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Abstract

Temperature plays a significant role in the survival and transmission of SARS-CoV (severe acute respiratory syndrome
coronavirus) and SARS-CoV-2. To reveal the binding differences of SARS-CoV and SARS-CoV-2 receptor-binding domains
(RBDs) to angiotensin-converting enzyme 2 (ACE2) at different temperatures at atomic level, 20 molecular dynamics
simulations were carried out for SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes at five selected temperatures, i.e. 200, 250,
273, 300 and 350 K. The analyses on structural flexibility and conformational distribution indicated that the structure of the
SARS-CoV-2 RBD was more stable than that of the SARS-CoV RBD at all investigated temperatures. Then, molecular
mechanics Poisson–Boltzmann surface area and solvated interaction energy approaches were combined to estimate the
differences in binding affinity of SARS-CoV and SARS-CoV-2 RBDs to ACE2; it is found that the binding ability of ACE2 to the
SARS-CoV-2 RBD was stronger than that to the SARS-CoV RBD at five temperatures, and the main reason for promoting such
binding differences is electrostatic and polar interactions between RBDs and ACE2. Finally, the hotspot residues facilitating
the binding of SARS-CoV and SARS-CoV-2 RBDs to ACE2, the key differential residues contributing to the difference in
binding and the interaction mechanism of differential residues that exist at all investigated temperatures were analyzed
and compared in depth. The current work would provide a molecular basis for better understanding of the high
infectiousness of SARS-CoV-2 and offer better theoretical guidance for the design of inhibitors targeting infectious diseases
caused by SARS-CoV-2.

Key words: COVID-19; SARS-CoV-2; molecular dynamics simulation; principle component analysis; hierarchical clustering
analysis

Introduction

Coronavirus disease 2019 (COVID-19) is a severe respiratory
disease caused by the highly infectious severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1, 2]. Within a few
months, COVID-19 has developed into a serious pandemic
due to the strong infectivity and high latency of the causative
agent. SARS-CoV-2 not only spreads quickly in older adults,
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but also has an impact on naive populations [3, 4]. SARS-
CoV-2 can be transmitted by multiple modes, including direct
contact, respiratory droplets and airborne that may even stay
in the air for an extended period of time [5–7]. Thus, the
external environment has a crucial impact on the successful
establishment of SARS-CoV-2 infection,and such variable factors
pose enormous challenges to the prevention of COVID-19.
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There is growing evidence showing that temperature plays an
important role in the stability and infectivity of coronaviruses,
and relative increases in temperature were found to have a dis-
advantageous influence on their transmission [8–10]. The rela-
tionship between weather and the transmission of SARS-CoV
and SARS-CoV-2 has been evaluated, and the results revealed
a negative correlation between infections with these coron-
aviruses and the average temperature [11, 12]. As revealed by
Chan et al. [13], the infectivity of SARS-CoV was greatly affected
by high temperature (38◦C). Fortunately, SARS-CoV gradually
vanished in 2003, which may be partly attributed to the rise
in temperature, as pointed out by Lin et al. [12]. Unlike SARS-
CoV, SARS-CoV-2 has not disappeared after the intense summer,
and the number of infected people is still increasing. Shock-
ingly, transmission of SARS-CoV-2 was found to occur in a high-
temperature public bathroom (up to 41◦C) [14]. Therefore, it can
be speculated that temperature has different effects on the
infectivity of SARS-CoV and SARS-CoV-2, and SARS-CoV-2 may
bemore resistant to high temperatures than SARS-CoV; however,
this hypothesis has not been supported by relevant experimental
or computational studies.

Both SARS-CoV and SARS-CoV-2 belong to betacoronavirus
[15]. Similar to other coronaviruses, the genome of SARS-CoV-2
also encodes four main structural proteins, i.e. spike (S), enve-
lope (E), membrane (M) and nucleocapsid (N) [16], and more
results for the coronaviruses predicted by ZCURVE_CoV 2.0 [17]
are also available at http://tubic.org/CoVdb. Among these struc-
tural proteins, S protein was confirmed to be an essential con-
tributor to the infectivity of SARS-CoV and SARS-CoV-2, which
mediates the entry of these coronaviruses into target cells, with
angiotensin-converting enzyme 2 (ACE2) serving as host cell
receptor [18–20]. Functionally, S protein is mainly composed of
two regions, S1 and S2. Among them, S1, which contains the
receptor-binding domain (RBD), is responsible for the attach-
ment of the virus to the host, whereas S2 facilitates the fusion
of viral and cellular membranes [21, 22]. In fact, successful inva-
sion of cells by SARS-CoV/SARS-CoV-2 is largely dependent on
protein–protein interactions between the RBD and ACE2 [23–25],
more specifically, the interaction of the receptor-binding motif
(RBM) in the RBD and ACE2 [26]. Thus, the binding characteristics
of RBD to ACE2 will provide insights into the differences in
infectivity of SARS-CoV and SARS-CoV-2 at different temper-
atures. Since the outbreak of SARS-CoV-2, a large number of
investigations on the interaction of the RBDwith ACE2 have been
carried out, but some of them have been conducted only at a
room temperature of 300 K [27, 28]. Although temperature is one
of the important factors affecting viral infectivity, its influence
on the binding differences between SARS-CoV and SARS-CoV-2
RBDs to ACE2 has not been clearly reported and thus requires
further investigation.

At present, high-resolution crystal structures of SARS-CoV
and SARS-CoV-2 RBD–ACE2 complexes have been retrieved from
the Research Collaboration for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB),which provide a reliable structural basis
for the follow-up in silico simulation. The corresponding struc-
tures of SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes, and
the superimposed structures of RBDs of SARS-CoV and SARS-
CoV-2 (Figure 1A) are generated via PyMOL software (http://www.
pymol.org).Notably, there are three disulfide bonds (SSBs) (C323–
C348, C366–C419 and C467–C474) in the SARS-CoV RBD and
four SSBs (C336–C361, C379–C432, C391–C525 and C480–C488) in
the SARS-CoV-2 RBD, respectively, and these SSBs may partially
contribute to the stabilization of S protein due to their impor-
tant roles in maintaining the structural stability of proteins

[29–31]. Structurally, the RBD of SARS-CoV/SARS-CoV-2 can be
divided into two parts: the core region, which includes five β

sheets (β1, β2, β3, β4 and β7), and the RBM, comprising residues
N424–Y494/S438–Q506.According to previous studies [32–35], the
mutant residues may be responsible for the structural and inter-
actional differences of the receptor and ligand. For a more intu-
itive demonstration of the differences in amino acid sequences
between SARS-CoV and SARS-CoV-2 RBDs, sequence alignment
was performed for the RBDs using MEGA software, and their
sequence similarity is 72.38% (Figure 1B). In Figure 1B, mutant
residues aremarked in green,whereas key interactional residues
are highlighted in blue according to the 2019 Novel Coronavirus
Resource (2019nCoVR) provided by the China National Center for
Bioinformation [36]. However, the difference in dynamic char-
acteristics induced by the mutation of residues in SARS-CoV
requires further in-depth analyses.

