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Summary

Studies of complex genetic diseases have revealed many risk factors of small effect, but the combined amount
of heritability explained is still low. Genome-wide association studies are often underpowered to identify true
effects because of the very large number of parallel tests. There is, therefore, a great need to generate data
sets that are enriched for those markers that have an increased a priori chance of being functional, such as
markers in genomic regions involved in gene regulation. ReMo-SNPs is a computational program developed
to aid researchers in the process of selecting functional SNPs for association analyses in user-specified regions
and/or motifs genome-wide. The useful feature of automatic selection of genotyped markers in the user-pro-
vided material makes the output data ready to be used in a following association study. In this article we de-
scribe the program and its functions. We also validate the program by including an example study on three
different transcription factors and results from an association study on two psychiatric phenotypes. The
flexibility of the ReMo-SNPs program enables the user to study any region or sequence of interest, without
limitation to transcription factor binding regions and motifs. The program is freely available at: http://www.
neuro.ki.se/ReMo-SNPs/

1. Introduction

Recent advances in high-throughput sequencing and
genotyping techniques have enabled researchers to gen-
erate unprecedented amounts of genomic data. These
efforts have led to the identification of more than 60
million single nucleotide polymorphisms (SNPs)
(Frazer et al., 2007). Information about these markers
has been gathered in the National Center for
Biotechnology Information (NCBI) Database of
Single Nucleotide Polymorphisms (dbSNP), which
holds information about their location, alleles and fre-
quencies (Sherry et al., 2001). Since the coding
sequences make up less than 2% of the human genome
(Vernot et al., 2012), the vast majority of the identified
SNPs are placed in non-coding DNA sequences, for
which the function is not always evident.

While some rare diseases, such as sickle cell anae-
mia, cystic fibrosis and haemophilia, are caused by a

single mutation in a coding DNA sequence, most dis-
eases have a more complex, genetic component, likely
involving a considerable variety of genetic risk factors.
Recent genome-wide association studies (GWAS)
have identified several thousand SNPs associated
with a large number of complex traits and phenotypes.
A majority of these associated SNPs are located in
non-transcribed regions of the genome, which makes
it harder to explain the underlying disease mechanism
(Schaub et al., 2012; Bulik-Sullivan et al., 2013). It is,
however, well known that non-coding sequences com-
prise important regulatory sequences, such as tran-
scription factor binding regions, which play an
important role in gene regulation. Recent large-scale
efforts such as the ENCODE and the GTEx projects
have contributed greatly to our understanding of
these regions and their role in regulating gene tran-
scription levels (The Encode Project Consortium,
2012; Lonsdale et al., 2013).

Transcription factors usually recognize and bind to
specific DNA sequences called motifs. The motif may
be located in close proximity to or even within the* Corresponding author: Andrea.Carmine.Belin@ki.se
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gene it regulates. It can, however, also be found at a
considerable distance from the gene (Lin et al.,
2007). The binding of transcription factors acts as a
molecular switch and regulates the timing and amount
of gene transcription. Mutations in these regulatory
sequences that are introduced by SNPs occurring
within the motif may therefore have a major impact
on gene function and could in many cases contribute
to disease risk, onset and/or severity.

Several previous attempts have been made to con-
struct tools to search for SNPs placed within regulat-
ory DNA sequences. FASTSNP (Yuan et al., 2006),
PupaSuite (Conde et al., 2006), SNPlogic (Pico
et al., 2009) and regSNPs (Teng et al., 2012) are all
examples of tools to identify and analyse SNPs in
transcription factor binding sites. One common limi-
tation of these tools is that they depend on already
existing knowledge of binding models for transcrip-
tion factors gathered in different databases. Several
of these tools also include a scoring system for SNP
prioritization based on previously reported knowledge
of transcription factor binding regions and disease
correlations. In addition, many of these tools can
only analyse one region or one gene at a time.

In a previous study (Graae et al., 2012), we studied
estrogen receptor (ER) binding variation genome-
wide. We were interested in combining the in silico
results from the motif analysis with evidence from ex-
perimental studies that had mapped ER binding
across the genome. We developed several Perl scripts
to aid us with the computational tasks during that
study. We found this method of selecting SNPs for
an association study very fruitful and to further auto-
mate and simplify this process, we have now devel-
oped a computational tool to search for SNPs in
any region and/or motif of interest genome-wide. We
have included results on several such analyses in this
work and also studied the resulting SNPs of interest
in GWAS on two psychiatric phenotypes.

A unique feature of ReMo-SNPs is the possibility
to search for SNPs in both regions and motifs of inter-
est, which enables the user to combine in silico iden-
tified motif data with functional in vitro or in vivo
experimental data. In addition, the program can pro-
vide a list of which of the SNPs of interest are included
in the user-provided material of genotyped SNPs. The
program further maximizes the number of available
data points for the GWAS study by identifying geno-
typed SNPs in high linkage disequilibrium (LD) ac-
cording to a user-defined threshold for the
interesting SNPs that have not been genotyped di-
rectly. Thus, the output files with the interesting and
genotyped region and/or motif SNPs generated by
the ReMo-SNPs program are ready to be used in a
following GWAS study.

The flexibility of ReMo-SNPs makes it easy to
adapt to different projects and research questions.

