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Abstract: Three-dimensional structures of six closely related hydrogenases from purple bacteria
were modeled by combining the template-based and ab initio modeling approach. The results
led to the conclusion that there should be a 4Fe3S cluster in the structure of these enzymes. Thus,
these hydrogenases could draw interest for exploring their oxygen tolerance and practical applicability
in hydrogen fuel cells. Analysis of the 4Fe3S cluster’s microenvironment showed intragroup
heterogeneity. A possible function of the C-terminal part of the small subunit in membrane binding
is discussed. Comparison of the built models with existing hydrogenases of the same subgroup
(membrane-bound oxygen-tolerant hydrogenases) was carried out. Analysis of intramolecular
interactions in the large subunits showed statistically reliable differences in the number of hydrophobic
interactions and ionic interactions. Molecular tunnels were mapped in the models and compared
with structures from the PDB. Protein–protein docking showed that these enzymes could exchange
electrons in an oligomeric state, which is important for oxygen-tolerant hydrogenases. Molecular
docking with model electrode compounds showed mostly the same results as with hydrogenases
from E. coli, H. marinus, R. eutropha, and S. enterica; some interesting results were shown in case of
HupSL from Rba. sphaeroides and Rvi. gelatinosus.

Keywords: hydrogenases; hydrogen fuel cells; homology modeling; FeS clusters; transmembrane
helices; molecular docking; molecular tunnels

1. Introduction

Purple bacteria are widespread organisms possessing tremendous potential for practical
application. They are producers of many valuable compounds, such as photosynthetic pigments
(carotenoids [1] and bacteriochlorophyll [2]), storage compounds (polyhydroxyalkanoates [3]),
phytohormones [4], and molecular hydrogen [5]. Another promising application of purple bacteria is
their use for enzyme production. For example, there is already one enzyme available on the market,
namely 3-hydroxybutyrate-dehydrogenase, from Rhodobacter sphaeroides [6], which is used for analytical
quantifications of 3-hydroxybutyrate and acetoacetate; besides these enzymes, purple non-sulfur and
sulfur bacteria possess hydrogenase enzymes. This group of enzymes has been studied for almost nine
decades since its discovery by Stephenson and Stickland [7].

For example, Hyd-type hydrogenases from purple sulfur bacteria (Chromatium vinosum
(Allochromatium vinosum) and Thiocapsa roseopersicina) have been used in hydrogen electrodes,
which could act as components of fuel cells and hydrogen biosensors [8,9]. These enzymes are
relatively oxygen-tolerant and thermostable. Nevertheless, they are reversibly inhibited in presence
of low oxygen concentrations, although other studies demonstrated their oxygen tolerance in some
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experimental conditions [10–12]. Anyway, they lack clear determinants of stability vs. oxygen as
described for other groups of hydrogenases. Since a fuel cell should be suitable for storage in air and
operation in hydrogen, meaning that there could be steps of exposition of hydrogenase electrodes to
hydrogen-oxygen mixture, this gives rise to some obstacles for the wide application of these enzymes
in hydrogen electrodes.

On the other hand, there are hydrogenases demonstrating higher levels of oxygen tolerance than
HydSL enzymes from Thiocapsa roseopersicina and Chromatium vinosum. Such enzymes are hydrogenases
from Hydrogenovibrio marinus, Ralstonia eutropha, Salmonella enterica, and hydrogenase-1 from Escherichia
coli. According to X-ray crystallographic and electrochemical studies, these hydrogenases possess
a 4Fe-3S cluster [13–16]. The mechanism providing their oxygen tolerance includes oligomerization:
They are capable of reducing the oxidized active site by electrons from the FeS clusters of an adjacent
hydrogenase molecule from a dimer of heterodimers [17].

Purple bacteria are known to possess specific hydrogen-sensing hydrogenases which were
demonstrated to be absolutely insensitive to the presence of molecular oxygen or air in hydrogen gas,
as well as to acetylene [18]. However, hydrogen-sensing hydrogenases are the least active enzymes
of this class, oxidizing only 5–20 µmol H2 per mg protein per minute, which is apparently due to
the narrowness of gas access channels, thus low activity is an inevitable price to be paid for absolute
oxygen tolerance [19].

However, there is another group of hydrogenases in purple bacteria, namely
HupSL-hydrogenases [20–25]. They haven’t drawn much attention as in vitro catalysts for a while,
but recently discovered 4Fe3S clusters led to hypothesis that they should be treated as possible
oxygen-tolerant hydrogen oxidation catalysts like the mentioned membrane-bound hydrogenases,
which are their close homologues. Hence, their structural modeling appeared to be interesting in the
prospect of their biotechnological application.

The structure of HupSL hydrogenase from purple sulfur bacterium Thiocapsa roseopersicina
was modeled long ago by Szilagyi and colleagues [26]; moreover, it was studied experimentally.
It was considered as unstable and oxygen-sensitive, but the experimental conditions did not exclude
proteolysis factors: The protein was isolated only as a fraction of DEAE-chromatogram of crude cell
extract, which lost almost all its activity at 4 ◦C under air [27], and it was proposed that the reason for
its instability was a low number of intersubunit ionic pairs [26].

Hydrogenase from Rhodobacter capsulatus was studied by a number of research teams. It was shown
to participate in the recycling of hydrogen produced in the nitrogenase reaction. Among the in vitro
studies, work of Magnani and colleagues should be noted. They suggested the possible existence of two
binding sites for electron acceptors (methylene blue and benzyl viologen), and diphenylene iodonium
was shown to be an inhibitor of electron transfer to both methylene blue and benzyl viologen, but the
inhibition was complete only in the second case [28]. Such multiplicity of electron acceptor binding
sites should be taken into account when designing electrochemical devices based on such enzymes.

Rhodopseudomonas palustris CGA009 was shown to be a HupSL-defective strain that was uncapable
of growing on H2 as a sole electron donor. Genome sequencing revealed that it is caused by a defective
HupUV-sensing hydrogenase, particularly, by a frame-shift mutation in the HupV gene. However,
other Rps. palustris strains have a functional HupV gene and the corresponding ability to utilize
hydrogen under nitrogen-fixing conditions provided by HupSL hydrogenase [23].

Rubrivivax gelatinosus was subjected to deletion of HupSL genes in order to increase hydrogen
yield. This work by Wawrousek and colleagues mentioned presence of supernumerary cysteines in this
enzyme, drawing interest to it from the point of view of oxygen tolerance [29]; the work by Manness
and co-workers demonstrated presence of oxygen-tolerant hydrogenase linked to CO metabolism of
this bacterium [30].

Rhodospirillum rubrum possesses several metabolically important hydrogenases; one of them is
membrane-bound HupSL-hydrogenase. It was studied by Adams and Hall [31] and by Kakuno and
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colleagues [32]; its ability to be released into cultural medium and to tolerate high salt concentration is
intriguing and promising.

The choice of electrode materials for hydrogenase electrodes is still a great challenge having
various solutions. First of all, there are nonmodified carbon materials (carbon felt, carbon black, carbon
fiber, carbon nanotubes, and pyrolytic graphite). As pyrolysis-derived carbon materials have nonzero
level of oxidation, graphene oxide could be used as a model of graphite electrode plane. It is also
a candidate for manufacturing bioelectocatalysts itself, and it was used in recent docking study with
glucose oxidase by Sumaryada and co-workers [33].

Another approach is electropolymerization of redox-active dyes on the electrode surfaces. Voronin
and colleagues tested several substances and found that electropolymerized neutral red-modified
carbon felt was comparable to Vulcan XC72 carbon black by current densities of hydrogenase-based
electrodes [34].

The goals of the current work were as follows: (1) to obtain homology models of hydrogenases from
six purple bacteria, Tca. roseopersicina, Rba. capsulatus, Rba. sphaeroides, Rps. palustris, Rvi. gelatinosus,
and Rsp. rubrum; (2) to study the microenvironment of the proximal FeS clusters; (3) to assess
intrasubunit and intersubunit interactions between amino acid residues in these enzymes; (4) to assess
the possibility of membrane binding of the C-terminal extensions of the small subunits; (5) to map
intramolecular tunnels (possible pathways of hydrogen and oxygen delivery to the active site); (6) to
assess the possibility of their oligomerization into complexes providing electron exchange between the
small subunits; (7) to perform molecular docking of model electrode compounds, namely graphene
oxide and neutral red oligomers, in order to estimate their applicability in fuel-cell electrodes compared
to the membrane-bound hydrogenases from E. coli, R. eutropha, H. marinus, and S. enterica.

