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Rapid model exploration for complex
hierarchical data: application to
pharmacokinetics of insulin aspart
Robert J. B. Goudie,a*† Roman Hovorka,b,c,d Helen R. Murphyb,c,d

and David Lunna

We consider situations, which are common in medical statistics, where we have a number of sets of response data,
from different individuals, say, potentially under different conditions. A parametric model is defined for each set
of data, giving rise to a set of random effects. Our goal here is to efficiently explore a range of possible ‘population’
models for the random effects, to select the most appropriate model. The range of possible models is potentially
vast, because the random effects may depend on observed covariates, and there may be multiple credible ways
of partitioning their variability. Here, we consider pharmacokinetic (PK) data on insulin aspart, a fast acting
insulin analogue used in the treatment of diabetes. PK models are typically nonlinear (in their parameters), often
complex and sometimes only available as a set of differential equations, with no closed-form solution. Fitting
such a model for just a single individual can be a challenging task. Fitting a joint model for all individuals can be
even harder, even without the complication of an overarching model selection objective. We describe a two-stage
approach that decouples the population model for the random effects from the PK model applied to the response
data but nevertheless fits the full, joint, hierarchical model, accounting fully for uncertainty. This allows us to
repeatedly reuse results from a single analysis of the response data to explore various population models for the
random effects. This greatly expedites not only model exploration but also cross-validation for the purposes of
model criticism. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

Consider a hierarchical data set, where we have a number of sets of response data, from different patients
perhaps. We wish to apply a parametric model to each individual’s data set and then define a ‘population’
model relating all of the individual-level parameters (random effects) together. There may be a variety
of credible models for the random effects, and it is important to fully explore a range of possibilities.
For example, the parameters may depend on observed covariates, or there may be different ways of par-
titioning their variability across levels of the hierarchy. However, such exploration can be cumbersome
and time-consuming, especially when individual-level models are complex. For example, pharmacoki-
netic models are typically nonlinear (in their parameters), often have complex functional forms and are
sometimes only available as a set of differential equations, with no closed-form solution. Fitting such a
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model for just a single individual can be a challenging task. Fitting a joint model for all individuals can
be even harder, even without the complication of an overarching model selection objective.

We aim in this paper to develop a methodology for efficiently fitting a range of population models
(including covariate selection) to the parameters (random effects) from individual-level models. We
describe a two-stage approach that decouples inference on the population model from inference on
each individual-level model but nevertheless fits the full, joint, hierarchical model, accounting fully for
uncertainty. In the first stage, we estimate independent posterior distributions for the parameters in each
individual-level model using Markov chain Monte Carlo (MCMC). We then store the resulting samples
for use in the second stage, where they form ‘proposal distributions’ for the individual-level parameters
in the full hierarchical model. The parameters are then updated via Metropolis–Hastings steps with an
acceptance probability that is independent of the individual-level likelihood. This means that stage 2 is
very efficient, allowing a wide range of models to be easily explored. In particular, our approach facilitates
rapid exploration of covariate models using reversible jump MCMC, as well as exploration of different
models for the variance components. It also facilitates criticism of the various population models via
cross-validation techniques. Our approach is suited to situations in which the number of observations for
each individual exceeds the number of parameters in the individual-level model and so is most likely to
be useful in early clinical studies, in which detailed individual-level data are available.

We use this methodology to study four parameters relating to insulin kinetics in pregnant women with
type 1 diabetes, using data from two clinical studies. We consider covariate selection models that enable
identification of covariates that may be related to the kinetic parameters, as well as different structures
for the hierarchical model, up to four levels. We believe that the complexity of our analysis would render
it impracticable without the proposed two-stage methodology. Our two-stage approach is implemented
in extensions to the OpenBUGS software [1, 2], which is freely available from www.openbugs.net.

Rapid-acting insulin analogues (such as insulin aspart and insulin lispro) can assist in safely optimising
glucose control [3–5], but little is known about their pharmacokinetics and reproducibility in pregnancy.
A significant gestational delay of approximately 30 min in time-to-peak plasma aspart concentration from
early to late pregnancy has been previously described [6]. The aims of the study reported herein were to
explore the relationship between aspart pharmacokinetics and clinical/demographic factors for subjects
with type 1 diabetes undergoing continuous subcutaneous insulin infusion (CSII) during pregnancy and
to assess reproducibility within and between subjects.

Basic clinical results from some of these analyses have been reported previously [7]. Here, we present
and explore more thoroughly the statistical and methodological issues.

2. Data

Our data are from two 24-h trials of insulin aspart for pregnant women with type 1 diabetes conducted
between March 2009 and April 2011 [8, 9]. Study protocols were approved by the Research Ethics
Committee, and all participants provided written informed consent.

Table I. Summary of the 13 clinical and demographic factors.