This tool will allow scientists to carry out studies in
any region or motif of interest genome-wide, without
limitation to transcription factor binding regions. By
using DNase I hypersensitivity sites as regions in
ReMo-SNPs, for example, one is able to study several
classes of cis-regulatory elements including promoters,
enhancers, insulators, silencers and locus control
regions. Another important field of research where
the ReMo-SNPs program could be of great use is in
the study of epigenetic changes of the genome. SNP
differences in regions with histone modification or
DNA methylation may easily be studied by using
the ReMo-SNPs program (Pellegrini & Ferrari,
2012). Other types of input regions for the
ReMo-SNPs program might for example be the geno-
mic regions for several genes involved in a specific
pathway of interest.

We believe that researchers will find the unique fea-
tures of ReMo-SNPs useful when integrating in silico
and functional data and using the derived information
to analyse real-world association data. The program is
freely available online and can be downloaded at:
http://www.neuro.ki.se/ReMo-SNPs/

2. Materials

(i) Individuals

Two data sets have been used in this study; one in-
cluded individuals diagnosed with major depression
(MD) and healthy controls and the other individuals
diagnosed with bipolar disorder (BP) and healthy con-
trols. The numbers of individuals included in the final
data sets for the association analyses are shown in
Table 1.

The Netherlands Study of Depression and Anxiety
(NESDA; http://www.nesda.nl), a longitudinal cohort
study, has collected the MD material. Cases were
recruited from mental health care organizations, pri-
mary care and community samples. Inclusion criteria
were a lifetime diagnosis of Diagnostic and Statistical
Manual of Mental Disorders, 4th Edition, major de-
pression disorder as diagnosed by the Composite
International Diagnostic Interview psychiatric inter-
view, age 18–65 years and self-reported Western
European ancestry. The control subjects, matched for

Table 1. Number of individuals included in the final
data sets for the association analyses.

Total Women Men

Cases Control Cases Control Cases Control

MD 1727 1758 1200 1076 527 682
BP 964 998 487 490 477 508
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age and sex and also of Western European ancestry,
were derived from the Netherlands Twin Register
(NTR; http://www.tweelingenregister.org), which has
collected longitudinal data from twins and their fam-
ilies since 1991. After the first quality control analyses
samples were excluded from the study if they failed
quality criteria such as: uncertain linkage between
genotype and phenotype, genomic outliers, such as
too high genome-wide homozygosity (∼75%), samples
with contamination, failed genotyping or excessive
missing genotype data (<25%) (Boomsma et al., 2008).

The National Institute of Mental Health Human
Genetics Initiative (NIMH GI; http://nimhgenetics.
org/) has collected and characterized samples from
individuals, of European ancestry, diagnosed with
BP for the Bipolar Disorder Consortium (Bipolar con-
sortium). The cases were interviewed with the
Diagnostic Interview for Genetic Studies (DIGS)
and diagnosed with a standard best estimate final di-
agnosis (BEFD) procedure. The control subjects,
also of European ancestry, were collected separately
through a NIMH-supported contract mechanism be-
tween Dr Pablo Gejman and Knowledge Networks,
Inc. Average age at onset for the cases was 19 years
and average age at study start for the controls was
52 years. Individuals that did not meet quality control
criteria, such as low call rate, excessively high or low
heterozygosity, incompatibility between reported gen-
der and genetically determined gender or unexpected
familial relationships, were removed from the study
(Smith et al., 2009).

(ii) Genotype data and quality control

Genome-wide genotype data for individuals in the two
data sets were obtained from the Genetic Association
Information Network (GAIN). Written informed con-
sent had been obtained by the original investigators
from all participants in the study. The study was con-
ducted in accordance with GAIN and the
investigators.

The Perlegen GWAS platform was used for geno-
typing of the MD sample, which was conducted by
Perlegen Sciences (Mountain View, CA, USA), and
has been described elsewhere (Sullivan et al., 2009).
The Study Accession ID for the MD sample is
phs000020.v2.p1.

The Broad Institute Center for Genotyping and
Analysis (http://www.broad.mit.edu/node/306) used
the Affymetrix Genome-Wide Human SNP Array
6·0 platform for genotyping the BP samples, which
has been described by Smith et al. (2009). The
dbGaP Study Accession ID for the bipolar study is
phs000017.v3.p1.

We performed additional quality control steps and
excluded individuals if the missing rate/person was
>0·1 and SNPs with a Hardy-Weinberg equilibrium

p-value of 40·0001 in the controls, a minor allele fre-
quency of <0·01 or if missing genotypes were >0·05
(Graae et al., 2012).

3. Methods

The ReMo-SNPs Perl script is a computational tool to
search for polymorphic markers (SNPs) in user-
specified regions and/or motifs genome-wide. The pro-
gram and all of the tools are fully available online at
http://www.neuro.ki.se/ReMo-SNPs. A Perl inter-
preter is required to run the script. Most modern
Unix/Linux/OS X machines come with a Perl inter-
preter, in which case no additional installation is
required.