2. Results

The sequences of six hydrogenases modeled in the current study (HupSL enzymes from Tca.
roseopersicina, Rba. capsulatus, Rba. sphaeroides, Rps. palustris, Rvi. gelatinosus, and Rsp. rubrum) are listed
in Appendix A. All the models demonstrated common features of membrane-bound oxygen-tolerant
hydrogenases. They are composed of two subunits, the large one bearing NiFe active site and
magnesium ion, and the small one harboring three FeS clusters: 4Fe3S, 3Fe4S, 4Fe4S.

2.1. Modeling of Main (Aligned) Parts of the Hydrogenase Enzymes and Overview of Modeling Results

Several procedures were carried out to improve the quality of homology models built in
MODELLER (see Methods section). One of the most valuable contributions to the overall quality of
the models, according to z-DOPE assessment [35], was made by energy minimization on YASARA
web server [36,37].

Despite the high homology levels of all the studied enzymes with X-ray crystallographic data,
normalized DOPE z-scores comparable to those of template structures (3RGW, 3UQY) could not be
obtained. However, z-score levels were below −1, indicating a significant confidence level.

The results of homology modeling of all the studied hydrogenases confirm the presence of 4Fe-3S
clusters in the position proximal to the active site. Generally, homology modeling positioned FeS-atoms
of the built models close to corresponding cysteine residues, and the cysteine residues of models and
templates could be superposed quite well. However, some artifacts occurred, such as rotation of
cysteine SH groups from the Fe atoms. Figure 1 shows an example of such a problem that appeared
during modeling the small subunits.
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Figure 1. Proximal FeS cluster of Rba. capsulatus (model, this work). Two cysteine residues too far 
from the corresponding Fe atoms are marked by black arrows. Iron atoms are shown as magenta 
spheres, and sulfur atoms are shown as green spheres. Cysteine residues are colored by element 
coloring scheme: green, sulfur; cyan, carbon; blue, nitrogen; and red, oxygen. 

This problem can be solved either by constraining the dihedral angle around Cα-Cβ atoms of 
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combination of primary and tertiary structure alignment gives quite a definite evidence on the same 
structure of proximal FeS cluster as in E. coli hydrogenase-1 or HoxKG-hydrogenases of R. eutropha 
and Hv. marinus, because six cysteines in corresponding positions and oriented similarly in space, 
instead of four cysteines in “classic” hydrogenases (like NiFe-hydrogenases of sulfate-reducing 
bacteria or Allochromatium vinosum) must reduce the number of inorganic sulfurs required to 
coordinate iron by 1, since the valence of inorganic sulfur (S2−) is 2, while the valence of the cysteinyl 
group (–CH2–S−) is 1. 

The other FeS clusters, medial and distal, do not differ significantly from the clusters of “classic” 
hydrogenases. 

2.2. Microenvironment of Proximal FeS Cluster 

When considering the oxygen tolerance provided by the 4Fe3S cluster, one should always keep 
in mind that the nature of its microenvironment could possibly affect its ability to reduce the oxidized 
active site. 

First of all, one of the most important residues in the small subunit is a glutamic acid residue. 
All the studied hydrogenases possess a very conserved motif, 73-LAVE-76 (numbering according to 
HupS from Thiocapsa roseopersicina, mature form). The residue E76 corresponds to the E76 residue, 
which was shown to shift closer to the iron atom during interaction with oxygen [38]. This residue’s 
sidechain was close to the Fe atoms (around 4.5 Å) in all the studied models. 

The multiple alignment of the large subunits of the studied hydrogenases with known oxygen-
tolerant enzymes showed a lower amino acid conservation (Figure 2: yellow color shows difference 
from HoxG/HyaB/HydB; cyan color shows identity). 

Figure 1. Proximal FeS cluster of Rba. capsulatus (model, this work). Two cysteine residues too far from
the corresponding Fe atoms are marked by black arrows. Iron atoms are shown as magenta spheres,
and sulfur atoms are shown as green spheres. Cysteine residues are colored by element coloring
scheme: green, sulfur; cyan, carbon; blue, nitrogen; and red, oxygen.

This problem can be solved either by constraining the dihedral angle around Cα-Cβ atoms
of cysteine residue or by manual rotation of the cysteine residue after modeling; nonetheless,
the combination of primary and tertiary structure alignment gives quite a definite evidence on
the same structure of proximal FeS cluster as in E. coli hydrogenase-1 or HoxKG-hydrogenases of R.
eutropha and Hv. marinus, because six cysteines in corresponding positions and oriented similarly in
space, instead of four cysteines in “classic” hydrogenases (like NiFe-hydrogenases of sulfate-reducing
bacteria or Allochromatium vinosum) must reduce the number of inorganic sulfurs required to coordinate
iron by 1, since the valence of inorganic sulfur (S2−) is 2, while the valence of the cysteinyl group
(–CH2–S−) is 1.

The other FeS clusters, medial and distal, do not differ significantly from the clusters of
“classic” hydrogenases.

2.2. Microenvironment of Proximal FeS Cluster

When considering the oxygen tolerance provided by the 4Fe3S cluster, one should always keep in
mind that the nature of its microenvironment could possibly affect its ability to reduce the oxidized
active site.

First of all, one of the most important residues in the small subunit is a glutamic acid residue.
All the studied hydrogenases possess a very conserved motif, 73-LAVE-76 (numbering according to
HupS from Thiocapsa roseopersicina, mature form). The residue E76 corresponds to the E76 residue,
which was shown to shift closer to the iron atom during interaction with oxygen [38]. This residue’s
sidechain was close to the Fe atoms (around 4.5 Å) in all the studied models.

The multiple alignment of the large subunits of the studied hydrogenases with known
oxygen-tolerant enzymes showed a lower amino acid conservation (Figure 2: yellow color shows
difference from HoxG/HyaB/HydB; cyan color shows identity).
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Figure 2. Microenvironment of the FeS clusters of the studied hydrogenases shown in multiple sequence
alignment of large subunits. The amino acids found mainly in oxygen-tolerant hydrogenases are
colored cyan and shown in bold type; those found in oxygen-sensitive hydrogenases are colored yellow
and shown in underscored italic. NB: despite the presence of TQ-motif, hydrogenase from Aquifex
aeolicus is also oxygen-tolerant.

It is interesting to note several things. First of all, only four of the six studied enzymes possess both
residues highlighted by Bowman et al. as determinants of oxygen stability (measured experimentally as
the reversibility of current after injection of oxygen into the hydrogen-feeding hydrogenase electrode),
glutamate E73, and histidine H229 [16].

Moreover, only one of the studied hydrogenases has a valine residue which is conserved in the
crystallized oxygen-tolerant hydrogenases, whereas other purple bacteria have the more hydrophilic
threonine residue instead. The role of this residue should also be investigated, because this residue is
present in the corresponding position in oxygen-sensitive hydrogenases of sulfate-reducing bacteria.

According to Bowman et al., substitution of the glutamate residue by alanine led to a significant
drop of stability vs. oxygen; however, little is known about substitutions of this residue to glutamine,
although it seems to be able to affect the electrochemical behavior of the FeS cluster.

So, two polar variants can be selected among the modeled hydrogenases: hydrogenase from
Rvi. gelatinosus is the one resembling well-known oxygen-tolerant membrane-bound hydrogenases,
like HoxKG from R. eutropha (Alcaligenes eutrophus and Cupriavidus necator), whereas hydrogenase from
Rps. palustris has the maximal degree of difference from such hydrogenases (Figure 3).

The three residues differing in those two hydrogenases (or residue pairs) can be arranged in
a series according to the decrease of their possible effect on the electrochemical properties of the clusters
and thus the oxygen tolerance. The first one should be E/Q: Its sidechain is only 10 Å from the closest
iron atom of 4Fe3S cluster, as well as from the active site, so the presence or absence of the carboxylic
group close to the proximal cluster looks like a factor affecting oxygen tolerance.

The next residue pair in the series is V/T: it is farther from the active site and 4Fe3S cluster,
11.5–12.5 Å when measured from the differing (methyl or hydroxyl) heavy atom, and its action could
hardly be explained so explicitly.

The last pair is F/Y, where the closest carbon from the aromatic group is 20 Å from the mentioned
redox ligands and 16–17 Å from the medial 3Fe4S cluster.

