogen exposure.

Additionally, pregnancy levels of estradiol have been
shown to suppress T cell responses and decrease anti-
gen-specific IL-2 and IL-4 secretion by Th2 lympho-
cytes [11,22,48]. In this study, we observed that
splenocytes from estradiol-implanted mice had signifi-
cantly lower frequencies of IL-4-secreting cells, but
unaltered IFN-γ-secreting cells than placebos after
H5 HA re-stimulation, indicating a reduced virus-
specific Th2 cell response. Similar phenomena have
also been observed in pandemic H1N1-infected preg-
nant women who had diminished CD4+ Th2 cells
but elevated IFN-γ responses as compared to infected
non-pregnant women [44]. The peripheral blood
mononuclear cells isolated from H1N1-infected preg-
nant ferrets also secreted significantly lower IL-4 but
notably higher IL-12p40 than those of H1N1-infected
non-pregnant ferrets [27]. The shift from Th1- to
Th2-type cytokine production during gestation is criti-
cal to maintain normal pregnancy and avert fetal rejec-
tion [21]. However, influenza infections during
pregnancy may break this balance resulting in aberrant
Th1/Th2 ratio which could potentially endanger preg-
nancy and cause poor birth outcomes.

We showed herein that pregnancy level of estradiol
alone could reduce virus-specific humoral responses
after H5N1 infection. This scenario could be com-
pounded in real pregnancy when other steroids are

present. For example, estriol – another major estrogen
produced during pregnancy has been reported to nega-
tively impact progenitor B cell development and reduce
antibody response after infection [46,49]. This estro-
gen-induced suppression of humoral immunity is
further complicated by progesterone, which can sensi-
tize B-cell precursors to the negative regulation of
estradiol at even lower concentrations, despite the
fact that progesterone alone does not affect B-cell line-
age development [46]. As a result, virus-specific anti-
body can be dampened in pregnant women as
pregnancy progresses to full term. In this study, we
observed that pregnant women developed significantly
lower antigen-specific antibody titers after 2017/18 sea-
sonal vaccination than non-pregnant women without
hormone treatment. Schlaudecker et al. have also
reported that pregnant women have reduced antibody
responses following seasonal influenza vaccinations,
which worsens as pregnancy progresses [50,51].
Impaired antibody responses against influenza viruses
during pregnancy not only jeopardize pregnant
women’s health but also confer insufficient protection
for fetuses and newborns. As shown in this study and
the study by Littauer et al. [26], pups born from
influenza-infected dams had significantly retarded
growth and increased mortality.

In summary, our study demonstrated that preg-
nancy level of estradiol has divergent effects on host
immune response against H5N1 infection – its anti-
inflammatory properties can ameliorate infection-

Figure 6. Influenza-specific antibody responses in non-pregnant and pregnant women. Post-seasonal influenza vaccination
responses in sera from pregnant women and non-pregnant women without hormone usage were determined, including (A)
IgG and (B) HAI titers specific for H1N1 vaccine strain A/Michigan/45/2015 and H3N2 vaccine strain A/Hong Kong/4801/2014. Indi-
vidual titers (n = 7–8 subjects/group) and geometric mean (lines) are shown. * p < 0.05 and ** p < 0.01 by Mann–Whitney test
after log transformation.
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associated lung inflammation in mice, but it also can
hinder virus-specific antibody development after infec-
tion. Since newborns obtain passive immunity via
breastfeeding, our results emphasize the necessity of
influenza vaccination during pregnancy and provide
impetus to formulate strategies to increase vaccine cov-
erage among pregnant women.
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