Factor Summary

Maternal age (years) 32(4.5)
Body mass index (kg/m2) 27(3.3)
Glycated haemoglobin (HbA1c) at booking (%) 7.1(1.0)
Duration of diabetes (years) 18(8.6)
Pregnancy gestation (weeks) 22(6.5)
Expected total daily dose (units/day) 55(18)
Peak bolus rate (units/hour) 9.3(5.0)
Recruited at Kings College [baseline Addenbrookes] (indicator) 5/22 women
Bolus delivered over longer than 1 min (indicator) 8/88 profiles
Multiple boluses (indicator) 17/88 profiles
Closed-loop basal insulin delivery (indicator) 24/88 profiles
Study 1 [baseline study 2] (indicator) 10/22 women
Breakfast [baseline dinner] (indicator) 44/88 profiles

Means (standard deviation) shown for continuous factors, and the number of profiles/women
(out of total number) with that attribute are shown for dichotomous indicators.
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During each study, women arrived at the clinical research facility (Addenbrooke’s Hospital,
Cambridge, UK) at midday and were monitored for 5 h after dinner on day 1 and breakfast on day 2. In
study 1, 10 women were studied on two occasions: in early (12–16 weeks) and in later (28–32 weeks)
gestation [8], with standardised dinner and breakfast, and under sedentary conditions. In study 2, 12
women were studied on two occasions in mid gestation (12–33 weeks) with standardised meals, snacks
and exercise (3×20-min walks at 14:00, 19:30 and 09:00 h; and 2×50-min treadmill sessions at 15:00 and
09:30 h) [9].

A CSII delivering aspart maintained stable fasting and pre-meal glycaemic conditions during each visit
using either closed-loop or conventional CSII. Under closed-loop CSII, the basal rate was adjusted every
15 min using continuous glucose measurements, whereas with conventional CSII, the women set tem-
porary basal rates and used correction boluses according to capillary glucose measurements. The basal
infusion rate was recorded from 14:00 h on day 1 in the first study and from 00:00 h on day 1, before the
study started, in study 2. The median (interquartile range) infusion rate was 0.6(0.1–1.2) international
units (U) per hour. All prandial insulin boluses were calculated according to capillary glucose levels
and were initiated at 18:00 h on day 1 and 11:00 h on day 2. The median (interquartile range) prandial
bolus dose was 8.9(6.5–12) U. We assume boluses infused steadily over a 1-min period, apart from eight
boluses, which were delivered over longer periods. Insulin concentration readings were recorded from
16:30 h on day 1 in the first study and from 14:00 h on day 1 in the second study. Plasma insulin con-
centration was measured every 10 min for 90 min post-meal, every 15 min for 1.5–5 h post-meal and at
15- to 30-min intervals at other times, providing an average of 59 measurements per woman. Plasma
insulin concentration was measured by an immunochemiluminometric assay (Invitron, Monmouth, UK;
intra-assay coefficient of variation (CV) 4.7% and inter-assay CV 7.2–8.1%). Further details of study
procedures are reported elsewhere [8, 9].

We consider each mealtime separately so that the basic unit of study is a time series of insulin concen-
trations (a ‘profile’) over a period around the evening (17:30–23:00 h on day 1) or morning (06:30–12:00 h
on day 2) meal from a particular visit of a pregnant woman. A total of 22 women underwent two visits,
each involving two meals; this gave rise to 22 × 2 × 2 = 88 profiles to model.

Thirteen clinical and demographic factors were examined. These factors, which were considered time
invariant at the profile-level, are summarised in Table I.

3. Methods

3.1. Profile-level model

3.1.1. Mechanistic model. We use a two-compartment model to represent insulin kinetics, as shown
in Figure 1. At time t, Q1(t) and Q2(t) represent the insulin masses (in international units, U) in two
subcutaneous tissue compartments, representing the delay in absorption into the blood. A controlled
infusion of insulin enters compartment 1 at a rate Inf(t) (mU/min), supplemented by boluses of insulin,
which we model as entering at a rate Bol(t) (mU/min). Insulin leaves both compartments according to
a first-order process, with rate constant (tmax)−1, where tmax is the time-to-peak insulin concentration in
minutes. This gives rise to a pair of ordinary differential equations:

dQ1(t)
dt

= Inf(t) + Bol(t) − Q1(t)∕tmax, (1)

dQ2(t)
dt

=
Q1(t) − Q2(t)

tmax
, (2)

with Q1(0) = Q2(0) = 0, where t = 0 corresponds to midnight on day 1 before the trial starts. The
run-in time between t = 0 and the time t = tstart, when the trial starts, allows the states Q1(tstart) and
Q2(tstart) to become independent of Q1(0) and Q2(0). Equations (1)–(2) do not, in general, have a closed-
form solution. In this paper, we obtain a numerical solution, instead, via the Cash–Karp Runge–Kutta
method [10].