Besides the physical or at least geometrical basis, there should be statistical confirmation of the
statement about the possibility of mediation of oxygen tolerance by certain residues.
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specific for “oxygen-tolerant” hydrogenases are colored blue (in HupSL from Rvi. gelatinosus), and 
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Analysis of large subunits from HydDB database (group 1d) [39] showed that when aligning 215 
amino acid sequences from the 1d group, 214 of them contained the 68-WAFVERICGVC-78 motif or 
its homolog (numbering as in the PDB file of HoxKG from R. eutropha, 3RGW); one sequence was 
possibly just a fragment. The consensus is shown in Figure 4, and the exact residue number for each 
alignment position is listed in Supplementary Table S1. 

 
Figure 4. Sequence logo of large subunit consensus for hydrogenases from HydDB database (214 of 
215 sequences, residues from 68 to 82). Hydrophobic residues are shown in black, amides are shown 
in magenta, other hydrophilic neutral residues are shown in green, negatively charged residues are 
shown in red, and positively charged residues are shown in blue. Ordinate shows information content 
of the alignment positions in bits (log220 = 4.321928 if the residue is absolutely conserved). 

Figure 3. Microenvironment of the clusters of the studied hydrogenases: superposition of hydrogenases
from Rps. palustris and from Rvi. gelatinosus. Most of the atoms of the active site (NFU) and FeS
clusters are colored by YASARA element coloring scheme: iron, magenta; sulfur, green; carbon, cyan;
oxygen, red; and nitrogen, blue. The nickel atom is colored orange, and the magnesium atom (Mg)
is yellow. The large subunits are colored gray, the small subunits are cyan, the residues specific for
“oxygen-tolerant” hydrogenases are colored blue (in HupSL from Rvi. gelatinosus), and the ones specific
for “oxygen-sensitive” enzymes are shown in yellow (in HupSL from Rps. Palustris). F4S-proximal
4Fe3S cluster; F3S-medial 3Fe4S cluster; SF4-distal 4Fe4S cluster.

Analysis of large subunits from HydDB database (group 1d) [39] showed that when aligning 215
amino acid sequences from the 1d group, 214 of them contained the 68-WAFVERICGVC-78 motif or its
homolog (numbering as in the PDB file of HoxKG from R. eutropha, 3RGW); one sequence was possibly
just a fragment. The consensus is shown in Figure 4, and the exact residue number for each alignment
position is listed in Supplementary Table S1.
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Figure 4. Sequence logo of large subunit consensus for hydrogenases from HydDB database (214 of
215 sequences, residues from 68 to 82). Hydrophobic residues are shown in black, amides are shown
in magenta, other hydrophilic neutral residues are shown in green, negatively charged residues are
shown in red, and positively charged residues are shown in blue. Ordinate shows information content
of the alignment positions in bits (log220 = 4.321928 if the residue is absolutely conserved).
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As for the second conserved motif (223-FGGKNPHPNYLVGG-236), the consensus sequence
is presented in Figure 5, and the exact residue number for each alignment position is listed in
Supplementary Table S2.
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Although the residues specific for the crystallized oxygen-tolerant hydrogenases (V71, E72,
and F223) really prevail in the group, the first two of them are not present in such overwhelming
majority to be called “absolutely required” for oxygen tolerance. However, the results of Bowman et al.
showed that the E73A substitution in S. enterica hydrogenase-5 led to the appearance of irreversible
components in the inhibition process of hydrogenase electrode by oxygen, whereas the native enzyme
displayed almost 100% restoration of activity. On the other hand, the aforementioned hydrogenase
from A. aeolicus also possesses 4Fe3S cluster (both supernumerary cysteines are present in the small
subunit), but it has a somewhat different sequence in the large subunit, WAFTQRICGVC [16].

2.3. C-Termini of the Small Subunits

The C-termini of the small subunits comprise alpha-helical motifs. Their hydropathicities vary,
but for all the studied hydrogenases, there could be observed an increase of hydrophilicity from the
N-terminus to the C-terminus of the C-end fragment.

To test the ability of the C-end fragments to form transmembrane anchors, they were analyzed on
the TMHMM Server 2.0 [40]. The analysis showed a clear tendency to form a transmembrane helix
in Rba. capsulatus, Rba. sphaeroides, Rps. palustris, and Rsp. rubrum, and this helix appears to be from
the 15th to the 37th residue of the selected hydrogenase fragments. The multiple alignment of their
C-termini is shown below (Figure 6).

The results of the alignment with E. coli hydrogenase-1 (PDB ID: 4GD3, and 1G94 [41,42]) showed
that the level of identity is too low to model the C-termini via homology modeling; the prediction of
transmembrane helices by TMHMM server showed around 70% of overlap between predicted and
experimentally observed helices for E. coli, which can be reasonable enough to use the data from
the TMHMM server as information confirming the transmembrane orientation of the helices of the
modeled hydrogenases. In the case of the hydrogenase from Rvi. gelatinosus, a region showed the
propensity to be a transmembrane alpha-helix rather than extracellular or intracellular part of the
protein; but the value of the score was low (below 0.6), whereas for Rhodobacter, Rhodopseudomonas,
Rhodospirillum, and E. coli, the values were above 0.8. It is interesting to note that the substitution of
four arginine residues in Tca. roseopersicina by the corresponding uncharged residues from Rhodobacter
(Q, L, V, and A) makes the server predict a transmembrane helix in the derived variant as well. As for
Rvi. gelatinosus, substitution of just a single lysine residue to alanine or isoleucine led to prediction of
transmembrane helix there. The geometry of the C-terminal fragments extracted from full-size models
of the enzymes is shown in Figure 7.
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Figure 6. Predicted transmembrane helices in the modeled hydrogenases are highlighted in orange;
a region in Rvi. gelatinosus showing a slight transmembrane propensity is colored magenta (explanation
below); predicted helix in E. coli is highlighted yellow, and experimentally observedα-helices are colored
cyan. Four arginine residues are shown in bold type: their substitution to corresponding residues
from Hup2 leads to prediction of alpha-helix. Hup1S-HupS from Tca. roseopersicina; Hup2-HupS from
Rba. capsulatus; Hup3S-HupS from Rba. sphaeroides; Hup4S-HupS from Rps. palustris; Hup5S-HupS
from Rvi. gelatinosus; Hup6S-HupS from Rsp. rubrum; K12_p-Hyd-1 from E. coli, TMHMM prediction;
K12_Q-Hyd-1 from E. coli, PDB ID: 4GD3, chain Q, transmembrane region; K12_R-Hyd-1 from E. coli, PDB ID:
4GD3, chain Q, transmembrane region.
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models, see below). Regions corresponding to predicted transmembrane helices are colored blue.
The corresponding region of HupSL from Rvi. gelatinosus is colored cyan. The C-termini of the helices
are positioned at the bottom of each figure. The panels of the figure correspond to the following
enzymes: (a) HupS from Tca. roseopersicina; (b) HupS from Rba. capsulatus; (c) HupS from Rba.
sphaeroides; (d) HupS from Rps. palustris; (e) HupS from Rvi. gelatinosus; and (f) HupS from Rsp. rubrum.
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The possibility of formation of transmembrane helices is debatable, since three out of four of
the helices predicted by TMHMM were kinked during modeling (20 ns simulations in water before
using as templates) (see Figure 7c,d,f), which is evidence of the labile links in the moieties of the
C-terminal fragments. Probably, the presence of glycine residues makes these helices labile. Another
possibility could be a prediction error of the TMHMM server itself, which was confirmed for the case
of E. coli hydrogenase: the server could predict the exact positions of the transmembrane regions of the
helices incorrectly, as in case of E. coli hydrogenase (Figure 6), and their actual positions could be closer
to the C-termini. The length of the predicted transmembrane helices (20 Aa) is enough to span the
entire membrane.

It must be realized that the exact position of the transmembrane region varies even between the
subunits of E. coli hydrogenase, so one can imagine the possibility of sliding the transmembrane helix
across the membrane bilayer. Hence, the variations in the predictions made by the TMHMM server
could be physiologically irrelevant.

2.4. Full-Size Models of the Hydrogenases

The presence of long helical moieties in the full-sized small subunits increased their normalized
DOPE z-scores significantly, leading to the results that cannot be considered as good as for globular
proteins. Since the z-DOPE levels for many enzyme models were above −1 for the small subunits,
z-DOPE levels for the aligned parts (i.e., parts having homologous experimental structures) in full-size
models were also taken into account.

Nevertheless, one should keep in mind that DOPE statistical potential was developed and
calibrated as a scoring function on a sample of cytosolic globular proteins, so the high z-DOPE levels
are in agreement with the suggestion of possible role of the C-end fragments as membrane anchors
of hydrogenases.

