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Abstract

Simulations can provide tremendous insight into atomistic details of biological mechanisms, but 

micro- to milliseconds timescales are historically only accessible on dedicated supercomputers. 

We demonstrate that cloud computing is a viable alternative, bringing long-timescale processes 

within reach of a broader community. We used Google's Exacycle cloud computing platform to 

simulate 2 milliseconds of dynamics of the β2 adrenergic receptor — a major drug target G 

protein-coupled receptor (GPCR). Markov state models aggregate independent simulations into a 

single statistical model that is validated by previous computational and experimental results. 

Moreover, our models provide an atomistic description of the activation of a GPCR, revealing 

multiple activation pathways. Agonists and inverse agonists interact differentially with these 

pathways, with profound implications for drug design

G protein-coupled receptors (GPCRs) are a family of membrane-bound alpha-helical 

proteins that regulate a large variety of physiological processes by transmitting signals from 

extracellular binding of diverse ligands to intracellular signaling molecules. These proteins 

are exceedingly prominent drug targets, responsible for at least one third of all marketable 

drugs and half of the total market volume for pharmaceuticals (1). The β2-adrenergic 
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receptor (β2AR) is implicated in type-2 diabetes, obesity, and asthma, and is a member of 

the class A, rhodopsin-like GPCRs. These proteins share a highly conserved motif of seven 

transmembrane helices connected by three extracellular and three intracellular loops. β2AR 

is experimentally well studied, and high-resolution X-ray structures of both the inactive (1) 

and several active states (2, 3) have been determined in recent years. However, despite this 

rapid progress toward understanding of these important molecules, little is known about the 

mechanisms by which small molecules modulate their activity.

Molecular dynamics (MD) simulations have already begun to provide insights into the 

underlying dynamics and structural ensembles of GPCRs (4–8). However, many phenomena 

of interest still remain out of reach. For example, one recent study used special-purpose 

hardware (9) to reach an unprecedented total simulation time of several hundred μs (5). 

These results provided insights into the mechanism of deactivation but were unable to 

capture activation. Moreover, it remains unclear how to make further advances, particularly 

for researchers without access to such specialized hardware.

To capture the mechanism of β2AR activation, we have followed an alternative approach to 

MD in which we extended the principles behind the volunteer distributed computing 

platform Folding@home (10) to cloud computing more broadly. Specifically, we ran tens of 

thousands of independent simulations on Google Exacycle(11), a cloud computing initiative 

that provides an interface for running compute jobs directly on Google's production 

infrastructure. Markov state models (MSMs) were then used to stitch together these 

massively parallel simulations into a single statistical model, capturing rare events on 

timescales far longer than those reached by any individual simulation (12–14). Our approach 

reproduces a variety of previous experimental and computational results, including mutual 

information networks of correlated residues, and we explain how key structural elements 

change along ligand-modulated activation pathways. Moreover, we show that the MSMs can 

improve our understanding of drug efficacy at GPCR receptors and can be incorporated into 

an effective structure-based drug design approach.

Results

Using our cloud-based approach, we simulated 2.15 milliseconds of β2AR dynamics. 

Simulations were initiated from both an inactive (PDB 2RH1) (1) and active (PDB 3P0G) 

(2) crystal structure of β2AR. We also ran simulations in the presence of two ligands—the 

partial inverse agonist carazolol and the full agonist BI-167107—to understand how these 

small molecules alter the behavior of β2AR. We find that activation and deactivation 

proceed through multiple pathways and typically visit metastable intermediate states. Our 

MSMs provide a human readable view of how ligands modulate the complex 

conformational landscape of β2AR and improve performance of computer-aided drug design 

approaches. More generally, our cloud-based approach should be a powerful and broadly 

available tool for studying many biological systems.
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Markov state models (MSMs) predict ligand-specific intermediate states in activation 
dynamics

To elucidate the mechanism of receptor activation, we built kinetic network MSMs from our 

data set. MD simulations describe intrinsic receptor dynamics in atomistic detail, while a 

MSM provides a summarized view of the ensemble of spontaneous fluctuations exhibited by 

the molecule at equilibrium (15). This helps to identify key conformational states of the 

receptor, and to quantify the state thermodynamic populations and the kinetics of state 

transitions. We built 3000 state MSMs using clustering along four structural metrics that 

represent the key differences between the active (2, 3) and inactive(1) crystal structures of 

β2AR (see Methods) and map out the transitions between all states. Other structural metrics 

not highlighted in the main text, including dynamics of the extracellular loops and 

movement of all transmembrane helices, are discussed in the Supplementary Information.