We base our regression function on the observable quantity in these trials, which is plasma insulin
concentration. This is assumed to equilibrate instantaneously with the efflux from compartment 2 and is
given by Q2(t)∕(tmax × wt × MCR), where wt denotes the patient’s body weight (kilogramme) and MCR
is the metabolic clearance rate per unit of body weight: MCR is the volume of plasma (l) cleared of
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Figure 1. Two-compartment model for insulin kinetics, in which Q1(t) and Q2(t) represent the insulin masses
in two subcutaneous tissue compartments, representing the delay in absorption into the blood. Inf(t) and Bol(t)

represent insulin input via continuous infusion and supplemental boluses, respectively.

insulin per minute, per kilogramme. To account for any long-acting insulin taken before the start of the
study (which continues to have an effect for around 24 h), we add a linear, ‘residual insulin’ term to our
regression function. We assume that residual insulin concentration changes at a rate a (pmol/l/min) and
that the post-prandial concentration at time tend (5 h post-meal) is b (pmol/l). The regression function is
then given by

𝜇(𝜃, z, t) =
Q2(t)

tmax × wt × MCR
+ a

(
t − tend

)
+ b,

with unknown parameters 𝜃 = (tmax,MCR, a, b)′ and observed data z = (wt, tend)′.

3.1.2. Observation model. Denote by yijkm the mth measured plasma insulin concentration, taken at time
tijkm, for individual i during and the following meal k of visit j (i = 1,… ,N, j = 1,… , Ji, k = 1,… ,Kij,
m = 1,… ,Tijk). We assume

yijkm ∼ N
(
𝜇ijkm, 𝜎

2
ijkm

)
, 𝜇ijkm = 𝜇

(
𝜃ijk, zijk, tijkm

)
,

where 𝜃ijk and zijk are profile-specific vectors of unknown parameters and data, respectively. In addition,
the residual variance is given by

𝜎2
ijkm = 𝜅2

ijk + 𝜆
2
ijk × 𝜇

2
ijkm,

which combines additive and multiplicative variance models, allowing for increases in measurement error
above some baseline level as the modelled insulin concentration increases.

3.2. Population model

We wish to make inferences about the unknown parameters tmax, MCR, a and b. In particular, we are
interested in establishing whether any relationships exist between the parameters and the observed covari-
ates, and in quantifying their variabilities both within and between women. We begin by making separate
distributional assumptions for each component (indexed by l = 1,… , 4) of the parameter vector 𝜃ijk:

𝜃ijkl ∼ LN
(
𝜂ijkl, 𝜎

2
𝜃l

)
, l = 1, 2, 𝜃ijkl ∼ N

(
𝜂ijkl, 𝜎

2
𝜃l

)
, l = 3, 4,

where LN(. , .) denotes a log-normal distribution with first and second parameters corresponding to
mean and variance, respectively, on the log-scale. Note that we specifically avoid making a multivari-
ate assumption for the whole 𝜃ijk vector, for reasons that we will discuss later (Section 5). By choosing
different forms for 𝜂ijkl, we can specify a variety of population models for the 𝜃ijkls. In particular, we con-
sider one-level, two-level and three-level population models as follows. In each case, we consider models
both with and without covariates included.

3.2.1. One-level models. Here, we assume that the profile-specific parameters 𝜃ijkl are all conditionally
independent, given a set of global parameters (or fixed effects). Hence

𝜂ijkl =
{
𝜙l + Wijkl𝛽l with covariates
𝜙l without

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3144–3158
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where Wijkl is a row-vector containing observed values (for individual i at meal k of visit j) of the
covariates chosen as predictors for the lth kinetic parameter (l = 1,… , 4); we discuss this further in
Section 3.2.4. In this model, 𝜙l represents the global mean (or intercept if covariates are included in
the model), and 𝜎2

𝜃l
represents the total variability (after any controlling for covariates) of parameter (or

log-parameter) l.

3.2.2. Two-level models. Here, we acknowledge that profiles from the same woman may be correlated.
It is tempting to achieve this by introducing patient-specific intercept and gradient parameters. However,
with only four profiles from each woman, it is not very realistic to attempt to estimate patient-specific
covariate effects, and so, we allow only the intercept to vary between women:

𝜂ijkl =
{
𝜓il + Wijkl𝛽l with covariates
𝜓il without

with 𝜓il ∼ N(𝜙l, 𝜎
2
𝜓l
), i = 1,… ,N. Here, 𝜎2

𝜓l
measures the between-patient variability (for parameter l),

and 𝜎2
𝜃l

now represents the within-patient variability.

Figure 2. Directed acyclic graph representation of the three-level (visit) model with covariates. Each variable in
the model is represented by a node, and links between the nodes denote direct dependence. Stochastic and deter-
ministic (logical) dependence are represented by solid and dashed lines, respectively. Variables that are repeated

are enclosed by ‘plates’ with the plate label denoting the range of repetition (e.g. i = 1,… ,N).

3148

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3144–3158



R. J. B. GOUDIE ET AL.

3.2.3. Three-level models. Additionally, we might acknowledge that profiles from the same visit for a
given woman may be correlated. Alternatively, profiles corresponding to the same mealtime for a given
woman may be correlated. We might, therefore, allow visit-specific or mealtime-specific intercepts via

𝜂ijkl =

{
𝜒V

ijl + Wijkl𝛽l with covariates

𝜒V
ijl without

or 𝜂ijkl =

{
𝜒M

ikl + Wijkl𝛽l with covariates

𝜒M
ikl without

,

respectively. Here, 𝜒V
ijl ∼ N

(
𝜓il, 𝜎

2
𝜒V

l

)
or 𝜒M

ikl ∼ N
(
𝜓il, 𝜎

2
𝜒M

l

)
, and again 𝜓il ∼ N

(
𝜙l, 𝜎

2
𝜓l

)
, i = 1,… ,N.