Here we describe the definitions of the different files
needed to run the ReMo program:

(i) Definitions

(a) Regions and motifs

Regions are genomic areas of interest, while motifs refer
to the specific nucleotide patterns that transcription fac-
tors recognize. The user defines which genomic regions
the program should search through. In our example we
included experimentally validated binding regions for
three different transcription factors: the glucocorticoid
receptor (GR), the peroxisome proliferator-activated re-
ceptor (PPAR) and the vitamin D receptor (VDR). The
user can also define a motif of interest that the program
should search for, e.g. the specific binding motif for
each transcription factor. The program searches for
the motif of interest as well as the reverse complement
sequence in a step-wise manner, going through each
one of the downloaded nucleotide sequence files
(FASTA files) moving one nucleotide at a time.

The BED file contains information about genomic
regions of interest. The user may assign a score to
highlight regions of special interest. The default
score value is set to 1. The BED file should thus con-
tain three to five columns with the following infor-
mation: chromosome, start position (bp), end
position (bp), name (optional) and score (optional).

(b) Region score

The region score (stated in the last column of the BED
file) is used to prioritize regions of interest, whether the
motif is present within the region or not. The user can
specify a score for each genomic region. On the com-
mand line, the user can then specify thresholds for
the region score. Each region with a score above the
threshold will be included in the analysis, even when
no transcription factor binding motif is found within
the region. The region score option thus allows the
user to ensure that regions with strong experimental
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support are included in the analysis, whether or not the
in silico analysis suggests the presence of a binding site.

The motif file is a text file with the motif of interest
written in International Union of Pure and Applied
Chemistry (IUPAC) code. ReMo-SNPs can currently
analyse one motif at a time. Therefore, only one motif
per file is currently allowed.

FASTA files provide a simple format to store
nucleotide sequences. They contain a header and, be-
neath that, the genetic code in a plain format, letter by
letter. The ReMo-SNPs program uses one FASTA file
for each chromosome.

The HapMap file provides physical positions (chro-
mosome and bp) for SNPs identified in the HapMap
project.

The ‘AND’, ‘OR’ and ‘SCORE’ options allow the
user to specify if the program should search for i)
SNPs in the motif AND the genomic regions, or ii)
SNPs either in the motif OR the genomic regions, or
iii) SNPs in regions AND the motif plus in those
regions that exceed a user-defined SCORE threshold.

The MAP file describes the genotype data provided
by the user. Each line of the file describes a single mar-
ker and must contain exactly four columns: chromo-
some, rs-number, genetic distance (in centimorgan)
and bp position.

(c) LD files and r2-threshold

The user can specify an r2-threshold that ReMo-SNPs
applies to look for proxy markers in LD-blocks for
non-genotyped SNPs. This is valuable for SNPs in
interesting genomic regions and/or motifs that are
not included in the genotyping platform used for the
study.

(d) Long, medium and short runs

By default the program is set to run the long version of
the analysis, which includes all seven steps of the pro-
gram. When using ReMo-SNPs to select SNPs for an
association study, the user will choose the long run,
which generates genome-wide data on markers in
the user-specified motifs and/or regions. In addition,
a list with interesting markers, for which the program
was unable to find genotype data, is also provided.
The medium and short runs generate descriptive stat-
istics of the SNPs located in the regions and/or motifs
of interest. For both these options the program ends
after step 4. The medium run provides descriptive stat-
istics on SNPs located in motifs. The presence of mul-
tiple polymorphisms within a short motif may indicate
low sequence quality for that part of the genome. The
short option provides information on which SNPs are
located in motifs and regions of interest, respectively.
For all three options the program provides infor-
mation about how many times a SNP is found in

each position of the motif, and how many motifs con-
tain one, two, three or more SNPs.

(ii) Files to download

Using ReMo-SNPs requires the download of several
publicly available data files. Each file, or category of
files, should be saved in a separate folder on the
local hard drive.

The ReMo-SNPs Perl script can be downloaded
here: http://www.neuro.ki.se/ReMo-SNPs/

If the user does not yet have the Perl interpreter in-
stalled, it can be downloaded at: http://www.perl.org/
get.html

A relevant HapMap file can be downloaded at:
http://hapmart.hapmap.org/BioMart/martview. Our
example uses genomic Build 36. The resulting text
file has three columns: chromosome, position and
marker ID.

(a) FASTA files

ReMo-SNPs requires one FASTA file for each chromo-
some. The IUPAC-masked files, which provide infor-
mation regarding the position of SNPs, can be
downloaded from the genome browser at: http://genome.
ucsc.edu/. In our example we used SNP129-FASTA,
hg18 build 36·1, March 2006. It is absolutely crucial that
the FASTA files and the HapMap file are based on the
same build.

(b) LD files

LD files, containing pairwise LD data, can be down-
loaded from http://hapmap.org/ then go to Bulk
Data Download then go to LD Data. These files are
compressed (.gz) and should not be unpacked for
the ReMo-SNPs analysis. Since the LD of SNPs var-
ies greatly between populations, it is utterly important
that one download LD data for the same population
as the one in the user provided genotype data set.

(iii) Program overview

The ReMo-SNPs program comprises seven steps,
which are described below. An overview of the
input, action and output parts of the program is illu-
strated in a flowchart in Fig. 1. Detailed descriptions
of command line options and the contents of the dif-
ferent output files, the log file and information spe-
cified in the terminal window are provided in the
Appendix.