The normalized DOPE z-scores of the aligned parts of the hydrogenase subunits after energy
minimization displayed values corresponding to high confidence levels. The results of DOPE
assessment for hydrogenase subunits are summarized in Supplementary Tables S3 and S4. Analysis of
the X-ray structure of the full-size hydrogenase from E. coli (PDB ID: 4GD3) showed that the structure of
its small subunit has a quite poor z-DOPE score (−0.476 to 0.513 before energy minimization, −0.547 to
0.619 after), so the results for the models and for the X-ray structure do not differ by much.

Overall views of the full-size models of the studied enzymes are shown in Figure 8 (see larger
views in Supplementary Figures (Hup1–Hup6)).
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The panels of the figure correspond to the following HupSL enzymes: (a) Tca. roseopersicina; (b) Rba.
capsulatus; (c) Rba. sphaeroides; (d) Rps. palustris; (e) Rvi. gelatinosus; and (f) Rsp. rubrum.

2.5. Intrasubunit and Intersubunit Interactions

The results of intersubunit interaction assessment showed that the main contributors to the
stability of the intersubunit interface are hydrophobic contacts; however, there was no statistical
significance of the intersubunit interactions in the studied enzymes.

Calculations of hydrogen bonds led to very high dispersions and showed no reliable
differences between the enzymes. Other interactions, such as π–π (aromatic–aromatic), π–cationic,
and aromatic–sulfur, did not show reliable differences and made only slight contributions to the overall
interaction network of the enzymes. There were three types of interactions that showed statistically
significant differences between the different enzymes: hydrophobic contacts in the large subunits,
ionic pairs in the large subunits, and ionic pairs between subunits (Figures 9–11). The numerical data
are listed in Supplementary Tables S5 and S6.

It should be noted that models of Rhodobacter hydrogenases have significantly lower number of
hydrophobic interactions between the residues of large subunits (Figure 9). This could have an effect on
the stability of the enzymes, either at elevated temperatures or in presence of solvents other than water.
Since the large subunit is linked by fewer metal–protein interactions than the small one, its stability
could be the limiting factor during denaturation of hydrogenases.

The results of ionic interaction calculations allow for the division of the modeled enzymes into
two groups, on the basis of number of ionic interactions in their large subunits, “high-ionic” (Tca.
roseopersicina, Rba. capsulatus, Rba. sphaeroides, and Rvi. gelatinosus) and “low-ionic” (Rsp. Rubrum and
Rps. palustris). This statistically significant difference could also affect some properties of the enzymes,
for example, thermal stability at different salt concentrations, which could be important when applying
these hydrogenases in fuel cells with a high electrolyte ionic strength. It must be considered that
the number of ionic interactions is usually significantly increased during energy minimization in the
YASARA force field, as follows from the results of the present calculations.
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As for intersubunit interactions, the low number of ionic pairs in HupSL from Tca. roseopersicina
reported by Szilagyi and colleagues [26] was also observed while using models before energy
minimization. However, after this procedure, the distributions of intersubunit ionic pair numbers
became wider, so this result apparently lost its statistical significance.
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Figure 9. Number of hydrophobic contacts in the large subunits of HupSL hydrogenases. Hup1-HupSL
from Tca. roseopersicina; Hup2-HupSL from Rba. capsulatus; Hup3-HupSL from Rba. sphaeroides;
Hup4-HupSL from Rps. palustris; Hup5-HupSL from Rvi. gelatinosus; Hup6-HupSL from Rsp.
rubrum; 3AYX-HoxKG from H. marinus; 3RGW-HoxKG from R. eutropha; 3UQY-HyaAB from E. coli;
4C3O-HydAB from Sa. enterica. Start-models (structures) before energy minimization; end-models
(structures) after energy minimization. The data are represented as mean ± 2·× SD. Significantly low
results (ranges not overlapping with the others in the subgroup) are marked by asterisks.
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Figure 10. Number of ionic pairs in the large subunits of HupSL hydrogenases. Hup1-HupSL from Tca.
roseopersicina; Hup2-HupSL from Rba. capsulatus; Hup3-HupSL from Rba. sphaeroides; Hup4-HupSL
from Rps. palustris; Hup5-HupSL from Rvi. gelatinosus; Hup6-HupSL from Rsp. rubrum; 3AYX-HoxKG
from H. marinus; 3RGW-HoxKG from R. eutropha; 3UQY-HyaAB from E. coli; 4C3O-HydAB from S.
enterica. Start-models (structures) before energy minimization; end-models (structures) after energy
minimization. The data are represented as mean ± 2 × SD. Significantly low results (ranges not
overlapping with the others in the subgroup) are marked by asterisks.
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narrower than 1.2 Å were removed), there appeared differences between the studied enzymes 
(models and X-ray structures from the PDB). For instance, only one tunnel close to the active site was 
mapped in the case of HupSL from Tca. roseopersicina and HyaAB from E. coli (PDB ID: 3UQY) when 
the bottleneck tolerance value was set to zero; two tunnels were mapped in R hydrogenases, but their 
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hydrogenase from H. marinus (PDB ID: 3AYX) showed no tunnels close to the active site in such 
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in Supplementary Materials (ijms-669089_tunnels_zerotolerance.zip). 

Figure 11. Number of ionic pairs between the subunits of HupSL hydrogenases. Hup1-HupSL from Tca.
roseopersicina; Hup2-HupSL from Rba. capsulatus; Hup3-HupSL from Rba. sphaeroides; Hup4-HupSL
from Rps. palustris; Hup5-HupSL from Rvi. gelatinosus; Hup6-HupSL from Rsp. rubrum; 3AYX-HoxKG
from H. marinus; 3RGW-HoxKG from R. eutropha; 3UQY-HyaAB from E. coli; 4C3O-HydAB from S.
enterica. Start-models (structures) before energy minimization; end-models (structures) after energy
minimization. The data are represented as mean ± 2 × SD. Significantly low results (ranges not
overlapping with the others in the subgroup) are marked by asterisks.

2.6. Molecular Tunnels: Possible Oxygen Pathways

The effect of differences in the intramolecular tunnel structure on the oxygen stability of the
studied hydrogenases cannot be considered as definitely significant, because the diffusion kinetics is
not clear; however, it could be argued that some differences favor some of the studied hydrogenases.

The tunnel fine structure depended on energy minimization procedure (was carried out or not),
because many tunnels vanished or became narrower after energy minimization. When starting
points were selected between the NiFe active site and the 4Fe3S cluster, tunnel structure was very
unstable; more stable mapping results were obtained during automatic selection of tunnel structure.
There were several tunnels with a high hydropathicity level which could act as gas-accession channels.
When setting the “bottleneck tolerance” parameter to 0 (i.e., all the tunnels with the narrowest point
narrower than 1.2 Å were removed), there appeared differences between the studied enzymes (models
and X-ray structures from the PDB). For instance, only one tunnel close to the active site was mapped
in the case of HupSL from Tca. roseopersicina and HyaAB from E. coli (PDB ID: 3UQY) when the
bottleneck tolerance value was set to zero; two tunnels were mapped in R hydrogenases, but their level
of similarity was close to the upper limit (0.7), so they could be treated as one tunnel. The hydrogenase
from H. marinus (PDB ID: 3AYX) showed no tunnels close to the active site in such conditions.

Some of the tunnels start really close to the active site; an example of such a tunnel network is
shown below (Figure 12). Results of tunnel mapping after automatic starting point selection are given
in Supplementary Materials (ijms-669089_tunnels_zerotolerance.zip).