To compare the binding properties of SARS-CoV and SARS-
CoV-2 RBDs to ACE2 at different temperatures, molecular
dynamics (MD) simulations, analyses on structural stability,
binding affinity and binding mechanisms were integrated into
the current work (Figure 2). First, all-atoms MD simulations
were performed at five selected temperatures (200, 250, 273,
300 and 350 K) using Amber software [37]. Second, root-mean-
square fluctuations (RMSFs) and principal component (PC)
analyses were carried out to reveal the differences in structural
stability between SARS-CoV and SARS-CoV-2 RBDs during MD
simulations. Third, molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) and solvated interaction energy (SIE)
methods were combined to calculate the binding affinity of
SARS-CoV and SARS-CoV-2 RBDs to ACE2 and to determine
the major influential factor of their binding differences [38,
39]. Finally, the residue-based free energy decomposition
method, hierarchical clustering (HC) and hydrogen-binding
analyses were combined to probe the hotspot residues, key
differential residues with significant contributions to the
binding differences of the SARS-CoV/SARS-CoV-2 RBD to ACE2
and the interaction mechanism of the key differential residues
existing at all studied temperatures. Understanding the atomic-
level differences in structural stability of SARS-CoV/SARS-CoV-2
RBD and their binding abilities to ACE2 at different temperatures
not only provides great potential for revealing the transmission
mechanisms and designing potential drugs against SARS-CoV
and SARS-CoV-2, but also offers better theoretical guidance for
further experimental studies.

Materials and methods

Preparation of systems

The initial coordinates of the complexes under study were
obtained from the PDB, with PDB IDs 2AJF and 6M0J correspond-
ing to the SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes,
respectively [25, 40]. Once the crystal structure of each system
had been obtained, the preparation of the systems was carried
out as follows: (a) supplement of the missing residues (D376-
N381) in the SARS-CoV RBD by an online Modloop server [41];
(b) replacement of all CYSs involved in the formation of SSBs in
Figure 1 with CYXs to avoid adding hydrogen to the sulfur atom;
(c) connection of all missing atoms including hydrogen atoms to
their proper positions; (d) construction of SSBs between residues
C323 and C348, C366 and C419, C467 and C474 in SARS-CoV, as
well as C336 and C361, C379 and C432, C391 and C525, C480
and C488 in SARS-CoV-2; (e) immersion of the SARS-CoV and
SARS-CoV-2 RBD–ACE2 complexes in a truncated octahedron

http://tubic.org/CoVdb
http://www.pymol.org
http://www.pymol.org
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Figure 1. Crystal structures of proteins acquired from the RCSB PDB and sequence alignment. (A) Structures of SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes. The

RBDs are shown in cartoon modes, whereas ACE2 is shown in surface style. The disulfide bonds and RBM are highlighted in cyan and pink in SARS-CoV RBD and blue

and yellow in SARS-CoV-2 RBD, respectively. (B) Sequence alignment of SARS-CoV and SARS-CoV-2 RBDs. ‘·’ and ‘∗’ represent mutant and key interactional residues,

respectively.

box, where the buffer between the surface of the box and the
solute was set to 12.0 Å; (f) assessment of the charge of the
whole system; (g) introduction of the appropriate sodium ions
(Na+) into each system to render electrically neutral. Steps (b–
g) were accomplished by employing the Leap package [42] in
Amber software. The force field parameters for proteins (RBD
and ACE2) and water molecules were generated from the widely
used ff14SB force field and TIP3P model [43–45], respectively.

MD simulation

The employment of MD simulations has proven an effective way
to explore the dynamic characteristics of proteins [46–53]. To
improve the stability of MD trajectories, three crucial steps were
performed sequentially before MD simulation: (a) optimization

of the energy of each system to eliminate factors that may
have adverse effects on structural stability through steepest
descent and conjugate gradient methods, with each of the two
approaches being performed in 2500 steps; (b) an increase in
temperature for all systems from 0 K to the desired tempera-
tures of 200, 250, 273, 300 and 350 K within 2 ns, respectively;
(c) implementation of a dynamic equilibrium of 2 ns for each
temperature of each system (P=1 bar, T=200, 250, 273, 300 and
350 K). The reasons for choosing these five temperatures are
as follows. First, most of the current computational and experi-
mental studies have focused on what is generally referred to as
room temperature; hence, a temperature of 300 K was included.
Second, the SARS-CoV/SARS-CoV-2 RBD–ACE2 complex contains
12338/12510 atoms, which require a lot of computational time
and resources to complete the repeated MD simulation of large
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Figure 2. Flow chart for comparing the binding characteristics of SARS-CoV and SARS-CoV-2 RBDs to ACE2 at different temperatures.

systems over a long time. Therefore, the temperature interval
was set to 50 K for the other three temperatures of 200, 250 and
350 K over a wide temperature range. Finally, a temperature of
273 K (0◦C, freezing point of water) was included, considering the
temperature of the outbreak of SARS-CoV/SARS-CoV-2.

Next, MD simulations were performed without any restric-
tions on solutes, solvents and ions. Notably, repeatability has
been proven essential for obtaining the correct conclusion from
an MD simulation, and multiple repetitions can serve to obtain
more reliable sampling of conformations than a single MD sim-
ulation [54–56]. Hence, two repeated 100 nsMD simulations were
conducted in this work instead of a long 200 ns simulation,
and the equilibrium trajectories of these two simulations were
integrated into one trajectory afterwards to be used as analytical
samplings. Each of the above steps was accomplished via the
pmemd.cuda procedure in Amber software, and the Langevin
thermostat was used to control the temperature of each step
based on a collision frequency of 2.0 ps−1 [57]. During MD sim-
ulation, an efficient particle mesh Ewald algorithm with a spec-
ified cutoff of 10 Å was selected to evaluate the long-range

electrostatic energy, as this method provides many advantages
in dealing with long-range forces, including high accuracy and
computational efficiency [58]. Van der Waals interactions were
also calculated based on the same cutoff of 10 Å. All chemical
bonds, including hydrogen atoms, were constrained using the
SHAKE method [59].