Our MSM provides unique and novel insight into ligand-modulated activation of β2AR for 

the first time. Using the MSM, we generated 150 μs activation trajectories (see Methods). In 

Figure 1b-d, these trajectories are shown as projections along the four described structural 

criteria for receptor with agonist BI-167107 (Figure 1b) and inverse agonist carazolol 

(Figure 1c) bound, as well as the apo-receptor (Figure 1d). Agonist bound simulations 

stabilize active-like conformations (boxed regions) for between 1.5-5.25 μs, while inverse 

agonist and apo simulations do not sample active state conformations along all structural 

metrics. The differences in activation dynamics are consistent with the biological function of 

the ligands that we have simulated, and confirm observables from previous simulations(5).

Figure 2a shows the network representation of the 3000 state MSM built from the 

simulations of agonist bound receptor. Such a detailed picture of β2AR kinetics is useful for 

delineating activation pathways at atomistic resolution, which is outside the limits of 

temporal and spatial resolution of most experimental techniques. MSMs also provide a way 

to simplify this picture by discarding fast conformational dynamics to obtain a human 

comprehensible model of receptor dynamics comprised of lumped, kinetically relevant 

states. This lumping procedure was applied to reduce the 3000 state model to a simplified 10 

state model of β2AR dynamics (Figure 2b). This macro state model of β2AR reveals two 

highly connected states, which are identified as inactive state (I) and the intermediate state 

(R’), and several states with fewer connections, including the active state (R*). The 

intermediate state (R’) is found to be different for the agonist and the inverse agonist (see 

Supplementary Figures S7, S8 and S9). For agonist bound receptor, the key structural 

difference between the inactive and intermediate states is the flipping of the I121-F282 

residues in the connector region (shown in Fig 1a), whereas for the inverse agonist, the 

twisting of the Helix 7 NPxxY region residues distinguishes the two states. The intermediate 

state for the apo-receptor is the same as the intermediate state in the MSM of the agonist 

bound receptor.

β2AR activation occurs through many parallel pathways

Transition path theory(16–18) analysis of the MSMs indicates a multitude of pathways with 

similar flux (see Supplementary Figure S10). Projection of these pathways along three of the 

four criteria used to construct the MSMs and described in Figure 1 allows the simplest view 
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of the predominant pathways for activation. In Figure 2c, unique, high flux pathways are 

shown. We employed experimentally validated mutual information analysis (See 

Supplementary Figure S11 and Supplementary Tables S1-S3) to find correlated residue 

networks that differ for simulations with different ligands and for the apo receptor (Figure 

2d). The agonist (BI-167107) strengthens correlations between extracellular and intracellular 

residue groups, while inverse agonist (carazolol) disconnects these groups and apo receptor 

displays only indiscriminate correlations. These different networks of correlated residues 

give rise to the distinct activation pathways shown in Figure 2c. We map out the structural 

changes along the highest flux pathways in Figure 3 and highlight the most general trends 

for activation.

Figure 3 (panel 1) shows inactive conformations for all structural metrics. The Helix 3-6 

distance is ~8 Å, with the ionic lock formed for 40-50% of the time in our simulations. The 

NPxxY region is in an extended alpha helix, and the inactive connector, I121 and F282, is 

stabilized by M215 and M279, respectively. These methionines undergo significant 

conformational changes during activation in our simulations (Supplementary Figure S17), as 

seen in crystal structures(2, 3) and NMR experiments(8, 19). Shown in panel 2, activation 

occurs initially with Helix 6 moving away from Helix 3, and M279 moves outward towards 

its active crystal pose. For different pathways, this helix change occurs prior to other metric 

changes, or more gradually, concomitant with NPxxY and connector changes (Figure 2c). In 

panel 3, the active NPxxY conformation is stabilized for both ligands by N322 hydrogen 

bonding to S120 and D79 – the latter aspartic acid is known to affect binding of agonists and 