Since tunnel mapping is quite a complicated process, which is dependent on multiple factors,
it required verification by comparing with experimental data of Kalms and colleagues [38,43]. For this
purpose, krypton-assessed (PDB ID: 5D51) and oxygen-derived (PDB ID: 5MDL) results of tunnel
mapping in R. eutropha membrane-bound hydrogenase were taken. As there are gas molecules present
in these PDB files, tunnel-lining residues were calculated by setting a 4 Å distance cutoff from the
gas molecules. The detailed results of comparison of hydrogenases from Rsp. rubrum and R. eutropha
are listed in Supplementary Table S7; the level of tunnel similarity allows us to make the preliminary
conclusion that the tunnel structure is quite similar between two enzymes selected for comparison;



Int. J. Mol. Sci. 2020, 21, 366 13 of 27

the level of tunnel similarity in the PDB files of R. eutropha hydrogenase shows some level correlation of
mapping with experimental data. Also, lining residues in the modeled enzyme showed some similarity
with the experimental structure. However, it must be noted that the diversity between the studied
hydrogenases does not allow their subdivision into groups correlating their oxygen tolerance with
tunnel structure; other factors, such as the ability to exchange electrons between the small subunits in
the oligomeric state, appear to be more essential in determining oxygen tolerance. Prediction of this
ability is described in the next section.Int. J. Mol. Sci. 2020, 21, x 13 of 27 
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energies, mutual binding affinity in the calculated complexes is higher than in the reference structure 
(E. coli hydrogenase, PDB ID: 4GD3). However, it should be noted that the native E. coli hydrogenase-
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clusters of adjacent hydrogenase small subunits in (HupSL)2-heterotetramer, for most cases, they 
were comparable to those observed in the oxygen-tolerant hydrogenase oligomers, but for the 
enzymes from Rba. sphaeroides, the distances were close to 30 Å. This does not imply an impossibility 
of electron transfer, but the role of surrounding aromatic residues as possible “hopping sites” for 
electrons (intermediate states which could exchange electrons or holes with the FeS clusters) should 
increase. Figure 13 shows the overview of docking complexes and close view of FeS clusters of two 

Figure 12. Tunnel structure in some of the studied hydrogenases. (a) HupSL from Rsp.
rubrum; (data available online: https://mole.upol.cz/online/U1IDaUXAtk9G2dt1a54w/1); (b) HoxKG
hydrogenase from R/eutropha (PDB ID: 3RGW); the most important gas channels (starting in the
points close to active site) are colored yellow (data available online: https://mole.upol.cz/online/

ORQHeeJ90OSUp1FWnBFlg/1); the red polyhedron indicates V77, one of the first lining residues of the
tunnels close to the active site. The nickel atom is colored dark-green.

2.7. Possible Oligomerization: Protein–Protein Docking Results

According to data obtained by combined ClusPro docking and PISA assessment of binding
energies, mutual binding affinity in the calculated complexes is higher than in the reference structure
(E. coli hydrogenase, PDB ID: 4GD3). However, it should be noted that the native E. coli hydrogenase-1
is bound to the membrane, and it also interacts with a cytochrome molecule; thus, the strong direct
interaction between two hydrogenase molecules is not required. As for distances between FeS
clusters of adjacent hydrogenase small subunits in (HupSL)2-heterotetramer, for most cases, they were
comparable to those observed in the oxygen-tolerant hydrogenase oligomers, but for the enzymes
from Rba. sphaeroides, the distances were close to 30 Å. This does not imply an impossibility of
electron transfer, but the role of surrounding aromatic residues as possible “hopping sites” for electrons
(intermediate states which could exchange electrons or holes with the FeS clusters) should increase.
Figure 13 shows the overview of docking complexes and close view of FeS clusters of two adjacent
small subunits in case of two HupSL-HupSL dimers, from Rba. capsulatus and Rba. sphaeroides (see
details for all the studied enzymes in Supplementary Table S8).

https://mole.upol.cz/online/U1IDaUXAtk9G2dt1a54w/1
https://mole.upol.cz/online/ORQHeeJ90OSUp1FWnBFlg/1
https://mole.upol.cz/online/ORQHeeJ90OSUp1FWnBFlg/1
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Figure 13. FeS cluster interaction in HupSL–HupSL hydrogenase oligomers obtained by protein–
protein docking. Overall view of the oligomers: (a) HupSL from Rba. capsulatus; (b) HupSL from Rba. 
sphaeroides. The small subunits are colored gray and yellow. Close view of FeS clusters in the adjacent 
small subunits: (c) HupSL from Rba. capsulatus; (d) HupSL from Rba. sphaeroides. Aromatic residues 
are shown as balls and sticks colored by element. Green and cyan arrows illustrate the shortest paths 
of direct electron transfer (distance shown in Å); red arrows (d) show possible direction of electron 
“hopping” through the network of aromatic residues. 

The results of docking-based oligomerization modeling show that the studied enzymes should 
have the ability to exchange electrons between the FeS clusters of adjacent small subunits, so oxygen 
tolerance should take place. 

2.9. Interaction with Electrode Compounds: Docking of Small Molecules 

Structural models of docked ligands are listed in Figure 14. 

Figure 13. FeS cluster interaction in HupSL–HupSL hydrogenase oligomers obtained by protein–protein
docking. Overall view of the oligomers: (a) HupSL from Rba. capsulatus; (b) HupSL from Rba. sphaeroides.
The small subunits are colored gray and yellow. Close view of FeS clusters in the adjacent small
subunits: (c) HupSL from Rba. capsulatus; (d) HupSL from Rba. sphaeroides. Aromatic residues are
shown as balls and sticks colored by element. Green and cyan arrows illustrate the shortest paths
of direct electron transfer (distance shown in Å); red arrows (d) show possible direction of electron
“hopping” through the network of aromatic residues.

The results of docking-based oligomerization modeling show that the studied enzymes should
have the ability to exchange electrons between the FeS clusters of adjacent small subunits, so oxygen
tolerance should take place.

2.8. Interaction with Electrode Compounds: Docking of Small Molecules

Structural models of docked ligands are listed in Figure 14.
The results of molecular docking of conductive compounds showed that the modeled hydrogenases

are comparable to the oxygen-tolerant hydrogenases with known X-ray structure. The specificity and
affinity of binding in blind docking analysis were similar to the hydrogenases of hydrogen-oxidizing
bacteria (detailed data in Supplementary Tables S9–S12).
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Figure 14. Substances used in molecular docking: (a) neutral red monomer; (b) neutral red dimer; (c) 
neutral red trimer; and (d) graphene oxide. Carbon is colored cyan, nitrogen is blue, oxygen is red, 
and hydrogen is gray. Single bonds are gray, double bonds are yellow, and resonance bonds (order 
1.5) are red. 

The results of molecular docking of conductive compounds showed that the modeled 
hydrogenases are comparable to the oxygen-tolerant hydrogenases with known X-ray structure. The 
specificity and affinity of binding in blind docking analysis were similar to the hydrogenases of 
hydrogen-oxidizing bacteria (detailed data in Supplementary Tables S9–S12). 

A thorough analysis of the obtained docking complexes revealed the different modes of binding, 
which could be divided into “productive” and “non-productive” complexes. “Productive” complex 
means that the distance between FeS clusters and the ligand is less than 20 Å (this is quite an arbitrary 
value, but in some way it corresponds to the possibility of electron transfer); the ratio of occupancy 
between these complexes (a fraction of productive complexes) could roughly reflect the probability 
of binding into productive and non-productive complexes in the real solution (suspension) or on the 
electrode surface. Moreover, the distance from the closest ligand atom to the FeS cluster could serve 
as a qualitative indication of electron transfer rate. An example of graphene oxide binding to HupSL 
from Rba. sphaeroides is shown in Figure 15. 

Figure 14. Substances used in molecular docking: (a) neutral red monomer; (b) neutral red dimer;
(c) neutral red trimer; and (d) graphene oxide. Carbon is colored cyan, nitrogen is blue, oxygen is red,
and hydrogen is gray. Single bonds are gray, double bonds are yellow, and resonance bonds (order 1.5)
are red.

A thorough analysis of the obtained docking complexes revealed the different modes of binding,
which could be divided into “productive” and “non-productive” complexes. “Productive” complex
means that the distance between FeS clusters and the ligand is less than 20 Å (this is quite an arbitrary
value, but in some way it corresponds to the possibility of electron transfer); the ratio of occupancy
between these complexes (a fraction of productive complexes) could roughly reflect the probability
of binding into productive and non-productive complexes in the real solution (suspension) or on the
electrode surface. Moreover, the distance from the closest ligand atom to the FeS cluster could serve as
a qualitative indication of electron transfer rate. An example of graphene oxide binding to HupSL
from Rba. sphaeroides is shown in Figure 15.
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Figure 15. Docking complexes of Rba. sphaeroides HupSL hydrogenase and graphene oxide: 
productive complex. Distances from the aromatic plane of graphene oxide are denoted by gray arrows 
and labeled (14.0 Å from the plane to the nearest Fe atom in the distal FeS cluster; 15.5 Å from the 
plane to the medial FeS cluster). Coloring scheme: large subunit, gray; small subunit, main part, 
yellow; small subunit, C-end, blue; ligands and graphene oxide are colored by standard YASARA 
element scheme (carbon—cyan, oxygen—red, hydrogen—gray, sulfur—green, nickel and iron—
magenta). 