(a) Step 1: find markers in motifs genome-wide

The nucleotide sequences in the FASTA files contain
information on which positions are variable. By
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scanning through each FASTA file step by step the
program identifies all instances of the user-provided
motif. It then determines whether or not the motif
contains any polymorphisms. In parallel, the program
gathers descriptive statistics on how many times the
motif was found (with or without SNPs), how many
times a SNP occurred in each position and how
many SNPs each motif contained. Motifs with more
than one SNP are potentially problematic, because
they may indicate low-quality sequencing data. The
script issues a warning about such motifs and provides
information about their physical position.

(b) Step 2: find rs-numbers for markers from step 1

Step 1 provides information on the position for each
motif-SNP, but not the rs-number. By comparing the
physical locations with information provided in the
HapMap datafile, the program identifies the rs-numbers
of all HapMap validated SNPs found in step 1.

(c) Step 3: find markers in genomic regions of interest

In this step, the program uses the user-provided BED file
with information on the genomic regions of interest to
identify SNPs located in these regions. Regions without
a user-defined score are assigned a default value of 1.

(d) Step 4: combine lists according to user input and
generate a list of candidate SNPs

The script uses the data generated in steps 2 and 3 to
generate candidate lists of SNPs placed in interesting
regions and/or motifs. The user-specified AND, OR
or SCORE options are used in this step to determine
whether to search for SNPs that occur in regions,
motifs or both. If the user has chosen to carry out
a medium or short run, the script provides descriptive
statistical data gathered so far, and the run ends here.
In a medium run, the program identifies the
rs-numbers for the potentially problematic SNPs
identified in step 1 (motifs that contain more than
one SNP) and provides information on these SNPs
in the terminal window. If the user has chosen a
short run, the program writes the SNPs located in
regions and/or motifs of interest to two separate out-
put files.

(e) Step 5: go through the MAP file and obtain a list
of all genotyped markers

In this step the program works on the genotype data
file, the MAP file, provided by the user. It goes
through this file and extracts information about the
genotyped markers in the material.

Fig. 1. Flowchart illustrating an overview of the input, action and output parts of the ReMo-SNPs program.
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(f) Step 6: find genotyped markers and proxy markers
for those markers that have not been genotyped

To identify which of the candidate SNPs identified in
steps 1–4 have been genotyped in the material, the
program now compares the candidate SNP list created
in step 4 with the information generated in step 5. For
markers not genotyped in the material the script now
searches for proxy SNPs that are in high LD with the
SNP of interest. It accomplishes this task by using in-
formation in the LD data files. The r2-threshold is spe-
cified by the user on the command line when starting
the script. The identified proxy SNPs are written to a
file called lddata.txt. The script then analyses the list
of identified LD-markers to see if any of these have
been genotyped in the material and could be included
in the study to provide information about the original
non-genotyped marker. If a candidate SNP has several
proxy LD-SNPs, the one with the highest r2-value is
chosen. The identified genotyped proxy SNPs are
written to a file called genotyped.lddata.txt.

(g) Step 7: write output

Two output data files are created in this step. The first,
called ReMo.SNPs.out, lists all interesting genotyped
markers from the candidate list created in step 4 and
the genotyped LD-markers from step 6. The second
output file, called list.of.markers.with.no.genotype.
and.no.proxy.out, lists SNPs that are interesting be-
cause of their genomic location in a putative func-
tional region, but have not been genotyped and have
no good proxy marker.

(iv) Transcription factor binding regions

Information on the genome-wide transcription factor
binding regions used in this study was downloaded
from publicly available data sources. Chromatin
immunoprecipitation (ChIP) followed by next-
generation DNA-sequencing was used to identify the
15 847 binding regions for the GR reported by
Reddy et al. (2009), as well as the 2276 VDR binding
regions reported by Ramagopalan et al. (2010). Both
data sets were obtained from the supplemental infor-
mation of the respective publications. Schmidt et al.
(2011) reported two data sets with genome-wide
PPAR binding including 37 554 and 27 838 binding
sites, respectively. We downloaded these data sets
from the NCBI Gene Expression Omnibus (GEO)
page, with GEO accession number: GSM678397 and
GSM678398. We identified overlapping regions be-
tween the two data sets and then removed 5% of the
biggest regions, which were possible artifacts, as
reported in the original study. The remaining 22 456
PPAR binding regions were used in our study.

(v) Motifs

Homodimers of ligand-bound GR translocate from
the cytosol to the nucleus and bind to specific DNA
responsive elements called glucocorticoid response el-
ements. In our study we used the GR half-site,
RGnACA, identified by Reddy et al. (2009). The acti-
vated PPAR forms heterodimers with the retinoid X
receptor (RXR) before binding at peroxisome prolif-
erator hormone response elements on the DNA. We
used a minimal PPAR-motif, AGGTCA, which has
been reported in several studies (IJpenberg et al.,
1997; Juge-Aubry et al., 1997; Michalik et al., 2006;
Degenhardt et al., 2007). Like PPAR, VDR also
forms heterodimers with RXR before binding to hor-
mone response elements on the DNA. Since the full
VDR motif, AAGGTCAnAGAGTTCA, reported
by Ramagopalan et al. (2010), is very long and
specific, we instead used the minimal motif,
RGKKSA, reported by several groups (Heikkinen
et al., 2011; Hidalgo et al., 2011; Zhang et al., 2011;
Meyer et al., 2012).