G protein transfer(20) (Supplementary Figure S18). For inverse agonist simulations, the 

NPxxY Y326 forms stable hydrogen bonds with Y219 (Supplementary Figure S18), which 

points between Helix 3 and 6. Agonist bound receptor also samples close contact of these 

residues, but they are rarely in hydrogen-bonding range in active states. A partial connector 

active transition is observed in the panel 3 snapshot from the alternate inverse agonist 

pathway with the slowest connector flip (red path in Figure 2c), while the agonist bound 

snapshot shows a complete connector flip along with H5 bulge formation. For both ligands, 

the methyl group of M215 and the F208 phenyl group make close contacts with F282 in 

active receptor states (Supplementary Figure S17). In Panel 4, active state ligand 

interactions are shown, where agonist hydrogen bonds with S207, while inverse agonist 

hydrogen bonds instead to S203, located half a helix turn above S207. Both serines are key 

functional residues(21), but the S207 hydrogen bond could account, in part, for agonist 

stabilization of active conformations seen in Figure 1 that can be selected by G proteins. 

This effect is also seen in the binding site connections to the connector and to intracellular 

regions that are unique to the mutual information network for agonist bound simulations 

(Figure 2d).

Small molecule docking to β2AR activation pathways enriches diverse GPCR ligand 
chemotypes

MSM states from high flux activation pathways identified in this study were targeted with 

small molecule docking of a database of β2AR agonists, antagonists, and decoys(22) with 

the program Surflex(23, 24). For both agonists and antagonists, docking to the MSM states 

along activation pathways gives high Area Under the Receiver Operating Characteristic 
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Curve (AUC) values (Supplementary Figure S22), which evaluates selection of true ligands 

from decoys. These results are a statistically significant improvement over results from 

docking to the active (3P0G) and inactive (2RH1) crystal structures and to randomly 

selected snapshots from long-timescale, agonist bound β2AR deactivation simulations(5). 

Next, we show that docking to MSM states expands the chemical space of our docking 

results, an essential advantage in docking approaches(25). Top scoring ligands for each 

MSM state were clustered according to their shape and chemistry, revealing a diversity of 

chemotypes that are highly ranked, or enriched, differentially by MSM states along the 

activation pathways. Examples of chemotypes that would have been undiscovered by virtual 

screen docking to the crystal structures alone or without knowledge of the full activation 

pathway are shown in Figure 4, with a full description in Supplementary Figures S23, S24. 

These results underscore the utility of MSMs for picking functional intermediate GPCR 

states that have different estimated affinities for known ligand chemotypes. Knowledge of 

this correspondence between ligand type and receptor conformation may be fruitful for 

future drug design efforts and can give testable predictions for ligands that may isolate rare 

intermediate conformations of receptors.

Discussion

The existence of parallel paths, comprising many intermediates, has reshaped the paradigm 

of protein folding, and led to the formulation of Markov state models as a new scheme to 

conceptualize such complex phenomena. Our results indicate that GPCR conformational 

dynamics is also well represented within the theoretical framework of MSMs, in which the 

receptor exists in multiple discrete conformational states with active and inactive states 

connected via multiple pathways. Furthermore, we show that ligands act by modulating the 

receptor dynamics to prefer different pathways. In contrast, methods that reduce simulation 

data to a single reaction coordinate by discarding dynamics along other independent 

coordinates may simplify the description of the conformational change, but could miss key 

features of the mechanism, including alternate pathways and kinetically trapped states. (26).

This study emphasizes the need to go beyond simple, few state models to capture the hidden 

complexity of GPCR activation. In particular, drug discovery efforts have focused on 

screening available GPCR crystal structures and fail to find leads with diverse efficacy 

profiles, beyond antagonists and inverse agonists. (27) Using MSMs to incorporate the rich 

structural data reported here into this process creates an opportunity for developing drugs 

that interact more closely with diverse receptor states(28), for overall increased efficacy and 

specificity.