Among all the enzymes assessed by docking, models of HupSL from Rba. sphaeroides and Rvi. 
gelatinosus before energy minimization exhibited the highest fraction of productive complexes with 
graphene oxide (15/20 and 13/20, respectively; see Supplementary Table S11); after energy 
minimization in solution, the highest productivity (11/20) was observed for the interaction of Rsp. 
rubrum and H. marinus hydrogenases with neutral red trimer (Supplementary Table S12). 

The results of blind docking have certain limitations. The affinity values cannot be treated as 
exact ones, since the sidechains of the binding sites should be treated as flexible ones when simulating 
the exact binding. The difference between productivity of ligand interactions with enzyme models 
before and after energy minimization on YASARA server could reflect the difference in applicability 
in various media. The enzyme models before YASARA energy minimization were optimized by in 
vacuo molecular dynamics at the final stages of modeling process; hence, they could better describe 
the structure and behavior of the proteins in dry, non-aqueous (gaseous) environments. As gas-
breathing fuel cells seem to be quite promising from the point of view of current densities, the results 
obtained by models in vacuo should be taken into account. The models after energy minimization 
were processed in aqueous solution, so they would better describe the enzymes in more conventional 
media like solutions or solution-embedded electrode surfaces. 

The chosen criterion for productivity of the complexes (20 Å distance cutoff) might seem not to 
be strict enough when compared to native distances between electron-transferring subunits in 
hydrogenases or hydrogenase complexes. For example, the NiFe–FeS distance is 13.7 Å, and the same 
distance is observed between the distal FeS cluster and the heme aromatic group in the hydrogenase-
1: cytochrome complex of E. coli (PDB ID: 4GD3); distances between distal FeS clusters in the S. 
enterica hydrogenase oligomer (PDB ID: 4C3O) are also 14–16 Å. On the other hand, it was shown 
that even a distance of 32.3 Å could be enough for direct electron transfer [44]. However, this resulted 
in the microampere current densities, whereas design of high-current density electrodes will require 
shorter distances from Fe to the surface. 

Figure 15. Docking complexes of Rba. sphaeroides HupSL hydrogenase and graphene oxide: productive
complex. Distances from the aromatic plane of graphene oxide are denoted by gray arrows and
labeled (14.0 Å from the plane to the nearest Fe atom in the distal FeS cluster; 15.5 Å from the plane
to the medial FeS cluster). Coloring scheme: large subunit, gray; small subunit, main part, yellow;
small subunit, C-end, blue; ligands and graphene oxide are colored by standard YASARA element
scheme (carbon—cyan, oxygen—red, hydrogen—gray, sulfur—green, nickel and iron—magenta).

Among all the enzymes assessed by docking, models of HupSL from Rba. sphaeroides and Rvi.
gelatinosus before energy minimization exhibited the highest fraction of productive complexes with
graphene oxide (15/20 and 13/20, respectively; see Supplementary Table S11); after energy minimization
in solution, the highest productivity (11/20) was observed for the interaction of Rsp. rubrum and H.
marinus hydrogenases with neutral red trimer (Supplementary Table S12).

The results of blind docking have certain limitations. The affinity values cannot be treated as
exact ones, since the sidechains of the binding sites should be treated as flexible ones when simulating
the exact binding. The difference between productivity of ligand interactions with enzyme models
before and after energy minimization on YASARA server could reflect the difference in applicability
in various media. The enzyme models before YASARA energy minimization were optimized by in
vacuo molecular dynamics at the final stages of modeling process; hence, they could better describe the
structure and behavior of the proteins in dry, non-aqueous (gaseous) environments. As gas-breathing
fuel cells seem to be quite promising from the point of view of current densities, the results obtained by
models in vacuo should be taken into account. The models after energy minimization were processed
in aqueous solution, so they would better describe the enzymes in more conventional media like
solutions or solution-embedded electrode surfaces.

The chosen criterion for productivity of the complexes (20 Å distance cutoff) might seem not
to be strict enough when compared to native distances between electron-transferring subunits in
hydrogenases or hydrogenase complexes. For example, the NiFe–FeS distance is 13.7 Å, and the same
distance is observed between the distal FeS cluster and the heme aromatic group in the hydrogenase-1:
cytochrome complex of E. coli (PDB ID: 4GD3); distances between distal FeS clusters in the S. enterica
hydrogenase oligomer (PDB ID: 4C3O) are also 14–16 Å. On the other hand, it was shown that even
a distance of 32.3 Å could be enough for direct electron transfer [44]. However, this resulted in the
microampere current densities, whereas design of high-current density electrodes will require shorter
distances from Fe to the surface.
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3. Discussion

The HupSL-hydrogenases of purple phototrophic bacteria have been neglected for quite a long
time. Since their discovery in 1950s–1980s [45–47], they were considered mostly viewed as something
to get rid of in order to improve hydrogen-producing strains of purple bacteria (for example, [48]).
However, some works did really employ the activities of these enzymes. For example, there were two
works on hydrogen production by E. coli cultures transformed with Hup-hydrogenase genes from Rba.
sphaeroides [49] and Rps. palustris [50]. Interestingly, both these cases provided significant improvement
of hydrogen production by E. coli; so, although the catalytic bias of the membrane-bound hydrogenases
toward hydrogen oxidation is well-known and their main physiological role is the utilization of
hydrogen evolved in the nitrogenase reaction [47,48], the “uptake” nature of these hydrogenases is not
physiologically irreversible.

The aforementioned inhibition study of inhibition of Rba. capsulatus HupSL by diphenylene
iodonium [28] showed that there should be two binding sites for different electron acceptors;
diphenylene iodonium was also demonstrated to inhibit hydrogen production by Rhodobacter sphaeroides.
The authors suggested that such inhibition was due to the interaction of this compound with
hydrogenase, rather than with nitrogenase, thus providing extra evidence for HupSL-dependent
hydrogen production [51]. Taken together, these data show that the electron flow in HupSL
hydrogenases is quite a flexible matter to study, and structural models obtained in the current
work would help to understand this complex subject more clearly.

A few words must be said about Rsp. rubrum hydrogenase. It has been shown to be present
preferably in culture liquid (overall activity in culture liquid being 10 times higher than in disrupted cell
extracts), and reasonable production amounts of this enzyme were achieved by simple addition of EDTA
to the culture medium. This could be explained by its susceptibility to cleavage by a metalloprotease.
Adams and Hall demonstrated that this enzyme is deactivated by air (half-life of 7 days in air vs. 12
days under N2 atmosphere) [31]. However, Kakuno et al. showed that this enzyme can be stabilized
by EDTA and high salt concentration (no detectable loss of activity in 6 months at salt (NaCl, KCl,
and CsCl) concentrations above 0.7 M under air; the enzyme tolerated up to 4 M of NaCl) [32].
This stabilization cannot be explained just by a decrease in oxygen solubility, since it decreases only
by 1.5 times. Although the data obtained by Kakuno and colleagues do not evidence that it was
exactly Hup-hydrogenase, later data by Manness clarified that, among the three hydrogenase activities,
two are inducible, and Hup hydrogenase has the highest hydrogen uptake activity [52]. The low
number of ionic pairs shown in the present study for the catalytic subunit of this enzyme could explain
its stability toward high salt concentration. Thus, this makes the Rsp. rubrum enzyme a good candidate
for experimental assessment in electrochemistry in solutions with high conductivity.

Rvi. gelatinosus was studied from the point of view of its ability to catalyze water–gas shift
reaction [48]. Another study [29] showed that HupSL deletion is an effective way of providing
hydrogen production from CO, but nothing could be said about the properties of HupSL hydrogenase.

It should be noted that previous studies did also point to supernumerary cysteine residues in the
small subunits of Rvi. gelatinosus hydrogenase [24], but this study contained just a remark without
detailed examination of the structure of this enzyme. Now, it is time to look at this enzyme as one of
the most promising candidates for the role of novel oxygen-tolerant catalyst (among purple bacteria),
since it has the highest similarity of amino acid residues with crystallized oxygen-tolerant enzymes
from chemotrophic bacteria. The presence of valine instead of threonine could lead to increased
hydropathicity in the region of the 4Fe3S cluster. Its good binding to graphene oxide (although shown
for model before energy minimization) could be advantageous in electrode fabrication, and the same
can be argued for HupSL from Rba. sphaeroides.