In both cases, 𝜓il represents the patient-specific mean intercept for parameter l, and 𝜎2
𝜓l

measures the
between-patient variability. The terms 𝜎2

𝜒V
l

and 𝜎2
𝜒M

l

, respectively, measure the variability between visits

and between mealtimes (for a given individual) of the random intercepts for parameter l. In the case of
visit-specific intercepts, 𝜎2

𝜃l
now measures the within-visit variability, whereas in the case of mealtime-

specific intercepts, 𝜎2
𝜃l

measures the within-mealtime variability.
Figure 2 shows a graphical model representation of our statistical model in the case of three-level

(visit) model with covariates.

3.2.4. Covariate selection. Suppose we have c available covariates in total and we arrange their observed
values in an n × c matrix X, where n is the total number of profiles. We expect the importance of each
covariate may differ between parameters of the mechanistic model, and thus, 𝜂ijkl for each l = 1,… , 4
may be a function of a different subset of the predictors. We represent the selected subset of covariates by
a vector 𝛾l = (𝛾l1,… , 𝛾lql

)′. This gives the column indices in X of the selected covariates. Let Wl denote
the corresponding n × ql design matrix and Wijkl denote the row of Wl corresponding to meal k at visit j
for individual i. Thus, the appropriate linear predictor term for inclusion in 𝜂ijkl is Wijkl𝛽l, where 𝛽l is a
vector of ql regression coefficients. In this paper, we treat each ql, 𝛾l and 𝛽l as unknown parameters and
estimate their values using reversible jump MCMC [11, 12]. Note that we standardise (and centre) the
continuous covariates in X so that they are assessed in covariate selection on the same scale.

Interactions. Preliminary exploratory analyses suggested that parameters may differ between study
and/or mealtime. However, when these covariates were included in X, neither was selected with high
probability. We therefore decided to explore possible interactions. We allow for this by replacing study
and mealtime in X with indicator variables for the following four combinations: study 1 breakfast, study
1 dinner, study 2 breakfast and study 2 dinner. We then choose a suitably weighted prior for the number
of these indicators allowed in the model simultaneously, as discussed in Section 3.3.2.

3.3. Priors

3.3.1. Variance components. The parameters of the residual variance model are treated as nuisance
parameters and are assigned the following vague priors:

𝜅ijk ∼ U(0, 100), 𝜆ijk ∼ U(0, 1), i = 1,… ,N, j = 1,… , Ji, k = 1,… ,Kij. (3)

The upper bound of 1 for the 𝜆ijks is chosen as residuals larger in magnitude than the modelled concentra-
tion are implausible in this setting. The remaining variability parameters are all assigned vague uniform
priors on the standard deviation scale:

𝜎𝜃l
, 𝜎𝜓l

, 𝜎𝜒V
l
, 𝜎𝜒M

l
∼ U(0, 100), l = 1,… , 4.

3.3.2. Fixed effects. The global intercepts (or means if no covariates are included in the model), 𝜙l,
l = 1,… , 4, are assigned vague normal priors with zero mean. The variance for the log-transformed
parameters (l = 1, 2) is 1002, whereas 10002 is chosen for l = 3, 4. The following prior distributions are
assumed for the regression coefficients:

𝛽lv ∼ N
(

0, 𝜎2
𝛽lv

)
, l = 1,… , 4, v = 1,… , ql.

However, in reversible jump MCMC, the elements of each 𝛽l will play different roles in the covariate
model from one iteration to the next; that is, a given element may correspond to various different covari-
ates during evolution of the simulated Markov chain. Hence, it seems appropriate to choose the same prior

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3144–3158
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variance for each element. In light of this, we can standardise the covariates so that the model treats them
all equally. But we may still wish to allow for more or less diffuse priors for different types (or groups)
of covariate. We thus decompose the linear predictor into separate terms for the continuous, binary and
‘study–mealtime-interaction’ covariates:

Wijkl𝛽l = WC
ijkl𝛽

C
l + WB

ijkl𝛽
B
l + WI

ijkl𝛽
I
l ,

where the C, B and I superscripts denote subvectors of Wijkl and 𝛽l, corresponding to continuous, binary
and interaction covariates, respectively, and the same prior variance is specified for all elements of each
subvector of 𝛽l.

The prior standard deviation for coefficients corresponding to each covariate group is given by
Δ𝛽l∕1.96Δx, where Δ𝛽l is the width of the range of plausible values for the lth kinetic parameter (or
log-parameter) and Δx is the width of the range of values for that covariate-type: Δx = 1 for binary
covariates (including study–mealtime interactions) and Δx ≈ 2×1.96 for standardised continuous covari-
ates. This is based on the assumption that the minimum and maximum plausible gradients define a 95%
prior interval. Note that, lacking other prior information, we set Δ𝛽l to the range of the corresponding
stage 1 posterior medians, and so, there is an element of using the data twice. While undesirable, this is
necessary because the chosen prior variance influences the probability of inclusion of covariates in the
model; hence, an informative prior is essential here.