PC analysis

PC analysis, a prevalent multivariate statistical approach, has
been successfully applied to many fields including bioinformat-
ics [60, 61]. In this study, PC analysis was conducted to explore
conformational changes in proteins caused by mutations in the
SARS-CoV RBD. Mathematically, a covariance matrix based on
the coordinates of the Cα atoms was initially built to implement
the PC analysis. The Cij elements included in this matrix were
obtained using the following formula:

Cij =

(

(ri − 〈ri〉)
(

rj −
〈

rj
〉)T

)

(

i, j = 1, 2, 3, · · · , 3N
)

, (1)
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where ri and rj indicate the Cartesian coordinates of Cα atoms

at the ith and jth positions, respectively, and the symbol
〈

r
〉

represents the average value of the coordinates.N is the number
of Cα atoms in the studied system, and the values of N for
SARS-CoV RBD, SARS-CoV-2 RBD and ACE2 were 180, 194 and
597, respectively. V is an orthogonal transformation matrix,
which can convert matrix (1) into a diagonal matrix 3, as
follows:

3 = VTCijV. (2)

A set of eigenvectors and eigenvalues calculated from the
diagonalization of the covariance matrix could be used to char-
acterize the movement direction and intensity of the protein.

Calculation of binding free energy

MM-PBSA method

It is challenging to directly calculate the binding free energy
(1Gbind = 1GSolvent

bind ) of RBD to ACE2 in an aqueous environment
due to the existence of a large number of water molecules. In
recent years, the MM-PBSA method has been greatly improved
in terms of calculating the 1Gbind between molecules [62–64].
Based on theMM-PBSAmethod, the prediction of 1Gbindbetween
the RBD and ACE2 can be achieved using the following equation
(Supplementary Figure 1):

1Gbind = 1GGas
bind + 1GRBD–ACE2

sol − 1GACE2
sol − 1GRBD

sol

= 1GGas
bind + 1Gsol.

(3)

Here, 1GGas
bind indicates the binding free energy of RBD and

ACE2 in the gas phase. 1GRBD–ACE2
sol ,1GACE2

sol and 1GRBD
sol represent

the solvation free energy of the RBD–ACE2 complex, ACE2 and
RBD, respectively.

The term 1GGas
bind in formula (3) can be further expressed as:











1GGas
bind = 1Emm − T1S,

1Emm = 1Eele + 1Evdw + 1Eint.
(4)

The term 1Emm represents the MM energy in the gas phase,
which is composed of three parts: electrostatic interaction
(1Eele), van der Waals interaction (1Evdw) and internal energy
(1Eint). In the actual calculation, snapshots of the RBD, ACE2 and
RBD–ACE2 complex were taken from one single MD trajectory.
Notably, the 1Eint of the RBD–ACE2 complex and each individual
component (RBD and ACE2) could counteract each other, and
thus, only two items (1Eele and 1Evdw) remained in the final
equation. 1S denotes the energy contribution arising from
entropy change to the binding of the RBD to ACE2, which can
be calculated by normal mode analysis (NMA) [65]. Although the
NMAmethod provides great convenience for calculating entropy,
it is very time-consuming and characterized by a significant
systematic error for larger systems, which may interfere with
the final results [66]. Later, a new interaction entropy (IE)
method was developed by Duan et al. [67], which could realize
fast calculations of entropy. However, Wang et al. [68] showed
that the IE method may not be suitable for evaluating the
entropy changes of protein–protein interactions. Therefore, the
influence of entropy on the term 1Gbind was not taken into
account in the current work.

Meanwhile, the term 1Gsol in formula (3) can be further
displayed as:

1Gsol = 1Gpb + 1Gnp, (5)

where 1Gpb and 1Gnp indicate the polar and nonpolar solvation
free energy, respectively. In this section, the Poisson-Boltzmann
(PB) model was selected to compute the term 1Gpb, and the
dielectric constants for the solute and surrounding solvent were
set to 1.0 and 80.0, respectively. Edinger et al. [69] compared
various solvation models in 1996, and their results revealed that
the PB model used in the MM-PBSA method is more suitable
for calculating the solvation free energy of larger systems than
the generalized Born model applied in the molecular mechanics
generalized Born surface area (MM-GBSA) method, which is the
main reason why MM-PBSAmethod was chosen to calculate the
1Gbind between RBD and ACE2. The term 1Gnp was determined
by the following formula:

1Gnp = γ · 1SASA + β, (6)

where 1SASA denotes the change in solvent-accessible surface
area. SASA can be calculated using the MSMS program
[70]. In the current work, γ and β were assigned stan-
dard values of 0.00542 kcal·mol−1 Å−2 and 0.92 kcal·mol−1,
respectively.

SIE method

Because there are no relevant experimental results so far, an
effective SIE method developed by Purisima et al. [71, 72] was
also applied to calculate the interaction energy between RBDs
and ACE2, in order to verify the results calculated based on
the MM-PBSA method. Although the basic physical principle of
electrostatic components in SIE and MM-PBSA methods is the
same, there are some differences between these two methods.
According to the SIE method, the 1Gbind between RBD and ACE2
consists of two parts, i.e. electrostatic (1Gelec

bind) and nonpolar
(1Gnp

bind) contributions, as follows:



























1Gbing (ρ,Din,α, γ ,C) = α ·
(

1Gelec
bind + 1Gnp

bind

)

+ C,

1Gelec
bind = 1EC (Din) + 1GR

bind (ρ,Din) ,

1Gnp
bind = 1Evdw + γ · 1MSA (ρ) .