(vi) SNP density analysis

To obtain information about the distribution of the
SNPs identified by the ReMo-SNPs program, we cal-
culated the densities of SNPs in the regions and motifs
of interest.

(a) Region- and motif-SNP density

For each transcription factor the SNP density was cal-
culated by dividing the total number of SNPs in
regions of interest by the total length of all regions
for that transcription factor. For each transcription
factor the motif-SNP density was calculated by divid-
ing the total number of SNPs found in the motif of
interest by the total length of the motifs, which was
calculated by multiplying the motif length in bases
by the total number of motifs found in the genome.
To obtain a comparison number for the entire
human genome, we divided the total number of
SNPs reported in the HapMap file for Utah residents
with Northern and Western European ancestry (CEU)
from the CEPH collection (2 814 954 SNPs) by the
total number of bps in the entire genome (given by
the total length of the FASTA files).

(vii) SNP distribution within the motifs

The SNP distribution within the motifs was analysed in
two ways: i) total number of SNPs in each position of
the motif and ii) the distribution of motifs with 1, 2, 3
or more SNPs. These descriptive data were generated
by running the short version of the ReMo-SNPs soft-
ware on each one of the three transcription factors.
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(viii) External assessment of functional SNPs

In order to evaluate the power of the ReMo-SNPs soft-
ware to identify functional SNPswe compared theoutput
data generated from motif-SNPs placed within the tran-
scription factor regionsof interest (SNPs inamotif placed
within any of the regions defined in the BED file) with
those outside these regions (SNPs in a motif not placed
within any of the regions defined in the BED file). No
gold standard currently exists, and each computational
tool has unique strengths and weaknesses. The identified
SNPs for each data set were, therefore, tested using three
different software tools that calculate functionality scores
for the SNPs: Regulome (http://regulome.stanford.edu/),
SNP Function Annotation Portal (http://brainarray.
mbni.med.umich.edu/Brainarray/Database/SearchSNP/
snpfunc.aspx) and SNP Function Prediction (http://
snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm). For each
program the generated functional scores were translated
to numerical values and added together for 75 randomly
chosen SNPs from each data set to generate an average
value.

(ix) Quality control of the association study materials

The quality control analyses as well as the following
association analyses and statistical calculations were
performed with the open-source software PLINK
(http://pngu.mgh.harvard.edu/~purcell/plink/) as pre-
viously described (Graae et al., 2012).

(x) Association analysis

A two-tailed Fisher’s exact test was performed for the as-
sociation studies. Statistical significancewasdefinedasp <
0·05 applying Bonferroni correction for multiple testing.

4. Results

(i) Program output data

The long version of ReMo-SNPs was run for all three
transcription factors for both the MD and the BP

material. The generated output data are shown in
Table 2.

Approximately 8200 SNPs were found in the GR
regions, 11 700 SNPs in the PPAR regions and 2650
SNPs in the VDR regions. The program found approxi-
mately 137 000 SNPs in the GR motif genome-wide, 16
300 SNPs in PPAR motifs and 216 400 SNPs in VDR
motifs. When combining this data and searching for
motif-SNPs placed within the experimentally validated
binding regions the program found 545 such SNPs in
the GR data set, 85 in the PPAR data set and 255 in
the VDR data set. The ReMo-SNPs program then iden-
tified which of these SNPs were genotyped in the user
provided material and tried to find SNPs in high LD
for the not genotyped SNPs. In total there were
approximately 320 genotyped GR SNPs, approximately
50 genotyped PPAR SNPs and approximately 140 gen-
otyped VDR SNPs. A few of these SNPs were excluded
during the quality control steps and in the end there
were 315 GR SNPs, 46 PPAR SNPs and 133 VDR
SNPs in the MD material, and 326 GR SNPs, 54
PPAR SNPs and 139 VDR SNPs in the BP material
that could be included in the association analysis.

The runtime for the program varies from seconds to
several hours depending on several aspects such as:
type of run (e.g. short, medium or long); if the user
chooses to analyse the data genome-wide or only in
one chromosome; the number of regions and type of
motif. When running the long version of the program
with genome-wide data as described above the analy-
ses took a few hours to complete.

(ii) Quality control of the material

A summary of individuals and SNPs excluded in the
different quality control steps as described in the
Methods section are shown in Table 3.

(iii) Association analysis

None of the genotyped candidate SNPs remained
significant after correcting for multiple testing.

Table 2. Results from the long run with the ReMo-SNPs program.

GR PPAR VDR

MD BP MD BP MD BP

Region-SNPs 8207 8207 11 712 11 712 2656 2656
Motif-SNPs 136 925 136 925 16 287 16 287 216 412 216 412
Candidate SNPs 545 545 85 85 255 255
Genotyped candidate SNPs 91 129 14 18 48 58
LD-SNPs 3667 3322 653 545 1656 1439
Genotyped LD-SNPs 228 201 32 36 91 84
SNPs without genotype or LD-marker 226 215 39 31 116 113
Total number of genotyped interesting SNPs 319 330 46 54 139 142
SNPs excluded during quality control 4 4 0 0 6 3
SNPs in association study 315 326 46 54 133 139
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Table 4 shows the top associated SNP for each
data set.