The parameters associated with each covariate group
(
qG

l = dim
(
𝛽G

l

)
, 𝛾G

l , 𝛽
G
l , with G ∈ {C,B, I}

)
are updated in the overall MCMC scheme as a separate reversible jump block. In each case, we wish to
assume that all covariate models are equally likely a priori. We begin by assuming that all models of the
same dimension are equally likely:

p
(
𝛾G

l |qG
l

)
=
(

cG

qG
l

)−1

, G = C,B, I; l = 1,… , 4,

where cC, cB and cI are the total numbers of available continuous, binary and interaction covariates,
respectively. We then choose

qC
l ∼ Bin

(
cC, 0.5

)
, qB

l ∼ Bin
(
cB, 0.5

)
, p(qI

l ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
12

qI
l = 0

4
12

qI
l = 1

6
12

qI
l = 2

1
12

qI
l = 3

0 qI
l = 4

,

where the latter prior excludes the possibility that qI
l = 4 as this would lead to an unidentifiable model

and acknowledges that all four possible models with qI
l = 3 are essentially the same. Note that this spec-

ification renders equally probable a priori all distinct and identifiable models both within each covariate
group and for the composite model defined by 𝛾l and ql.

3.4. Inference

3.4.1. Hierarchical model. Let Ω denote the collection of all parameters in the population model for
the 𝜃ijkls. For example, for the simple one-level population model discussed in Section 3.2.1, Ω =(
𝜙, 𝛽, 𝜎2

𝜃
, 𝛾, q

)
, where, here and throughout, a quantity not indexed by i, j, k, l or m represents the collec-

tion of all quantities sharing the same variable name, for example, 𝜙 = (𝜙l)l=1,…,4. The joint posterior
distribution under the hierarchical model is then given by

p(Ω, 𝜃, 𝜅, 𝜆 ∣ y) ∝ p(y ∣ 𝜃, 𝜅, 𝜆)p(𝜅)p(𝜆)p(𝜃 ∣ Ω)p(Ω). (4)

We make inference for the full hierarchical model (4) through a two-stage approach [13], which is outlined
as follows.
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3.4.2. Stage 1 analysis. In the first stage, we construct and estimate a posterior distribution for each
profile independently, using the likelihood defined in Section 3.1.2, independent priors for the nuisance
parameters given by (3) and independent, ‘flat’ priors for the kinetic parameters given by

tmax
ijk ∼ U(5, 500), MCRijk ∼ U(0, 0.25), aijk ∼ N

(
0, 1002

)
, bijk ∼ N

(
0, 1002

)
, (5)

where the lower and upper bounds for tmax and MCR represent the minimum and maximum physiolog-
ically plausible values, respectively. Using MCMC, we generate a sample of simulated values for the
profile-specific parameters from each profile-specific posterior:

p1

(
𝜃ijk, 𝜅ijk, 𝜆ijk ∣ yijk

)
∝ p

(
yijk ∣ 𝜃ijk, 𝜅ijk, 𝜆ijk

)
p
(
𝜅ijk

)
p
(
𝜆ijk

)
p1

(
𝜃ijk

)
, (6)

where yijk denotes the set of all measured concentrations for profile ijk and p1(𝜃ijk) is the ‘stage 1 prior’ for

𝜃ijk, given by the product of terms in (5). We denote the samples by {𝜃(h)ijk , 𝜅
(h)
ijk , 𝜆

(h)
ijk }, h = 1,… ,Hijk, and

store them for use in stage 2, where they will be used to form proposal distributions for the profile-specific
parameters in the full hierarchical model.

3.4.3. Stage 2 analysis. Stage 2 defines an MCMC scheme for updating all unknown parameters in the
full hierarchical model. The parameters for each of the 12 covariate selection sub-models, 𝛽G

l , 𝛾G
l , qG

l ,
G = C,B, I, l = 1,… , 4, are jointly updated using reversible jump MCMC as described elsewhere [12].
The remaining parameters in Ω are updated by standard means. Each of the ‘intercept’ parameters, 𝜙l

and, where appropriate, 𝜓il, 𝜒
V
ijl and 𝜒M

ikl, i = 1,… ,N, j = 1,… , Ji, k = 1,… ,Kij, l = 1,… , 4, has a full
conditional distribution that is available in closed form, and so a standard Gibbs step is appropriate. The
variance components, 𝜎𝜃l

, 𝜎𝜓l
, 𝜎𝜒V

l
, 𝜎𝜒M

l
, l = 1,… , 4, can be updated by slice sampling [14], say, which

is the default option in OpenBUGS for our model.
The profile-specific parameters 𝜃ijk, 𝜅ijk and 𝜆ijk are updated, jointly, as follows. From (4), their joint

full conditional distribution is given by

p
(
𝜃ijk, 𝜅ijk, 𝜆ijk ∣ Ω, y

)
∝ p

(
yijk ∣ 𝜃ijk, 𝜅ijk, 𝜆ijk

)
p
(
𝜅ijk

)
p
(
𝜆ijk

)
p
(
𝜃ijk ∣ Ω

)
. (7)

We wish to make a Metropolis–Hastings update with this as the target distribution. A candidate update

(𝜃ijk, 𝜅ijk, 𝜆ijk) →
(
𝜃⋆ijk, 𝜅

⋆
ijk, 𝜆

⋆
ijk

)
is drawn from the proposal distribution by choosing s uniformly from

{1,… ,Hijk} and setting
(
𝜃⋆ijk, 𝜅

⋆
ijk, 𝜆

⋆
ijk

)
=
(
𝜃
(s)
ijk , 𝜅

(s)
ijk , 𝜆

(s)
ijk

)
, where the right-hand side is one of the samples

stored in stage 1. From (6) and (7), the target-to-proposal density ratio is thus

R
(
𝜃ijk

)
∝

p
(
𝜃ijk ∣ Ω

)
p1

(
𝜃ijk

) .