(7)

Among them, 1EC and 1Evdw represent the intermolecular
Coulomb and van der Waals interactions between the RBD and
ACE2, respectively, which were computed based on the ff14SB
force field in Amber. The terms 1GR

bind and 1MSA reflect the
change in the reaction force field energy and molecular surface
area caused by the transition of the RBD and ACE2 from the apo

state to the bound state. On the basis of the continuumdielectric
model, the boundary element method was chosen to solve the
Poisson equation to obtain the term of 1GR

bind rather than using
the PB model [73]. In addition, 1MSA was calculated from the
solvent-excluded surface instead of SASA used in MM-PBSA
method.

In equations (7), the symbols ρ, Din, α, γ and C indicate
the linear scaling factor, interior dielectric constant of solute,
proportionality coefficient associated with the conformational
entropy, proportionality factor of MSA, and fitting constant,
respectively. According to the suggestions given by Sulea
et al. [71], ρ, Din, α, γ and C were set as default optimization
values of 1.1, 2.25, 0.101758 and 0.012894 kcal·mol−1·Å−2,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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and−2.89 kcal·mol−1, respectively. In the course of this, the
sietraj package (https://www2.bri.nrc.ca/ccb/pub/sietraj_mai
n.php) was used to conduct SIE calculations for all selected
systems, and the operation of the sietraj package has been
summarized in detail by Sulea et al. [74].

HC analysis

At present, HC analysis has become an effective means to reveal
the binding similarity, hot interaction spots and binding patterns
of inhibitors with proteins or proteins with proteins [75, 76].
Hence, HC analysis based on the energy contributions of individ-
ual residues was integrated into the current work through free R
statistical analysis software [77]. The Manhattan distance equa-
tion was applied to estimate the degree of similarity between
vectors (residues):

Distance
(

a,b
)

= 6l
i=1

∣

∣ai − bi
∣

∣ (8)

The symbol l is the total dimension of the vector, whereas i

indicates each dimension of specific residue energies a and b.
Afterward, cluster discrimination was performed using Ward’s
minimum variance algorithm [78]. Then, the tree files obtained
using the R package were submitted to online interactive tree of
life (iTOL) software (https://itol.embl.de/) [79] to produce visual
hierarchical maps.

Results and discussion

Generation of equilibrium trajectories

In the current work, two repeated 100 ns MD simulations
were performed for each system to facilitate conformational
samplings of proteins. To obtain the stable conformations
used for subsequent analyses, we calculated the root-mean-
square deviations (RMSDs) of backbone atoms in SARS-CoV
and SARS-CoV-2 RBD–ACE2 systems, with the initial structure
serving as a reference. The corresponding graphs of the RMSD
values over time are displayed in Supplementary Figure 2.
As seen in Supplementary Figure 2, the RMSD values of the
10 systems exhibited relatively stable fluctuations in the
last 50 ns of the two repeated simulations, which indi-
cated that all systems had reached convergence after 50 ns.
Subsequently, the equilibrium parts (50–100 ns) of the two
trajectories for each system were connected together to form
a single trajectory, and all the following calculations and
analyses were executed based on the corresponding joined
trajectories.

Structural differences of SARS-CoV and SARS-CoV-2
RBDs

To compare and evaluate the differences in structural flex-
ibility between the RBDs of SARS-CoV and SARS-CoV-2 due
to mutations, the RMSFs of Cα atoms in the RBDs of SARS-
CoV and SARS-CoV-2 were calculated using single joined tra-
jectories(Figure 3A1–A5). It can be noted from Figure 3A1–A5

that the RMSF values of the SARS-CoV and SARS-CoV-2 RBDs
were significantly different in MD simulations, and the RMSF
values of the former were higher than those of the latter at
all investigated temperatures, indicating that mutations in the
SARS-CoV RBD could greatly decrease the flexibility of SARS-
CoV-2 RBD and were thus beneficial for the stability of the
structure.

PC analysis was subsequently performed to explore the
conformational difference between SARS-CoV and SARS-CoV-
2 RBDs. The free energy landscapes were obtained by projecting
the MD trajectory to the first two PCs (PC1 and PC2), which
are shown in Figure 3B1–B5 and Figure 3C1–C5. The SARS-CoV
RBD was shown to exhibit conformational diversity during
MD simulations (Figure 3B1–B5), and its conformations could
be mainly categorized into three different clusters at three
temperatures (200, 250 and 273 K) and into four clusters at
the other two temperatures (300 and 350 K). In contrast, the
conformation of the RBD was redistributed in SARS-CoV-2. As
for the SARS-CoV-2 RBD, the conformations were primarily
clustered into three groups at temperatures of 200 and 250 K
and two groups at 273 K (Figure 3C1–C3).However, therewas only
one energy basin located in a single conformational subspace
at 300 and 350 K (Figure 3C4 and C5). From the perspective of
conformational space, the conformational area of the SARS-
CoV-2 RBD was found to be smaller than that of the SARS-CoV
RBD at all investigated temperatures, except for 350 K. Therefore,
we could conclude that the conformational distribution of the
RBD in the SARS-CoV-2 was more concentrated than that in the
SARS-CoV.

Based on the above analyses, we found that the mutation
of residues in the SARS-CoV RBD had a significant influence
on flexibility and conformation of SARS-CoV-2 RBD, rendering
the SARS-CoV-2 RBD more stable at all temperatures. The struc-
tural stability of the SARS-CoV-2 RBD at various temperatures
may contribute to the stability and infectivity of SARS-CoV-2.
Therefore, we speculate that the SARS-CoV-2 RBD binds more
firmly to ACE2 than the SARS-CoV RBD at different temper-
atures, but this hypothesis needs to be further explored and
confirmed.

Differences in binding ability of SARS-CoV and
SARS-CoV-2 RBDs to ACE2

For the purpose of assessing the differences in binding affin-
ity of SARS-CoV and SARS-CoV-2 RBDs to ACE2, the 1Gbind of
SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes at different
temperatures was calculated separately through a combination
of MM-PBSA and SIE methods.

First, 200 and 400 conformations were extracted from
the joined trajectories at intervals of 100 and 50 frames,
respectively, to evaluate the rationality of the conformations
used for MM-PBSA calculations, and the corresponding results
are shown in Supplementary Table 1. Considering that there
is still no relevant experimental research to evaluate1Gbind of
the RBD and ACE2 at different temperatures, the SIE method
was further applied to recalculate 1Gbind to validate the
rank of the results calculated based on the same conforma-
tions used in MM-PBSA method, and the results obtained
are listed in Supplementary Table 2. Through comparison,
it was found that the 1Gbind values calculated from 200
and 400 conformations were similar, and the difference
in 1Gbind between these two groups was <0.5 kcal·mol−1,
indicating that the conformations taken from the equilib-
rium trajectory for calculating 1Gbind were reasonable and
credible.