(iv) External assessment of functional SNPs

We evaluated the power of ReMo-SNPs to identify
functional SNPs by using three different functional
software tools: Regulome, SNP Function Annotation
Portal and SNP Function Prediction (Wang et al.,
2006; Xu & Taylor, 2009; Boyle et al., 2012). By ana-
lysing the SNPs identified by the ReMo-SNPs program
with these tools we obtained external scores for how
likely it was that a certain ReMo-identified SNP
would be functional. This validation method included

ReMo-identified motif-SNPs located within vs. outside
experimentally verified binding regions.

(a) Motif-SNPs placed within vs. outside transcription
factor binding regions

The VDR motif generated higher functional average
scores for motif-SNPs placed within experimentally
verified binding regions compared to outside these
regions in all assessment tools (p < 0·01, using
Student’s t-test, see Fig. 2). The GR and PPAR motifs
generated higher functional average scores in one out
of the three validation programs (p < 0·000·1,
Regulome). Note: the score-values on the y-axis are

Table 3. Summary of individuals and SNPs excluded in each quality control step.

Data set Test Threshold

Number of
excluded
individuals
or SNPs

Number of
individuals or
SNPs before test

Number of
individuals or
SNPs after test

MD Missing rate per person >0·1 0 3485 3485
Hardy-Weinberg equilibrium 40·0001 720 438 129 437 409
Minor allele frequency <0·01 68 437 409 437 341
Missing genotypes >0·05 408 437 341 436 933

BP Missing rate per person >0·1 0 1962 1962
Hardy-Weinberg equilibrium 40·0001 39 650 635 650 596
Minor allele frequency <0·01 0 650 596 650 596
Missing genotypes >0·05 73 650 596 650 523

Table 4. Association results showing the top associated SNP for each data set.

TF Disease Gender
Number
of SNPs rs-number Allelesa

MAF
(cases)

MAF
(controls) p-valueb

corrected
p-valuec

GR MD All 315 rs7802018 G<A 0·3294 0·3675 0·0008899 >1
Females 315 rs7802018 G<A 0·3241 0·0373 0·0006633 >1
Males 315 rs4820741 T <C 0·1705 0·2186 0·0032550 >1

BP All 326 rs1891805 G<A 0·0494 0·0732 0·0021650 >1
Females 326 rs6696816 C < T 0·4220 0·3439 0·0004041 >1
Males 326 rs2284933 C <G 0·3742 0·4518 0·0005050 >1

PPAR MD All 46 rs6052286 G<T 0·2967 0·2688 0·0105700 >1
Females 46 rs6052286 G<T 0·3038 0,2698 0·0115100 >1
Males 46 rs1918778 C < T 0·2380 0·2862 0·0089750 >1

BP All 54 rs13142632 G<C 0·3250 0·3601 0·0220000 >1
Females 54 rs13142632 G<C 0·3066 0·3671 0·0054350 >1
Males 54 rs6844643 G<A 0·3522 0·2963 0·0080810 >1

VDR MD All 133 rs178399 A<G 0·4394 0·4086 0·0099420 >1
Females 133 rs178399 A<G 0·4515 0·4110 0·0062530 >1
Males 133 rs3011770 C < T 0·2643 0·3118 0·0113700 >1

BP All 139 rs3100610 C < T 0·2749 0·2425 0·0215700 >1
Females 139 rs9516887 C < T 0·4127 0·4714 0·0094340 >1
Males 139 rs4142872 A <C 0·2564 0·3120 0·0068560 >1

aMinor allele <major allele.
bThe lowest p-value for each group of association tests.
c p-value corrected for 3039 markers.
MAF, minor allele frequency; TF, transcription factor.
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unique for each functional program and should thus
not be compared between the different tools.

(v) SNP density analysis

The density of SNPs in the transcription factor bind-
ing regions was calculated and compared to the

average SNP density in the human genome, based
on data from CEU ancestry from the CEPH collec-
tion. All three transcription factor binding regions
showed a higher SNP density compared to the average
SNP density in the CEU human genome (p < 0·0001,
using Chi-square test). VDR and PPAR had a SNP
density close to 0·12%, GR just above 0·11% and
the CEU human genome just below 0·10% (see
Fig. 3). In addition to studying the SNP density in
the transcription factor binding regions, we also calcu-
lated the SNP density in the transcription factor
motifs. Compared to the average SNP density in the
human genome, the SNP density for the motifs was
significantly higher (p < 0·0001). The GR motif had
the highest SNP density with 0·18% whereas PPAR
and VDR both had 0·15%.

(vi) SNP distribution within the motifs

The total number of SNPs at different positions within
the motifs and for each type of nucleotide was ana-
lysed. The numbers were normalized to the total
amount of SNPs found for each motif. No consistent
pattern was observed for any of the three studied tran-
scription factors (see Fig. 4). It is well known that dif-
ferent types of nucleotides mutate at different rates,
with G and C having a higher mutation rate than A
and T. It was, therefore, surprising to see the high mu-
tation rate for T (19·6%) in the PPAR motif vs. G
(15·8 and 19·4%) and C (15·8%). As expected, the G
and C nucleotides together (37·3%) generally har-
boured more SNPs compared to A and T together
(21·1%).

We further analysed the SNP distribution for each
type of nucleotide.