As for Tca. roseopersicina, it is the only sulfur bacteria among all the organisms covered in the
present modeling study. Its Hup-hydrogenase was not studied as intensely as its Hyd- (or Hyn-)
hydrogenase. Some studies could lead to proposals that this enzyme is not promising from the
biotechnological point of view. For example, it was shown to lose its activity irreversibly under air
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in just a day [27]. Since then, it has become mostly the subject of basic research exploring regulation
of its synthesis [53,54], but, from there, some interesting information could arise. Several works
demonstrated the susceptibility of Hup-hydrogenases toward cold denaturation ([43,53,55] p. 83).
However, the techniques used in these works did not exclude possible proteolysis (the spectra of used
protease inhibitors were insufficient to suppress it completely; moreover, EDTA helped to stabilize the
hydrogenase from Rhodospirillum rubrum, as was mentioned earlier), so these results should be regarded
quite critically. For example, the proteomes of several purple non-sulfur bacteria contain homologs of
proteases which are more active in a cold environment. These proteases are DegP-like protein of R.
sphaeroides 2.4.1 (Uniprot ID: Q3IX80) and R. capsulatus SB1003 (Uniprot ID: D5ALS1), both sharing
37% of identical residues with DegP protein from E. coli (Uniprot ID: P0C0V0) [56]. Their activities
should be investigated thoroughly in cases of preparation of proteins from these bacteria using cold
temperatures or proteolysis inhibition; perhaps specific inhibitors of these enzymes should be designed
in order to prevent the proteolysis of hydrogenases.

Rather poor z-DOPE levels of the full-size models of Hup hydrogenases from Rba. capsulatus,
Rba. sphaeroides, Rps. palustris, and Rsp. rubrum can be explained by their hydropathicity and tendency
to form membrane anchors, since DOPE statistical potential was calibrated on globular hydrophilic
proteins. In other words, the quality of the models assessed by z-DOPE is somewhat correlated with
the results of the TMHMM predictions for the presence of transmembrane helices at the C-ends of the
studied enzymes. Moreover, the z-DOPE levels are comparable to those obtained for hydrogenase-1
from E. coli (PDB ID: 4GD3, 6G94).

The tunnel structure in hydrogenases is quite a complex subject to study, since one should always
keep in mind its flexibility. Structure of tunnels in solution could be most accurately reflected by
the results on energy-minimized structures; however, when taking into account gaseous electrodes
for air-breathing fuel cells, one can suppose that the protein structure, and thus its tunnel structure,
could be more accurately approximated by the crystal structure or the frames of in vacuo molecular
dynamics, since the enzyme is placed in an almost dry atmosphere or on the hydrophobic surface of
carbonaceous material [57]. Nevertheless, the structure of the tunnels mapped in the current work was
very diverse, and more reliable results addressing the issue of possible oxygen stability were achieved
by protein–protein docking, showing that the FeS clusters in oligomers of the modeled enzymes can be
close enough to provide intersubunit electron exchange between the small subunits.

When using molecular docking as a method for assessing the prospects of a certain redox enzyme
in applied electrochemistry, one must take into account the need for formation of a complex during the
contact of the enzyme with the electrode surface. For instance, the plane of graphene oxide must be
oriented in such way that it could be expanded to model a plane of carbon; in other cases, when the
plane is embedded into a protein pocket, it could model the behavior of the enzyme just on the edge of
the electrode surface.

The increase in the affinity of hydrogenases to neutral red oligomer with oligomerization degree
shows that neutral red dye could also be a promising immobilization agent for these hydrogenases.
Since it showed its application prospects with HydSL hydrogenase from Tca. roseopersicina [55], there is
definitely a reason to test it in a series of other hydrogenases. In this work, the hydrogenase from Rsp.
rubrum, as well as the experimentally determined H. marinus enzyme, showed the highest degree of
specificity for binding neutral red trimer.

Besides purely geometrical criteria of hydrogenase sorption efficiency, such as the distance from
the FeS clusters to the electrode and the angle between the graphene oxide plane and the enzyme
surface, there is another parameter that was not covered in the current work, namely dipole moment.
It was shown to be an important factor of efficient interaction of membrane-bound hydrogenases from
R. eutropha [44] and A. aeolicus [58] with electrode surfaces; however, high-current density fuel cells
seem to require the shortest distance from the FeS cluster to electrode surface, with dipole moment
being the second factor. Moreover, short-range interaction between the electrode surface and the FeS
cluster should increase the impact of local electrostatics of cluster microenvironment, thus decreasing
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the role of dipole moment of the HupSL dimer as a whole. Nevertheless, dipole moment is definitely
an interesting subject for further study.

The biotechnological potential of Hup-hydrogenases should be analyzed not only in vivo, but also
in vitro. Since 4Fe3S-cluster-containing hydrogenases are treated as “oxygen-tolerant”, such tolerance
should be examined in Hup-hydrogenases from purple bacteria. Despite the impressive success
achieved so far with studies of E. coli and R. eutropha hydrogenases, there is still no answer to the
question of which hydrogenase is “the best” for hydrogen fuel cell application, meaning that the whole
diversity of probable oxygen-tolerant hydrogenases must be examined in comparative studies, and an
assessment of their strengths and weaknesses should lead to creation of the optimal catalyst for future
energy applications.

4. Materials and Methods

Sequences for homology modeling of these enzymes were found in NCBI Protein database.
According to modern hydrogenase classification proposed by Sondergaard et al. [39], they were
assigned to group 1d of NiFe hydrogenases (Aerobic uptake hydrogenases, oxygen-tolerant, possessing
[NiFe]-center, 1 × [4Fe3S] cluster, 1 × [3Fe4S] cluster, 1 × [4Fe4S] cluster, interacting with b-type
cytochrome). The used sequences are listed in Table A1 (Appendix A).

Before using the sequences in MODELLER, they were preprocessed based on literature data
and multiple alignments. The large subunits were truncated to the last C-terminal histidine residue,
since the final step of hydrogenase maturation is cleavage of C-terminal peptide [59]; the sequences of
large subunit C-termini are listed in Table A2 (Appendix A).

As for the small subunits, the situation was a bit more complicated. Since the small subunit
precursors contain twin-arginine motifs, and they were described as being subject to proteolysis
accompanying targeting them to periplasm, their N-termini were analyzed to find out the proteolysis
sites. The analysis was conducted on three websites, namely SignalP, TatP, LipoP [60–62]. All the
three sites did robustly predict cleavage between alanine and methionine or alanine and leucine in the
N-terminal part of the small subunits. The signal peptides cleaved off the small subunits, and their
scores for probabilities of cleavage site presence are listed in Table A3 (Appendix A).

4.1. Homology Modeling

Homology modeling was carried out with the MODELLER program package [35,63,64]. Templates
for homology modeling were searched by using BLAST online service [65], and the alignments produced
were taken as the basis for writing alignments for using in MODELLER.

Several templates were selected for homology modeling (PDB IDs listed): 3AYX (membrane-bound
hydrogenase from Hydrogenovibrio marinus), 3RGW (membrane-bound hydrogenase from Ralstonia
eutropha H16), 3UQY (membrane-bound hydrogenase-1 from Escherichia coli K12), and 4C3O (Salmonella
enterica Serovar Typhimurium LT2); after a series of initial modeling runs, two templates, 3RGW and
3UQY, were kept, whereas all other templates were discarded due to poor z-DOPE levels of the
derived models.

Since MODELLER allows multisubunit modeling, the sequences present in alignments comprised
sequences of both large and small subunits of the hydrogenases of interest. The ligands were included
into the models as bulk rigid bodies, i.e., they were not recognized by MODELLER as atoms possessing
their own forcefield parameters, except Mg, which was specially designated by “$” sign and treated
like a CHARMM27 atom.

Several strategies implemented into MODELLER were combined to increase the confidence level
of the homology models: (1) VTFM-optimization; (2) conjugated gradient optimization; and (3) in
vacuo molecular dynamics. To find the optimal optimization protocol, the optimization procedure
(very thorough VTFM optimization (autosched.slow) and very slow molecular dynamics (md.refine =

very_slow) was repeated from 1 to 5 times, with 100 models being produced for each run; the 10 best
models were taken for each enzyme out of 500 produced models.
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The confidence level of the models was assessed via normalized DOPE z-score (z-DOPE) [35]
estimation, and the values below −1 were considered as very good and reliable, according to the
recommendation of the MODELLER development team. The key value for sorting the models was the
z-DOPE of a small subunit (aligned part of the subunit only).

4.2. Ab Initio Modeling

QUARK ab initio modeling server [66] was used in the work for modeling the C-terminal parts of
the small subunits of these enzymes. The data obtained from these servers were collected and ranked
by the server itself based on their TM-score; they were used as templates for building 100 models
in MODELLER with optimization by high-temperature molecular dynamics in vacuo, and the best
models assessed by the normalized DOPE z-score were used for the following MD simulation in water.