Then, the 1Gbind calculated from 400 snapshots was ana-
lyzed. The ranks of 1Gbind calculated by MM-PBSA and SIE meth-
ods were consistent, and the values of 1Gbind rise when the
temperature increases from 273 K to 350 K at an interval of
50 K (Supplementary Figure 3A and B). By comparing with the
recent work by Zhou et al. [80], it is found that the tendency

https://www2.bri.nrc.ca/ccb/pub/sietraj_main.php
https://www2.bri.nrc.ca/ccb/pub/sietraj_main.php
https://itol.embl.de/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Figure 3. Comparison of the structural flexibility and conformational distribution between SARS-CoV and SARS-CoV-2 RBDs. (A1–A5) RMSFs of SARS-CoV and SARS-

CoV-2 RBDs, (B1–B5) and (C1–C5) free energy landscapes of SARS-CoV and SARS-CoV-2 RBDs, respectively.

of our results at 300–350 K is consistent with their computa-
tional and experimental results. In addition, the results cal-
culated by the MM-PBSA method showed a linear correlation
with those obtained using the SIE method, with correlation
coefficients of 0.94 and 0.97 for SARS-CoV and SARS-CoV-2 RBD–
ACE2 complexes, respectively (Supplementary Figure 3C and D).
The above results confirm that the MM-PBSA method is an
effective method for calculating the binding ability of the SARS-
CoV/SARS-CoV-2 RBD to ACE2 and that this method may facil-
itate in silico approaches for identifying drugs targeting the S
protein. According to the results calculated using the MM-PBSA
method, we found that the 1Gbind of ACE2 with SARS-CoV-2 RBD
was 14.05, 8.39, 8.72, 12.58 and 14.06 kcal·mol−1 lower than that
with the SARS-CoV RBD at 200, 250, 273, 300 and 350 K, respec-
tively (Supplementary Figure 4A), which further demonstrated
that ACE2 associatedmore tightlywith the SARS-CoV-2 RBD than
the SARS-CoV RBD at all investigated temperatures. Notably, the
energy difference between the SARS-CoV and SARS-CoV-2 RBD–
ACE2 complexes was >8 kcal mol−1 at all temperatures, and
even exceeded 14 kcal mol−1 at the lowest temperature (200 K)
and highest temperature (350 K). This large energy difference
suggests that SARS-CoV-2 RBD is more temperature adaptive
than the SARS-CoV RBD, and this characteristic of the SARS-
CoV-2 RBD may contribute to the higher infectivity of SARS-
CoV-2 at different temperatures, even at high or extremely cold
temperatures.

Finally, each factor contributing to the total 1Gbind, i.e. van
derWaals (1Evdw), nonpolar (1Gnp), electrostatic (1Eele) and polar
(1Gpb) interactions, was compared to better explore the main
source of the aforementioned difference (Supplementary Figure
4B–D). The term of 1Evdw, an advantageous factor for the binding
of the RBD to ACE2, increased independently by 4.13, 0.22, 11.51
and 2.54 kcal mol−1 at temperatures of 200, 273, 300 and 350 K,
as a result of introducing mutations in the SARS-CoV RBD

(Supplementary Figure 4B), and this increase was detrimental
to the binding of the SARS-CoV-2 RBD to ACE2. Although van
der Waals interactions are the leading force promoting the
association of the RBD with ACE2, it is not the main reason
for the binding difference between SARS-CoV and SARS-CoV-2
RBD–ACE2 complexes at different temperatures. The favorable
1Gnp between the SARS-CoV-2 RBD and ACE2 was found to be
increased by 0.59 kcal·mol−1 at a temperature of 300 K and
reduced accordingly by 0.19, 0.39, 0.61 and 0.66 kcal·mol−1 at 200,
250, 273 and 350 K, respectively, compared with the SARS-CoV
RBD–ACE2 system, indicating that this factor did not contribute
to the final energy difference (Supplementary Figure 4C).
Comparedwith the SARS-CoVRBD–ACE2model, the substitution
of residues in the SARS-CoV RBD significantly enhanced
the 1Eele between the SARS-CoV-2 RBD and ACE2, and the
corresponding values of 1Eele were decreased by 60.78, 11.09,
19.88, 44.12 and 55.29 kcal mol−1 at temperatures of 200, 250,
273, 300 and 350 K, respectively, indicating that electrostatic
interactions play an important role in the binding differences of
SARS-CoV and SARS-CoV-2 RBDs to ACE2. Unfortunately, 1Eele

is often superimposed with an unfavorable 1Gpb, resulting in
1Gele+pb (Supplementary Figure 4D). The values of 1Gele+pb are
separately reduced by 17.99, 6.73, 8.34, 24.68 and 15.94 kcal·mol−1

in the SARS-CoV-2 RBD–ACE2 model at 200, 250, 273, 300
and 350 K, compared with those in the SARS-CoV RBD–ACE2
system, indicating that the superposition of electrostatic and
polar interactions did also contribute partially to the binding
differences. To further confirm the above analyses, a t-test was
performed on each term, as shown in Supplementary Figure 4,
using an R package, and only P-values of1Gbind and1Gele+pb were
<0.05, and thus considered statistically significant. Therefore, it
can be concluded that the difference in the binding strength
between SARS-CoV and SARS-CoV-2 RBD–ACE2 complexes was
dominated by electrostatic and polar interactions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Binding mechanism analysis

Previous analyses have shown that the mutation of residues
in the SARS-CoV RBD had a great impact on the binding of
the RBD to ACE2. However, the observed differences in binding
ability between SARS-CoV and SARS-CoV-2 RBDs to ACE2 may
not only result from mutant residues but may be influenced
by the entire interaction network. To further investigate the
change in interaction between the RBD and ACE2 caused by the
substitution of residues, the decomposition of the 1Gbind was
carried out on 400 snapshots using the mm_pbsa program, and
the corresponding results are available at http://tubic.tju.edu.
cn/energy-decomposition/.