Note the cancellation of likelihood terms and nuisance priors. This makes for rapid computation in stage
2, facilitating exploration of a wide range of population models for the profile-specific parameters. That
the ratio does not depend on 𝜅ijk or 𝜆ijk also means that these parameters need not actually be updated.
The Metropolis–Hastings acceptance probability for the proposed update is min(1, 𝜌), where 𝜌 is given
by the target-to-proposal ratio at the proposed state divided by that at the current state:

𝜌 =
p
(
𝜃⋆ijk ∣ Ω

)
p
(
𝜃ijk ∣ Ω

) ×
p1

(
𝜃ijk

)
p1

(
𝜃⋆ijk

) .
If the stage 1 prior p1(.) is ‘flat’, as in our model, then the ratio on the right can be ignored as it is
approximately equal to 1.
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3.5. Model assessment via cross-validation

The two-stage method described earlier also expedites cross-validation to assess the various models con-
sidered. In leave-one-out cross-validation, a model is evaluated via predictions drawn from the model
estimated with a single observation, or set of observations, excluded. Large disparities, measured by a
discrepancy function, between these predictions and the excluded observations are indicative of model
inadequacy. The procedure is repeated with each observation, or set of observations, omitted in turn. Such
approaches have been widely discussed in the literature [15, 16].

Note that here we wish to assess the population model for the random effects 𝜃ijk, as opposed to the
fit of the pharmacokinetic model to the observed response data. A discrepancy function defined in terms
of the response data is not appropriate when the focus is on the random effects, because agreement or
otherwise of random effect estimates is unnecessarily masked by the observation error. Hence we require
a discrepancy function that measures differences between ‘observed’ and ‘predicted’ random effects,
denoted 𝜃obs

ijk and 𝜃pred
ijk , respectively. Clearly, the random effects cannot be observed, but the profile-

specific posteriors defined by (6) can be used in lieu of observations [15]. The predicted random effects
are obtained from the ‘predictive prior’:

p
(
𝜃

pred
ijk ∣ y⧵ijk

)
= ∫ p

(
𝜃

pred
ijk ∣ Ω

)
p
(
Ω ∣ y⧵ijk

)
dΩ, (8)

where y⧵ijk denotes all observations except those from individual i during and the following meal k of visit
j. This must be estimated with observations from each profile excluded in turn, which can be prohibitively
time-consuming if the model is complex, as here. However, with the two-stage methodology presented
here, only the second stage (which is computationally quick) needs to be repeated each time. Hence, this is
a potentially important alternative to importance sampling [17], which can be unstable, or approximation
[15, 18].

Let D
(
𝜃obs

ijk , 𝜃
pred
ijk

)
= 𝜃

pred
ijk − 𝜃obs

ijk be our discrepancy function. We define the Bayesian p-value P =

Pr
(

D
(
𝜃obs

ijk , 𝜃
pred
ijk

) ≤ 0 ∣ y
)

and estimate it, for each profile, by independent sampling from the predictive

prior (8) and the stage 1 posterior (6), obtaining n p-values in total. Each p-value should be uniformly
distributed under the ‘true’ sampling model [15], suggesting that model assessment guided by quantile–
quantile plots of p-values is appropriate (note, however, that the p-values are not independent).

4. Results

4.1. Stage 1 analysis

To draw samples from the independent, profile-specific posterior distributions, we used the freely avail-
able BUGS software [2, 19]. Specifically, we used the OpenBUGS implementation (www.openbugs.
net), which allows regression functions to be specified in terms of differential equations as standard.

Figure 3. Four profiles from a typical individual: study 1, subject 1. The solid line is the (stage 1) posterior
median model fit, and the shaded region is the 95% credible interval. The black circles (∙) are the observed insulin
concentrations. Note that some of the variabilities between these plots are due to differences in the input (bolus

sizes were 8, 5, 20 and 20 international units, respectively).
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Convergence of the generated Markov chains was assessed informally by visually examining chain-
history plots and formally by applying the Brooks–Gelman–Rubin diagnostic [20, 21] to the output
from two Markov chains starting from widely differing initial values. We found that a burn-in phase
of 100 000 iterations was easily sufficient. We performed a further 1 000 000 iterations following burn-
in for each profile, retaining every 100th value of each kinetic parameter (giving 10 000 approximately
independent samples).