The unprecedented millisecond simulation time scales presented here for GPCR activation 

require computing architectures capable of such extensive sampling. Cloud computing 

provides a promising new avenue to tackle these types of questions more routinely, leaving 

the complexity of the underlying infrastructure hidden and enabling a larger proportion of 

time spent on science rather than administrative tasks. Our work on Google's Exacycle 

platform demonstrates that large-scale exploratory analysis in the cloud can deliver new 

insight into biological problems. Existing commercial cloud computing initiatives enable 

researchers to migrate their own computational needs to the cloud in a scalable, elastic, 
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efficient, and easily accessible computational manner. The impact of this commodity 

computing approach is magnified when matched with novel algorithms, such as MSMs, that 

can extract the most pertinent information for researchers.

Methods

Simulation systems

Membrane-aligned crystal structures for PDB IDs 2RH1 and 3P0G were extracted from the 

OPM database (29). Both the inactive (PDB 2RH1) and the active (PDB 3P0G) crystal 

structure were simulated as ligand-free apo structure as well as receptor bound to the partial 

inverse agonist carazolol and the full agonist BI-167107(1, 2). Residues in transmembrane 

helices, and helix centers are defined as follows (with residue numbers in brackets): Helix 1 

(29-60), Helix 2 (67-96), Helix 3 (103-136), Helix 4 (147-171), Helix 5 (197-229), Helix 6 

(267-298), Helix 7 (305-328) according to (30). The crystal structures lack residues at N- 

and C-termini that were not resolved during crystallography. For 2RH1, our structures entail 

residues 30-342, and for 3P0G residues 23-344. Both have gaps in the sequence, where the 

intracellular loop 3 (ICL3) between helices 5 and 6 is replaced in 2RH1 and 3P0G with T4-

lysozyme and a nanobody, respectively. These residues are 231-262 for 2RH1, and 228-264 

for 3P0G. Since β2AR remains functional even in the absence of ICL3, most of the 

simulations were done without this loop. One system was added in which apo-2RH1 was 

complemented by a model of ICL3 obtain from SuperLooper(31) for a total of 7 simulated 

systems.

All amino acids were protonated according to their pKa at neutral pH. We note that titratable 

residues D79 (2.50) and D130 (3.50) have been proposed to change protonation state during 

activation, and that acidic pH increases β2AR basal activity by approximately twofold(6, 32, 

33). Recent long time-scale simulations varied the pH of these residues and found that while 

the rate of deactivation increased by twofold for charged D130, the mechanism outlined for 

the receptor was largely unchanged (5). This study also focused its analysis on the neutral 

pH charge of β2AR. All molecular dynamics simulations were performed with the Gromacs 

4.5.3 molecular dynamics package (34), compiled as 64-bit Linux binaries from unmodified 

source code. Each system was simulated in a POPC lipid bilayer and solvated in TIP3P 

water molecules. Comprehensive details on system setup and simulation parameters are 

provided in the SI.

MD Simulations on Exacycle

Many large data centers are built with sufficient redundancies to handle peaks in user 

activity and cluster or fiber failures while maintaining low-latency responsiveness, leaving 

excess cycles during normal operation. Exacycle provides a platform for running massively 

parallel jobs on spare capacity of Google's production infrastructure. Initially, a limited 

number of grants were issued for select eScience projects (11). Exacycle was created as an 

alternative approach to large scale scientific computing, replacing complex parallelization of 

jobs across highly interconnected, specialized computing hardware by embarrassingly 

parallel jobs on highly heterogeneous commodity hardware. In principle, this enables the use 

of an arbitrary number of distributed processors. For MD, we replaced individual long-
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timescale trajectories by stochastic sampling across a large number of trajectories. This 

allowed us to simulate β2AR, with almost 60,000 atoms, at a rate exceeding 1 ms per month 

with a peak throughput of 80 μs a day. For comparison, the special-purpose Anton 

supercomputer achieves up to 16.4 μs of chemical time per day, interpolated from Figure 5 

in (9).

All simulations were generated as sets of Exacycle work units. For each β2AR system, 

10,000-20,000 trajectories were simulated in three rounds with inter-round Markov State 

Model (MSM)-guided uniform sampling(12, 35) to determine new starting structures. 

Average trajectory lengths per round correspond to 5 ns, 12.5 ns, and 12.5 ns, respectively. 