Similarity comparison

Based on the energy contribution of individual residues, HC
analysis of all systems was conducted to explore the common
characteristics shared upon the binding of RBDwith ACE2 and to
further reveal the hotspot residues that promoted their binding
at five different temperatures. The clustering trees constructed
based on the energy contributions of residues in the RBD and
ACE2 are shown in Figure 4 and Supplementary Figures 5–7.
Red color indicates that the residue at this location was found
to be beneficial for binding of the RBD with ACE2, whereas
green color indicates that the residue at this location had a
negative influence on binding. The more saturated the color,
the stronger the interaction. White color indicates that the
residue has insignificant contribution to the total binding free
energy.

From the perspective of topology, the clustering trees of
SARS-CoV and SARS-CoV-2 RBDs displayed certain similarities
(Supplementary Figure 5 and Figure 4), and their residues could
be mainly clustered into three branches: (a) favorable, (b)
unfavorable and (c) insignificant interactions. Branch a could
be further subdivided into a1, a2, a3 and a4 in case of the SARS-
CoV RBD, and a1, a2 and a3 for the SARS-CoV-2 RBD. Branch
b of the SARS-CoV/SARS-CoV-2 RBD could be divided into b1

and b2. It was found that the hotspot residues with greater
energy contributions to the binding of the SARS-CoV RBD
with ACE2 were mainly concentrated in branches a1 (K390,
R395, R426, Y436, K439, Y442, L443, P462, Y475, Y484, T486,
T487 and Y491) and a3 (R441, K447, L472, N473, Y481, G482
and G488), whereas the hotspot residues in the SARS-CoV-2
RBD were clustered in branch a1 (R403, R408, K417, K444, Y449,
L455, F456, A475, F486, N487, Q493, G496, Q498, T500, N501,
G502 and Y505). Subsequently, the hotspot residues identified
were compared with the experimental results of Lan et al. [40]
to validate the present results and the corresponding Venn
diagrams are shown in Supplementary Figure 8. The colors of
the residues in the Venn diagram are consistent with those of
the corresponding residues in the clustering tree. As shown
in Supplementary Figure 8A and B, almost all experimentally
identified key residues of the RBD could be found in branch a

of the clustering tree. In the intersecting area, 60%, 26.67% and
13.33% of the residues in the SARS-CoV RBD were located in
branches a1, a3 and a2, respectively, whereas the corresponding
proportions in the SARS-CoV-2 RBDwere 87.5%, 6.25% and 6.25%,
respectively. This further demonstrated the important roles of
residues in branches a1 and a3 in Supplementary Figure 5 and
branch a1 in Figure 4. Thus, it can be concluded that the residues
K390/R403, R395/R408, V404#/K417, R426/N439#, T431#/K444,
Y436/Y449, K439/L452#, R441/R454#, Y442/L455, L443/F456,
K447/N460#, P462/A475, L472/F486, N473/N487, Y475/Y489#,
N479#/Q493, Y481/Y495#, G482/G496, Y484/Q498, T486/T500,

T487/N501, G488/G502 and Y491/Y505 were the main sources
for boosting the binding of ACE2 to SARS-CoV/SARS-CoV-2 RBD
at different temperatures, where ‘#’ indicates that the residue
contributed insignificantly to binding.

The energy contribution of each residue in ACE2 in all com-
plexes was also analyzed. As shown in Supplementary Figure 6,
14 residues (S19, Q24, T27, F28, K31, H34, Y41, Q42, L45, Y83, K353,
G354, R357 and R393) in branch a were found to play essential
roles in the binding of ACE2 to the SARS-CoV RBD. Twelve of
these 14 residues were experimentally confirmed to produce
important contact with the RBD (Supplementary Figure 8C).
More interestingly, the two residues L79 and M82 of ACE2
contributed significantly only at 300 K, which was also
consistent with the experimental results obtained by Lan and
colleagues at room temperature. In contrast, the favorable
residue–residue interactions between ACE2 and the SARS-
CoV-2 RBD mainly originated from 15 residues (Q24, T27, F28,
K31, H34, Y41, Q42, L45, L79, M82, Y83, K353, G354, R357 and
R393) in branch a (Supplementary Figure 7). Except for L45, all
these key residues were also identified by Lan et al. Notably,
the experimentally confirmed residues that are known to
establish important contacts with the RBD were not necessarily
conducive to the binding of ACE2 to the RBD. According to the
HC tree, five residues (D30, E35, E37, D38 and E329) in branch
b (Supplementary Figure 6) and five residues (D30, E35, E37,
D38 and D355) in branches b1 and b2 (Supplementary Figure 7)
were shown to significantly interfere with the binding of ACE2
to SARS-CoV and SARS-CoV-2 RBDs. Moreover, three (60%)
and five (100%) of these unfavorable residues on ACE2 were
experimentally shown to contact SARS-CoV and SARS-CoV-2
RBDs, respectively.

From the above similarity analyses, the hotspot residues in
RBDs and ACE2 have been reliably recognized by HC analyses,
whichwill benefit further drug screening, such as deep learning-
based virtual screening [81]. The positions of these hotspot
residues in the corresponding tertiary structure are marked in
Figure 5. It was revealed that almost all these hotspot residues
in the RBD and ACE2 were distributed on the surface of the
interface between the RBD and ACE2, and they were found to
be close to each other or even embedded into one another
(Figure 5C and D). In line with this, drugs could be designed to
impair the function of these residues, consequently blocking the
binding of the RBD to ACE2 at different temperatures. Hence,
more attention should be paid to the interaction between these
hotspot residues and drugs in the design of drugs targeting
SARS-CoV or SARS-CoV-2.

Difference comparison

In this section, the residues significantly affecting the binding
differences of SARS-CoV RBD and SARS-CoV-2 RBD to ACE2
were selected, and the key differential residues in the RBDs and
ACE2 are displayed in Supplementary Figure 9A1–A5 and B1–
B5, respectively. The energy differences between these selected
residues in the SARS-CoVRBD–ACE2 systemand the correspond-
ing residues in the SARS-CoV-2 RBD–ACE2 complex exceeded
2 kcal mol−1.