Figure 4. Model assessment following stage 1 analysis: (a) predicted (posterior median) versus observed insulin
concentrations (∙) with identity line y = x (—); (b) posterior median standardised residuals versus time with
mealtimes indicated by vertical lines (—); and (c) posterior median standardised residuals versus posterior median

predicted concentration. The grey lines (—) are splines for the standardised residuals.

Figure 5. Marginal posterior inclusion probabilities for each of the 15 covariates considered under each of the
four population models (including covariates) for each of the four kinetic parameters (tmax, MCR, a and b). The

shading is proportional to the inclusion probability.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3144–3158
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A total of 1302 plasma insulin concentrations were available for analysis. The model fits for a typical
individual are shown in Figure 3. Our model was unable to fit six out of the 88 profiles available, and
so these profiles were removed from our analysis. Figure 4(a) shows predicted (posterior median) versus
observed insulin concentrations for all profiles fitted and indicates a good performance overall. To exam-
ine the model’s performance in more detail, we also plot standardised residuals against time and against
predicted concentration (Figure 4(b) and (c), respectively). There are no obvious trends, suggesting that
the residual variance model is adequate and the residuals are generally within the expected range, although
there is a hint of systematic bias about 10 min after each mealtime.

Figure 6. Decomposition of the variability in each pharmacokinetic (PK) parameter under each population model.
Each panel represents the variance decomposition for a particular PK parameter for models either with (top row) or
without (bottom row) covariates. Each coloured bar represents the proportion of total variance in the corresponding
component for one of the four population models considered. Numbers shown within bars and on the y-axes are
variances multiplied by the following factors, for log tmax, log MCR, a and b, respectively: ×103, ×103, ×104

and ×10−2.
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4.2. Stage 2 analyses

Figure 5 shows the posterior inclusion probabilities for each covariate being included in the linear pre-
dictor for each pharmacokinetic parameter, under each population model. We consider an inclusion
probability greater than 0.5 to signify a notable association. The covariates identified as associated with
each pharmacokinetic parameter were substantively consistent across the population models considered.
All models strongly indicate that both tmax and a differ after breakfast in study 2 compared with the other
meals and studies. We also found evidence for association of tmax with pregnancy gestation and diabetes
duration and of a with peak bolus rate, expected total daily dose and delivery of multiple boluses. Evi-
dence of association with MCR was less strong, although there was some evidence that MCR differs in
study 2. No notable associations were observed for b.

Cross-validation analyses demonstrated that all of the population models we consider perform well:
quantile–quantile plots (not shown) of the distribution of p-values under each model showed no obvious
departures from uniformity. It was not possible to discern whether any specific model gave ‘more uni-
form’ plots than others. Differences amongst the models are more evident in the variance decomposition.
These are shown in Figure 6. Two conclusions in common are apparent for tmax and MCR when com-
paring the various models. First, the models including covariates exhibit notably less residual variability,
as might be expected given the evidence of parameter–covariate association described earlier. Second,
the residual variability is reduced in the two-level and three-level models compared with the one-level
model. The three-level, meal-specific model, however, offers little beyond the two-level model in terms
of explaining variability of the random effects: the residual variability is almost identical. In contrast, the
three-level, visit-specific model substantially reduces the residual variability beyond that in the two-level
model. The two-level and three-level models are similarly an improvement for the post-prandial con-
centration b, but there is little difference between the models with and without covariates. Conversely,
woman-specific effects are less apparent for the accumulation rate a, but the inclusion of covariates does
make a notable difference to the residual variability.

Overall, the three-level, visit-specific model with covariates appears to offer the best explanation of
the observed variation. Parameter estimates for this model are shown in Table II. The most notable effect
is the faster absorption after breakfast in study 2 as implied by the substantially decreased time-to-peak
tmax for these profiles. We also estimated that time-to-peak tmax increases by 1.7% per week of gestation
in pregnancy but decreases by 1.1% per year of diabetes.

Table II. Insulin aspart pharmacokinetics in type 1 diabetes pregnancy.

Aspart PK parameter

Metabolic clearance Accumulation Post-prandial
Time-to-peak, tmax rate, MCR rate, a concentration, b

Factor (min) (l/kg/min) (pmol/l/min) (pmol/l)

Typical parameters for each
study/mealtime combination

Study 2 breakfast 41(3.9) 0.028(0.0030) 0.056(0.044) 33(12)
Study 2 dinner 57(4.7) 0.022(0.0025) −0.047(0.033) 30(11)
Study 1 breakfast 55(3.8) 0.025(0.0021) −0.029(0.027) 31(10)
Study 1 dinner 56(3.9) 0.025(0.0021) −0.034(0.027) 31(10)

Effect sizes

Peak bolus rate (U/h) 0.85(1.1)% 0.11(1.2)% 0.012(0.0048) 0.49(1.4)
Pregnancy gestation (week) 1.7(0.73)% −0.33(0.87)% −0.0039(0.0032) 0.47(1.4)
Multiple boluses −11(14)% 17(15)% 0.12(0.049) 39(24)
Expected total dose (U/day) 0.37(0.36)% −0.45(0.33)% −0.0027(0.0012) −0.19(0.62)
Duration of diabetes (year) −1.1(0.64)% 0.66(0.76)% 0.0021(0.0024) −0.12(1.2)