Apo states in rounds 1 and 2 were run in a set of 20,000 trajectories, and 10,000 trajectories 

for non-apo states. The first round was started from equilibrated crystal structures with a 

reference temperature of 300 K. In between rounds, each set of trajectories was sampled at 

0.5 ns and clustered according to the MSM criteria described below into 1000 microstates 

with MSMBuilder 2 (36) from which new starting structures were chosen uniformly for the 

next round. All systems were heated to a reference temperature of 330 K for the third round 

to achieve improved sampling. The higher temperature was chosen to increase the likelihood 

of rare events occurring while decreasing the impact of local minima. This is based on the 

assumption that while we are likely to observe a shift in kinetics, the thermodynamics of the 

GPCRs during this last stage would be preserved, since according to our observations 

changes in stabilizing enthalpic and entropic factors are dominated by subtle local 

conformational changes and remain small. Whereas significantly more entropically 

stabilized states might see a positive population shift in comparison with more enthalpically 

stabilized states as temperature increases, we expect this to be a negligible effect between 

the similarly stabilized active and inactive states. The final set of trajectories indicated 

convergence by comparing the conformational landscapes along the order parameters shown 

in Supplementary Figures S1-S4. Thus, for analysis, only data from the final round were 

used, equating to 125 μs aggregate molecular dynamics data each, or 750 μs total, 

subsampled at a rate of 0.5 ns for a total of about 250,000 molecular structures per simulated 

system.

Small molecule docking and chemotypes clustering

MSM states from TPT pathways with flux > 30% of the maximum flux were selected for a 

retrospective small molecule docking screen. For the agonist bound MSM, this corresponds 

to 20 MSM states, for the inverse agonist bound 43 states, and for the apo, 102 MSM states 

– for a total of ~2.9 million docking calculations. We also dock to both the active (3P0G) 

and inactive (2RH1) crystal structures, and to 20 randomly selected snapshots from 

previously performed long-timescale agonist bound GPCR deactivation simulations(5). All 

snapshots were aligned to the same active crystal structure (3P0G) before docking. The 

Surflex(23, 24) docking program was used to dock compounds from the GPCR Decoy and 

Ligand Database(22), which is comprised of ~200 known GPCR agonists and antagonists, 

and ~8000 structurally dissimilar but property matched decoys drawn from the compound 

library ZINC(37). Ligands were prepared with Surflex protonation tools, and OpenEye 

Omega(38) was used to enumerate stereoisomers for compounds with up to 4 chiral centers. 

Ligands were docked and scored with 20 snapshots from each MSM state, recording the 
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highest docking score. For computing receiver operating characteristic (ROC) plots, the best 

scoring stereoisomer was assigned to the ligand.

The top 10% scoring true ligands (decoys were excluded) were selected from each MSM 

state, resulting in 3300 enriched compounds for each agonist and antagonist docking set. 

These compounds were clustered by their chemotype with a k-centers algorithm, evaluated 

by Tanimoto values from unaligned (docked conformation preserved) shape and chemistry 

overlap computations with ROCS(39). A cutoff for the clustering was selected as the value 

separating the top 5% of all Tanimotos computed for all compound pair overlaps, to give 

935 clusters for antagonist chemotypes and 497 agonist chemotypes (including different 

stereoisomers).

Analysis Software

Before analysis, several million files containing trajectory segments and related data were 

retrieved, merged, filtered, and pre-processed on Google's infrastructure using a combination 

of FlumeJava (40), MapReduce (41), and Bigtable (42). Coordinates for protein and ligand 

were stored in GROMACS .xtc format as well as converted to a binary format suitable for 

Dremel (43). VMD(44), GROMACS(34), and Dremel were used to analyse geometric 

properties such as interatomic distances and charge distributions. Markov State Models were 

generated with MSMBuilder 2 (36), which was also used for transition path theory 

analysis(18, 45). Surflex 2.6(24) and OMEGA 2.4.6 were used for small molecule docking 

and ROCS 3.1.2 was used to generate overlap scores for chemotype clustering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MSM activation trajectories on the sub-millisecond timescale
(a) The key differences between active and inactive structures of β2AR. The root mean 

squared deviation (RMSD) of the connector region (I121-F282), the H5 bulge (S207-F208) 