As shown in Supplementary Figure 9A1–A5, the total energy
contributions of these selected residues in the SARS-CoV RBD
were 4.25, 9.38, 15.56, 11.06 and 9.62 kcal mol−1 higher than
that of the corresponding residues in the SARS-CoV-2 RBD
at temperatures of 200, 250, 273, 300 and 350 K, respectively,
and these changes were more conducive to the binding of
the SARS-CoV-2 RBD to ACE2. Based on the energy differences

http://tubic.tju.edu.cn/energy-decomposition/
http://tubic.tju.edu.cn/energy-decomposition/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Figure 4. HC tree of residues in the SARS-CoV-2 RBD based on residue–residue interactions. The red, green and white colors represent the favorable, unfavorable and

insignificant energy contributions of residues, respectively. ‘⋆’ denotes key residue that has been experimentally confirmed by Lan et al. [40].

of the corresponding residues, it could be observed that the
preferential binding of the SARS-CoV-2 RBD to ACE2 was
dominated by mutations from SARS-CoV to SARS-CoV-2, i.e.
L472 → F486, N479 → Q493 and D480 → S494 at 200 K;
V404 → K417, L472 → F486, N479 → Q493 and D480 → S494
at 250 K; V404 → K417, D463 → G476, L472 → F486, N479 → Q493,
D480 → S494 and Y484 → Q498 at 273 K; V404 → K417,
D463 → G476, N479 → Q493 and D480 → S494 at 300 K;
V404 → K417, D463 → G476, L472 → F486, N479 → Q493
and D480 → S494 at 350 K, and residue Y491/Y505 in the
SARS-CoV/SARS-CoV-2 RBD at 200 K. These results indicate
that although mutations of residues may have resulted in
changes in energy contribution of adjacent or distant residues,

the difference in binding of ACE2 to the two proteins could
basically be attributed to the mutant residues in SARS-CoV
RBD. Meanwhile, the total interaction energies of the SARS-
CoV RBD with these selected residues on ACE2 were 16.32,
4.74, 6.75, 7.89 and 9.40 kcal mol−1 higher than that of the
SARS-CoV-2 RBD at temperatures of 200, 250, 273, 300 and
350 K, respectively (Supplementary Figure 9B1–B5), which also
partially contributed to the preferential binding of ACE2 to
the SARS-CoV-2 RBD. From the perspective of the total energy
difference of all selected residues in the RBDs and ACE2, the
mutation of residues in the SARS-CoV RBD facilitated binding
of ACE2 to the SARS-CoV-2 RBD rather than to the SARS-CoV
RBD.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Figure 5. Hotspot residues obtained from the clustering tree and their positions in the corresponding tertiary structure. Hotspot residues in (A/B) SARS-CoV/SARS-CoV-2

RBD, (C/D) SARS-CoV/SARS-CoV-2 RBD–ACE2 complex and (E/F) ACE2 associated with SARS-CoV/SARS-CoV-2 RBD.

Interaction mechanisms of differential residues existing at all

temperatures

Notably, three different residues (R426/N439, N479/Q493 and
D480/S494) on the SARS-CoV/SARS-CoV-2 RBD and one residue
E329 onACE2were found to play an important role in the binding
preferences of ACE2 with respect to the SARS-CoV and SARS-
CoV-2 RBDs at all studied temperatures (Supplementary Figure 9).
In this section, the interaction mechanisms of the above-
mentioned residues are further explored, and the corresponding
interactions are shown in Figure 6 and Supplementary Figures
10–13 based on the lowest-energy structures,where red and blue
dashed lines represent favorable and unfavorable interactions
between residues, respectively, and the distance between
the residues involved in the interaction is less than the

threshold of 10 Å. In addition, the pink dotted line indicates
hydrogen-bonding interaction.

The energy contributions of residues R426/N439 in the
SARS-CoV/SARS-CoV-2 RBD were determined to be −3.15/−0.08,
−4.32/−0.07, −4.54/−0.11, −2.66/−0.15 and−3.48/−0.15
kcal mol−1 at temperatures of 200, 250, 273, 300 and 350 K,
respectively. At all given temperatures, the positively charged
residue R426 of the SARS-CoV RBD was close to the negatively
charged residue E329 in ACE2, and a favorable electrostatic
attraction could easily be formed between them (Figure 6A and
Supplementary Figures 10A–13A), assigning an important role to
R426 in the binding of ACE2 to SARS-CoV RBD. When E329 was
in close proximity to R426 of the SARS-CoV, it could also produce
unfavorable polar interactions with nearby polar residues (T485,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Figure 6. Comparison of interaction mechanisms of differential residues in SARS-CoV/SARS-CoV-2 RBD–ACE2 complex at a temperature of 200 K. Differential residues

(A/B) R426/N439 and (C/D) N479/Q493 and D480/S494 in SARS-CoV/SARS-CoV-2 RBD. The SARS-CoV RBD, SARS-CoV-2 RBD and ACE2 are shown in gray, yellow and blue,

respectively. ‘⊕’ and ‘⊖’ represent positively and negatively charged residues, respectively.

T486 and T487). These unfavorable interactions were shown to
offset the favorable interaction between E329 and R426, making
E329 provide energies of 4.03, 3.60, 3.72, 1.83 and 2.39 kcal·mol−1

at 200, 250, 273, 300 and 350 K, respectively, thus hindering the
binding of ACE2 to SARS-CoV. In the SARS-CoV-2 RBD, residue
R426 is replaced by an uncharged N439, and the side chain of
N439 is shorter than that of R426, which makes N439 hardly
interact with E329 on ACE2. Meanwhile, it can also be seen
from Figure 6B and Supplementary Figures 10B–13B that the
carboxyl group with negative charge on E329 deviates from the
RBD of SARS-CoV-2, indicating that E329 is unable to establish
interactions with the residues on the RBD. Therefore, E329 of
ACE2 and N439 of the RBD hardly contribute to the combination
of ACE2 and SARS-CoV-2 RBD,which is consistent with the above
energy analyses.

Compared with residue N479 in the SARS-CoV RBD, the
energy of the corresponding residue Q493 in the SARS-CoV-2
RBD was reduced by 5.06, 4.49, 5.19, 4.38 and 4.64 kcal mol−1 at
200, 250, 273, 300 and 350 K, respectively. Through hydrogen-
bonding analysis of the equilibrium MD trajectories, it was
found that Q493 could separately produce hydrogen-bonding
interactions with residues K31 and E35 in ACE2 (Figure 6D and
Supplementary Figures 10D–13D), partially contributing to the
structural stability of the SARS-CoV-2 RBD. Detailed information

about these hydrogen bonds is listed in Supplementary Table 3.
However, no hydrogen bond was detected between N479 of the
SARS-CoV RBD and ACE2.