A final descriptive analysis of the number of SNPs
per motif showed that very few of the motifs were
polymorphic and that the vast majority of all of the

Fig. 2. Motif-SNPs placed within vs. outside
experimentally verified transcription factor binding regions
for (a) Regulome, (b) SNP Function Annotation Portal
and (c) SNP Function Prediction. The score-values on the
y-axis are unique for each program and could therefore
not be compared between the different programs. Data is
presented as mean ± standard error of the mean,
** = p < 0·01, *** = p < 0·0001.

Fig. 3. Assessment of SNP densities in regions and motifs
of interest compared to the genome at large. Average SNP
density in the human genome of the CEU population and
in the binding regions and motifs for the three
transcription factors, GR, PPAR and VDR. Data is
presented as *** = p < 0·0001.
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variable transcription factor motifs only had one SNP
per motif (see Fig. 5(a–c)).

5. Discussion

Recent advances in genomic technologies have
enabled researchers to gather enormous amounts of
data for the study of genetically complex traits. A sub-
stantial part of the genetic contribution to these traits
is likely being accounted for by non-coding, regulat-
ory variants. This insight has driven a strong need
for ever-more sophisticated bioinformatics tools to
deal with the resulting large data sets. Furthermore,
in addition to performing GWAS with all genotyped
markers, more targeted approaches that investigate
pathways and regulatory networks are emerging. To
meet the demand for tools dedicated to the genome-
wide analysis of non-coding, regulatory variation,
we have developed ReMo-SNPs. We herein describe
its functionality and compare its output to other avail-
able computational programs.

(i) Identification and external assessment of functional
SNPs

We evaluated ReMo-identified motif-SNPs within and
outside experimentally verified transcription factor
binding regions using three different software tools
(Regulome, SNP Function Annotation Portal and
SNP Function Prediction). This step generated func-
tionality scores for each SNP found by ReMo-SNPs
based on previous reported data in different
databases.

SNPs located within experimentally verified tran-
scription factor binding regions generated significantly
higher scores for all three transcription factors in the

Regulome assessment tools. For the SNP Function
Annotation Portal and SNP Function Prediction
tools, VDR motif-SNPs within verified regions gener-
ated significantly higher scores, the rest showed a
tendency for higher scores except for PPAR in the
SNP Function Annotation Portal, where the
motif-SNPs placed outside the transcription factor
binding regions generated higher scores. These results
illustrate the benefit of being able to combine in silico
identified motif-SNPs with experimentally validated
transcription factor binding regions, which leads to
an enrichment for functional variants in the target
data set.

(ii) SNP density analyses

Compared to the average SNP density in the human
genome for the CEU population (just below 0·10%),
the density of SNPs was higher in the transcription
factor binding regions (0·11–0·12%) and even higher
within the motif sequences (0·15–0·18%), which is in

Fig. 4. The distribution of SNPs found at different
positions within the motif. The bars represent the six
different nucleotide positions within the motifs and the
y-axis shows the amount of SNPs in percent found for
each position normalized to the total number of SNPs
found for each motif. n = any nucleotide, A, T, G or C;
R =A or G; K =T or G; and S =C or G.

Fig. 5. The number of SNPs found per motif for each
transcription factor (a) GR, (b) PPAR and (c) VDR.
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very good agreement with results from previous stu-
dies (Guo & Jamison, 2005; Vernot et al., 2012).
Guo and Jamison, for example, found an overall
SNP density of 0·13% in gene promoter regions,
which increased to 0·20% in predicted transcription
factor binding site regions.

The uneven distribution of SNPs within the genome
has long been known to mirror the evolutionary press-
ure on different regions, with fewer SNPs found in
exons compared to introns and pseudogenes, where
the evolutionary pressure is lower. Since it is more
likely that a SNP causes a deleterious effect when
placed inside an exon compared to an intron, natural
selection keeps sorting out SNPs in exons. Why then
do we find a higher SNP density in the regulatory
regions compared to the average sequences in the gen-
ome? One explanation could be that SNPs placed in
regulatory regions may enable a more fine-tuned re-
sponse to environmental challenges. The ability to ad-
just gene regulation by slightly altering gene-
expression levels might be of major importance for
species to adapt to ever-changing environments
throughout evolution.

(iii) Motif-SNP distribution analyses

The motif-SNP distribution was analysed in several
ways: number of SNPs at different positions within
the motifs and for each nucleotide in the motif; as
well as number of SNPs per motif. When analysing
the number of SNPs at different positions in the
motifs, no consistent pattern could be observed. One
would expect that a SNP located in the flanking
regions of the motif would have a smaller effect on
the transcription factor binding properties compared
to a SNP placed in the middle of the motif sequence.
In that case we would have seen more SNPs in the
flanking regions and fewer SNPs in the middle parts.
For the motifs of both PPAR and VDR the opposite
pattern was observed instead, which suggests that the
process of SNP distribution is far more complex, per-
haps reflecting the different mutation rates for differ-
ent nucleotides in combination with the probable
different mutation tendencies at different positions
within the motif.

The SNP distribution for each type of nucleotide
showed that, as expected, the G and C nucleotides har-
boured more SNPs compared to A and T. Known
regulatory regions have increased CpG rates (also
known as CpG islands). This observation is, therefore,
in agreement with the above-mentioned finding that the
functional regions harbour more SNPs than the gen-
ome at large.