RMSD from active crystal structure (3P0G), the distance between Helix 3 and Helix 6 

(measured as R131-L272 distance) and the RMSD of NPxxY region (N322-C327) in Helix 

7 from the active crystal structure (3P0G). Active crystal structure values are marked with 

dashed lines. 150 μs MSM activation trajectories were built using the data from simulations 

of GPCR bound to (b) agonist BI-167107, (c) inverse agonist carazolol as well as (d) the apo 

receptor. Agonist bound simulations stabilize active-like conformations (highlighted with 

boxes) throughout the trajectory and deactivate in 2.5 ± 0.05 μs. Inverse agonist bound 

simulations deactivate from active states slightly faster, at 1.3 ± 0.1 μs and Apo simulations 

deactivate in 0.67 ± 0.02 μs (See Supplementary Figures S5 and S6). These timescales 

corroborate previous simulations of deactivation (5) and experiments when keeping in mind 

that only G protein binding can truly stabilize the active states.(30)
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Figure 2. Markov State models and high flux activation pathways for agonist and inverse agonist 
bound simulations
(a) Network representation of the 3000 state MSM built from the simulations of agonist 

bound GPCR with each circle representing an individual conformational state. (b) 10 State 

MSMs build from the 3000 state MSMs using spectral clustering methods to identify 

kinetically relevant states. The circles in the 3000 state MSM are colored according to their 

membership in the coarse-grained 10 state MSM. The weight of arrow indicates the 

transition probability between states. (c) Pathways are shown as states (circles) connected 

along the 3-D reaction coordinate used, in part, to build the MSM. Pathway connections are 

scaled by the path flux relative to the highest flux in black; for inverse agonist pathways, red 

is 61% and orange is 51% of the max; for agonist red: 48% and orange: 35%. (d) Mutual 

information networks of dynamically correlated residues. Black lines indicate connected 

residue pairs, and only helices 3-7 are shown in the image for clarity. Agonist bound 

simulations reveal a network of residues that connect the extra and intra-cellular parts of the 

receptor to stabilize active states, whereas inverse agonist eliminates these connections and 

blocks activation.
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Figure 3. Structural details of the activation pathways
Representative structures from states along the activation pathways in Figure 2c labeled by 

number in four panels. The transition from inactive conformations in panel 1 proceed via 

Helix 3-6 outward movement (Panel 2), the switching of M215 interactions from connector 

I121 to F282 as these residues flip conformation (Panel 3), and changes in the H5 region 

around F208, S207, and S203 (Panel 4) that form ligand-mediated interactions for 

stabilizing active conformations that can be selected by G proteins. Residues in grey are the 

aligned inactive crystal (2RH1) conformations; residues in yellow are from the active crystal 

structure (3P0G).
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Figure 4. Examples of GPCR Ligand Chemotypes Enriched at MSM States Along Activation 
Pathways
MSM states from high flux activation pathways were assigned a progress score ξ based on 

structural metrics in Figure 1 and range from the inactive crystal structure (2RH1) at ξ=0 to 

the active crystal structure (3P0G) at ξ=1. Top ranking compounds from a retrospective 

virtual screen of known β2AR ligands at each MSM state, and both crystal structures, were 

clustered according to their 3D shape and chemistry overlap. Four examples of chemotype 

clusters enriched by select MSM states along the activation pathways are shown, with the 

percentage of a chemotype represented in the total ligands enriched at a given ξ. (a) 

Example agonist chemotypes are catecholamine derivatives (1, 2 and 3) and ethanolamine 

(4) derivatives. b) Example antagonist chemotypes (5, 6, 7 and 8) share a 2-hydroxy propyl 

amino core and include a carbostyril substituted pyridazinone (5), benzhydryl-amine (6), and 

pyridone nitriles (7, 8). The complete distributions along ξ for all agonist and antagonist 

chemotype clusters are shown in Supplementary Figures S21 and S22. These results show 

that docking to intermediates identified by MSM Transition Path Theory analysis enriches 

more diverse chemotypes that could be missed by screens of only a few structures.
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