Top: posterior means (standard deviation (s.d.)) of each pharmacokinetic (PK) parameter for each study and mealtime
combination for ‘typical’ covariate values, as defined by setting all continuous and binary covariates (except study–
mealtime interactions) to zero. Bottom: posterior means (s.d.) of the effect sizes for covariates with a posterior inclusion
probability > 0.5 in at least one model – estimates are conditional on inclusion of the corresponding covariate. The
effect sizes shown for tmax and MCR are estimated percentage changes per unit change in the covariate; for a and b, we
show the estimated absolute change. All notable effects are indicated in bold.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 3144–3158

3155



R. J. B. GOUDIE ET AL.

5. Discussion

We have presented a two-stage method for simplifying the analysis of complex hierarchical data. This
can be thought of as a type of particle filtering (sequential Monte Carlo sampling; [22, 23]), where the
resampling is carried out via Metropolis–Hastings. The method can be used whenever there is sufficient
information in unit-specific data that units can be analysed independently (in stage 1). When unit-specific
models are complex, as here, independent analyses may be a prerequisite for a full hierarchical analy-
sis anyway, because the unit-specific data sets may require individual attention, for example, because of
convergence issues or because we wish to assess whether a given unit-specific model can perform ade-
quately over a wide range of units, say. However, our method is most likely to be useful when there is a
range of ‘population’ models to consider for the unit-specific parameters. This is because the likelihood
is dealt with in stage 1 and need not be computed in stage 2. Hence, the second stage can be performed
repeatedly at little computational cost. This has allowed us to explore parameter–covariate relationships
between four unknown parameters and 13 covariates of three different types, under a range of hierarchical
structures (with up to four levels), for a model defined in terms of differential equations. The two-stage
approach has also greatly facilitated cross-validation analyses to assess model performance. We chose to
use cross-validation to explore models because we wished to focus our assessment of the models specif-
ically on the choice of random effects model. Alternative approaches, such as the deviance information
criterion (DIC) [24], would have undesirably focused on the pharmacokinetic model instead. It is our
belief that the analyses presented herein would have been practically infeasible (or at least extremely
cumbersome and time-consuming) without a two-stage approach.

We are mainly interested in the parameters tmax and MCR, because a and b relate to the ‘residual’ insulin
model, which is somewhat speculative (although it may aid in compensating for model misspecification).
Our analyses indicate that tmax is related to diabetes duration and gestational age in pregnant women
using CSII. Time-to-peak increases by 1.7% per week of gestation and decreases by 1.1% per year of
diabetes. In addition, there was a faster time-to-peak after breakfast in study 2, suggesting that moderately
vigorous physical activity may counteract the gestational delay. The factors contributing to slower tmax in
late pregnancy are unknown. The impact of diabetes duration may be related to loss of residual C-peptide
activity [25]. While these clinical/demographic factors are not easily modified, the impact of exercise,
most likely related to enhanced tissue perfusion and temperature, is potentially modifiable and may be
a useful tool for speeding up insulin absorption as pregnancy advances. In contrast with Gagnon-Auger
et al. [26], where substantially higher doses were used, our results do not indicate relationships between
tmax and prandial dose, total daily dose or maternal body mass index.

There were no highly probable relationships identified for MCR, although in some models, there was
a suggestion of decreased clearance following study 2 dinner and increased clearance following study 2
breakfast. This latter effect could be due to increased blood flow following physical exercise. There were
also no relationships identified for b, but several were apparent for the drainage rate (−a). The drainage
rate increased as the expected total daily dose increased but decreased with peak bolus rate and when
multiple boluses were used.

A limitation of our analysis is that the data apply only to aspart delivered by CSII and are not
necessarily applicable to lispro (another rapid-acting insulin analogue) or multiple daily injection
therapy. However, as noted by Homko et al. [27], aspart and lispro have comparable pharmacokinetics,
and CSII is increasingly recommended when glycaemic control targets are not achieved on multiple daily
injections [28].

Although the two-stage method does not require independence between the four kinetic parameters,
we chose in Section 3.2 to make separate distributional assumptions for each parameter. This is to avoid
being too informative about the sizes (and relative sizes) of the variance components in our model, which
characterise both between-patient and within-patient variabilities. The obvious alternative would be to
assume multivariate normality for the vector (log tmax, log MCR, a, b)′, with a covariance matrix free to
assume any symmetric–positive–semidefinite (SPSD) form, allowing for any correlations that may exist
between the different kinetic parameters. The inverse-Wishart prior commonly chosen for such covari-
ance matrices ensures the SPSD constraint automatically. However, it is more informative than might be
expected and can have considerable influence on the posterior, particularly when, as here, there are mul-
tiple levels of variability and small sample sizes within levels (e.g. [29]). Other approaches proposed in
the literature (e.g. [30, 31]) may be less informative, but we have chosen the relatively simple option of
not allowing for correlations between kinetic parameters and assuming uniform priors for their variances.
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We feel that this approach also reduces the possibility of confounding between covariance parameters
and the inclusion of covariate effects.
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