As shown in Supplementary Figure 9A1–A5, the interaction
energy of the negatively charged residue D480 in the SARS-
CoV RBD was 2.78, 2.63, 4.98, 11.03 and 7.49 kcal mol−1 higher
than the corresponding uncharged residue Q494 in the SARS-
CoV-2 RBD at 200, 250, 273, 300 and 350 K, respectively, and
these differences mainly resulted from an adverse interaction
between D480 and ACE2. The negatively charged residue
D480 is surrounded by negatively charged residues (E35, D38
and E37) in ACE2, and electrostatic repulsion may easily
occur between them to resist the binding of the SARS-CoV
RBD to ACE2. At all explored temperatures, D480 could form
disadvantageous electrostatic interactions with E35 and D38
(Figure 6C and Supplementary Figures 10C–13C). Moreover, D480
could also interact with E37 at 300 K (Supplementary Figure 12C).
From the above discussion, it could be concluded that the
electrostatic and polar interactions between specific residues
were the main reasons for the energy differences between the
corresponding residues R426/N439, N479/Q493 and D480/S494 in
SARS-CoV/SARS-CoV-2 RBD at all explored temperatures, which
were consistent with the conclusion of section ‘Differences in
binding ability of SARS-CoV and SARS-CoV-2 RBDs to ACE2’.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab044#supplementary-data
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Summary and outlook

In this work, a total of twenty 100 ns MD simulations were
performed to reveal the binding differences between SARS-CoV
and SARS-CoV-2 RBDs to ACE2 at five temperatures, and the last
50 ns MD trajectories of the two repeated simulations of each
system were merged into a single trajectory for subsequent
analyses. The results from RMSFs and PC analyses revealed
that the RMSF values of the SARS-CoV-2 RBD were lower, and
the conformational distribution was more concentrated than
that in the SARS-CoV RBD, indicating that the SARS-CoV-2
RBD was more stable than the SARS-CoV RBD. Furthermore,
we speculated that the binding ability of the SARS-CoV-2
RBD was stronger than that of the SARS-CoV RBD. To test
our hypothesis, MM-PBSA and SIE methods were applied to
calculate the binding affinities of SARS-CoV and SARS-CoV-2
RBDs to ACE2. The binding free energy of ACE2 bound to the
SARS-CoV-2 RBD was lower than in association with the SARS-
CoV RBD at all studied temperatures, which could verify the
above hypothesis. Moreover, the energy difference detected at
all studied temperature was >8 kcal mol−1 and even exceeded
14 kcal mol−1 at the lowest and highest temperatures of 200 and
350 K, respectively, suggesting that the SARS-CoV-2 RBD was
more resistant to high and low temperatures than the SARS-
CoV RBD, which may explain the higher infectivity of SARS-
CoV-2 compared with SARS-CoV. However, the temperature
tolerance of SARS-CoV-2 may be influenced by other factors
besides the RBD–ACE2 binding, which need to be further
explored in the future. In addition, we found that the above
energy differences were mediated by electrostatic and polar
interactions by comparing each term of the 1Gbind. Calculations
of the 1Gbind between the RBD and ACE2 can not only provide
theoretical support for revealing that SARS-CoV-2 is more
infectious than SARS-CoV, but also provide insights into the
mechanisms behind the high infectivity of SARS-CoV-2, even at
high or extremely cold temperatures. To explore the binding
mechanisms between the SARS-CoV/SARS-CoV-2 RBD and
ACE2 at the atomic level, the decomposition of the1Gbind was
performed. Based on the energy contribution of individual
residues, the hotspot residues were probed, which were largely
consistent with the experimental results of Lan and colleagues.
In the design of drugs against COVID-19, more attention should
be paid to the interaction of hotspot residues with the drugs.
Meanwhile, the key residues significantly contributing to the
binding difference of ACE2 with the SARS-CoV and SARS-CoV-
2 RBDs were identified, and it was found that the preferential
binding of the SARS-CoV-2 RBD to ACE2 is mainly attributed
to the mutant residues from SARS-CoV to SARS-CoV-2, i.e.
L472 → F486, N479 → Q493 and D480 → S494 at 200 K;
V404 → K417, L472 → F486, N479 → Q493 and D480 → S494
at 250 K; V404 → K417, D463 → G476, L472 → F486, N479 → Q493,
D480 → S494 and Y484 → Q498 at 273 K; V404 → K417,
D463 → G476, N479 → Q493 and D480 → S494 at 300 K;
V404 → K417, D463 → G476, L472 → F486, N479 → Q493 and
D480 → S494 at 350 K, and residue Y491/Y505 in the SARS-
CoV/SARS-CoV-2 RBD at 200 K. A better understanding of
these differential residues may facilitate the development of
coronavirus inhibitors.

Key Points

• The structure of the SARS-CoV RBD was less stable
than that of the SARS-CoV-2 RBD at all investigated
temperatures.

• Comparison of the binding affinities of SARS-CoV and
SARS-CoV-2 RBDs to ACE2 at different temperatures
was achieved by calculating the corresponding bind-
ing free energies. Obtained results highlight that ACE2
binds more tightly to the SARS-CoV-2 RBD than to the
SARS-CoV RBD at various temperatures and that the
SARS-CoV-2 RBD is more resistant to high and low
temperatures than the SARS-CoV RBD. In addition, it is
found that the binding difference between SARS-CoV
and SARS-CoV-2 RBD–ACE2 complexes was mainly
mediated by electrostatic and polar interactions.

• The hotspot residues facilitating the binding of
the SARS-CoV/SARS-CoV-2 RBD to ACE2 at different
temperatures and the key differential residues con-
tributing to the binding difference have been iden-
tified, which provide insights into the molecular
mechanisms for the development of inhibitors against
coronaviruses.

• The residues confirmed by Lan and colleagues to
establish important contact with the RBD are not
necessarily conducive to the binding of ACE2 with
SARS-CoV and SARS-CoV-2 RBDs. Our current study
confirmed that three residues (E37, D38 and E329) and
five residues (D30, E35, E37, D38 and D355) in ACE2
could significantly interfere with the binding of ACE2
to SARS-CoV and SARS-CoV-2 RBDs, respectively.

Supplementary data

Supplementary data are available online at Briefings in Bioin-

formatics.
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