We also analysed the number of SNPs per motif.
Considering that the motif sequence length was only
six nucleotides long it is not surprising that very few
motifs had more than one SNP.

(iv) Association results

The association studies did not generate significant
p-values after correcting for multiple testing. We
chose the GR, PPAR and VDR transcription factors
in this study mainly because of practical reasons re-
garding the availability of high-quality genome-wide
experimentally validated binding data. There was no
particular a priori correlation of these markers with
MD or BP. It will be interesting to follow up on this
work by looking at transcription factors and gene
regulatory networks that have emerged recently for
these diseases. ReMo-SNPs can be a valuable tool
to help researchers with these studies.

6. Conclusions

We herein introduce a new computational tool that
can be used to enrich genetic data sets for predicted
functional variants. ReMo-SNPs can quickly analyse
genome-wide data and combine input from in silico
and in vitro analyses. We believe that the flexibility
and user-friendliness of ReMo-SNPs will be very help-
ful to researchers who want to select functional SNPs
for association analyses in user-specified regions and/
or motifs genome-wide.

Appendix

1. Detailed descriptions on command line options,
output files and terminal window output

(i) Command line

On the command line the user specifies the required
information for each type of run. For a long run all
information, a) – n), should be provided. For medium
and short runs, the user should specify the infor-
mation stated in a) – h) below.

a) perl -w ReMo.SNPs.pl
b) – HapMap [path and name of the HapMap data

file]
c) – Motifs [path and name of the motif file]
d) – FASTAdir [path and name of the folder with

FASTA files]
e) – bed [path and name of the BED file containing

the region data]
f) – regionScore [value for the score-threshold; this
command is optional]

g) – combo [AND, OR or SCORE, for type of combi-
nation of regions and motifs]

h) – typeOfRun [long, medium or short. The default
value is ‘long’ for a full run]

i) – map [path and name of the MAP file]
j) – LDdir [path and name of the folder with the .gz
LD files; do not unzip these files for analysis]
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k) – r2 [between 0·0 and 1·0; threshold for inclusion of
proxy markers]

l) – log [file name for the log-file (the default name is
ReMo.SNPs.log)]

m) – out [file name for the out-file (the default name is
ReMo.SNPs.out)]

n) >name.of.screenoutput.file.txt, optional command
to re-direct the script’s output if the user wants to
save the information written in the terminal window

(ii) Output files and information

(a) ReMo.SNPs.out

This file is created in step 7. It shows all interesting
genotyped markers from the candidate list in step 4
and the genotyped LD-markers from step 6.

(b) lddata.txt-file

This file is created in step 6 when the script searches
for proxy markers for those markers that have not
been genotyped. It contains 11 columns with the fol-
lowing information: chromosomal position of marker
1, chromosomal position of marker 2, population
code, rs-number for marker 1, rs-number for marker
2, D´, R2, LOD, fbin, rs-number of the candidate
SNP and chromsome.

(c) Genotyped.lddata.txt-file

This file is also created in step 6, when the program
identifies SNPs from the lddata.txt-file that have
been genotyped in the material. It contains the same
columns as the lddata.txt-file.

(d) List.of.markers.with.no.genotype.and.no.proxy.out

This file shows the interesting SNPs from the candi-
date list that should be analysed based on their lo-
cation but have not been genotyped and have no
good LD-SNP.

(e) motifsnplist.txt and regionsnplist.txt

These files are created in step 4 if one has chosen the
short run. They show all the SNPs found to be located
in the motif of interest genome-wide and the specified
regions of interest, respectively.

(iii) Log file example output

This is ReMo.SNPs.pl
Analysis started with the following arguments:

(In step 1:)
Currently working on Chromosome A
Sequence length and line counter

The sequence length shows how many letters the
FASTA file contains and the line counter corresponds
to the number of rows the FASTA file had before the
program made one row of it.

After giving this information for all chromosomes,
the script provides information for each chromosome
on how many SNPs are found to be located in the
motif of interest.

(In step 2:)
Information on how many markers the program
found genome-wide in the motif of interest is given.

(In step 3:)
Information on how many markers the program
found in genomic regions of interest is given.

(In step 4:)
The number of total candidate SNPs is given.

(In step 5:)
The number of markers that have been read from the
MAP file is printed.

(In step 6:)
The number of interesting SNPs with genotypes is
given.

(iv) Terminal window example output

Step 1 . . .

My motif is X character long
The original motif is ABC. . .
The reverse complement is ABC. . .
The IUPAC-motif is: [ABC. . .][ABC. . .]. . .
The reverse IUPAC-complement is: [ABC. . .]
[ABC. . .]. . .
Problem SNP found: chr/bp/motif-length
Position 1 had A mutations
Position 2 had B mutations
. . .

There were C motifs with one SNP(s)
There were D motifs with two SNP(s)
. . .

Step 2. . .
No rs-number was found for the following sequence:
XXX at position YYY on chromosome ZZ

Step 3. . .

Step 4. . .
If a medium run is chosen the following will be printed
in this step:

HapMap: position in bp and rs-number problem: po-
sition in bp and motif-length
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The following SNPs may be problematic because
they are located in motifs with more than one SNP:

Step 5. . .
Step 6. . .
Step 7. . .
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