4.3. Molecular Dynamics Simulations

To improve the quality of the ab initio predicted models of the C-terminal parts of the small subunits,
molecular dynamics simulations in explicit water during 20 ns were performed in GROMACS [67].
The initial files for molecular dynamics in GROMACS were produced from MODELLER calculations,
where the results from QUARK web server were used as templates for the homology modeling
calculations, and the final models were selected based on their lowest z-DOPE scores from 100 models
of the fragments.

For better agreement between MODELLER and GROMACS simulations, CHARMM22 force
field [68] was selected for all the steps of molecular dynamics in GROMACS.

The boundaries for all the simulations were periodic.
Energy minimization was performed by the steepest descent algorithm until the maximum force

was less than 1000 kJ/mol/nm. Long-range electrostatic interactions were calculated by the Particle
Mesh Ewald (PME) method; short-range electrostatic and van der Waals cut-off radius were 1 nm;
SPC water model was used for solvation of the protein in a cubic box extended by 1 nm from the protein;
and 100ps NVT (in modified Berendsen thermostat [69]) and NPT (in modified Parrinello–Raman
barostat [70]) calculations were followed by 20ns production molecular dynamics.

The resulting frames were saved every 4 ns, so that 5 conformers of the C-terminal part of the
small subunits were used in modeling the full HupSL dimers.

4.4. Assessment of the Role of Ab Initio Modeled Parts in Membrane Anchoring

To predict the tendency of the studied fragments to form transmembrane alpha-helices, they were
analyzed on the TMHMM server, version 2.0 [40] (www.cbs.dtu.dk/services/TMHMM/).

4.5. Full-Size Hydrogenase Modeling

Full-size hydrogenase modeling was carried out in MODELLER, using the alignments expanded
by addition of the C-terminal fragments to modeled hydrogenase sequences; the conformers of
C-terminal domains obtained from molecular dynamics in explicit water were assessed by normalized
DOPE z-score, and those having the lowest values were used as templates for the C-terminal parts.
The optimization scheme was the same as before, i.e., VTFM-optimization and high-temperature
molecular dynamics in vacuo.

4.6. Intrasubunit and Intersubunit Interaction Assessment

Intrasubunit and intersubunit interactions were estimated on the Protein Interaction Calculator
Web server (http://pic.mbu.iisc.ernet.in/) [71].

Electrostatic interactions were assessed by the same criterion as reported by Szilagyi and
co-workers: the cutoff for centroid–centroid distance was set to 6 Å [26].

www.cbs.dtu.dk/services/TMHMM/
http://pic.mbu.iisc.ernet.in/
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Hydrophobic contacts were counted as the number of atom–atom distances less than 5 Å between
aliphatic or aromatic carbons of the following residues: Ala, Val, Leu, Ile, Met, Phe, Trp, Pro, and Tyr.

Aromatic-aromatic interactions were calculated as the number of distances between aromatic
group centroids in the range from 4.5 to 7 Å.

4.7. Intramolecular Tunnels

To find out possible pathways for gas diffusion inside the studied hydrogenases, intramolecular
tunnels were mapped on MOLE2.5 server (mole.upol.cz) [72]. First, NiFe active site was used as starting
point for the tunnels; automatic selection of starting point was chosen in further calculations. Hydrogen
atoms were ignored, whereas HETATM groups were taken into account. All the other settings were
taken by default: origin radius 5 Å, surface cover radius 10 Å, bottleneck radius 1.2 Å, bottleneck
tolerance 3 (changed to 0 in the second round of mapping), maximal tunnel similarity 0.7. Tunnel
mapping was performed in both non-minimized and minimized models of Hup-hydrogenases and
compared with the X-ray structures of hydrogenases from Hydrogenovibrio marinus (3AYX), Ralstonia
eutropha (3RGW), Escherichia coli (3UQY), and Salmonella enterica (4C3O).

4.8. Protein–Protein Docking and Oligomerization Assessment

The obtained models (HupSL-dimers) were submitted to ClusPro web server [73]. After obtaining
the results, they were analyzed on the PISA web server [74]; the oligomeric structure of E. coli
hydrogenase (PDB ID: 4GD3) was taken as reference enzyme. The best ClusPro variants were
superposed with the initially submitted models to extract heteroatomic groups in correct positions.
Distances between FeS clusters were measured as the shortest distances between Fe atoms. Aromatic
residues between the Fe atoms of adjacent small subunits were regarded as “hopping points” for electron.

4.9. Docking of Small Molecules

The hydrogenase models were prepared for docking in Autodock Tools [75,76]. Polar hydrogens
were added and AD4 atom types were assigned during receptor preparation. The following ligands
were used in the docking study: neutral red monomer, dimer and trimer, and graphene oxide as
a model of carbon electrode surface. Oligomers of neutral red were modeled according to Paulikaite
et al. [77]; the graphene oxide molecule was taken from PubChem (PubChem CID: 124202900) and
converted into 3D PDB file in Corina (https://www.mn-am.com/online_demos/corina_demo) [78].
Docking was performed in Autodock Vina [79]. Box size for docking was 120 × 120 × 120 Å; the number
of complexes was set to 20, and the exhaustiveness parameter was set to 100 (for the case of graphene
oxide. The settings were similar to the approach used by Sumaryada et al. [33]).

5. Conclusions

To summarize the results covered by the present article, the author should highlight several
important conclusions drawn from the work. First of all, the presence of the 4Fe-3S cluster was
confirmed by homology modeling of spatial structure in six hydrogenases from purple bacteria.
Moreover, these hydrogenases were predicted to be able to oligomerize in complexes providing electron
exchange between adjacent small subunits. Next, the heterogeneity of the cluster’s microenvironment
was shown; the hydrogenase from Rvi. gelatinosus was expected to be much like the common
membrane-bound oxygen-tolerant hydrogenases. Third, the C-ends of the small subunits were
assessed as possible membrane anchors. Fourth, analysis of a large amount of data gave statistically
significant differences between the number of hydrophobic and ionic interactions in the modeled
enzymes. Fifth, protein–protein docking predicted the possibility of electron exchange in oligomeric
complexes of these enzymes, supporting a hypothesis of their oxygen tolerance. Sixth, molecular
docking studies showed basically the same results for the modeled enzymes as for the X-ray structures,
with a slight advantage for the HupSL enzymes from Rba. sphaeroides and Rvi. gelatinosus, in the case
of graphene oxide and that from Rsp. rubrum in the case of neutral red trimer.

https://www.mn-am.com/online_demos/corina_demo
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Abbreviations

MD Molecular dynamics
PDB Protein Data Bank
DOPE discrete optimized protein energy
Tca. roseopersicina Thiocapsa roseopersicina
Rba. capsulatus Rhodobacter capsulatus
Rba. sphaeroides Rhodobacter sphaeroides
Rps. Palustris Rhodopseudomonas palustris
Rvi. gelatinosus Rubrivivax gelatinosus
Rsp. Rubrum Rhodospirillum rubrum
A. aeolicus Aquifex aeolicus
E. coli Escherichia coli
H. marinus Hydrogenovibrio marinus
R. eutropha Ralstonia eutropha
S. enterica Salmonella enterica

Appendix A

Tables of sequences used in the work.

Table A1. The sequences of hydrogenase subunits used in modeling and their identities to templates
from PDB.

Organism (Strain) Large Subunit ID
Identity to: 3AYX,

3RGW, 3UQY,
4C3O

Small Subunit ID
Identity to: 3AYX,

3RGW, 3UQY,
4C3O

Thiocapsa roseopersicina
BBS AAA27410.1 65.22%; 66.12%;

65.62%; 72.32% AAA27409.1 82.98%; 78.10%;
69.72%; 74.63%

Rhodobacter capsulatus
(Multistrain) WP_013066512.1 68.63%; 67.11%;

63.87%; 68.39% WP_013066511.1 84.75%; 85.53%;
72.12%; 79.85%

Rhodobacter sphaeroides
WS8N WP_002720659.1 69.63%; 68.11%;

63.19%; 68.39% WP_002720658.1 84.75%; 83.17%;
73.96%; 79.85%

Rhodopseudomonas
palustris CGA009 WP_011156496.1 65.05%; 65.28%;

62.44%; 71.97% WP_011156495.1 80.92%; 79.17%;
70.83%; 76.87%

Rubrivivax gelatinosus
IL144 WP_014429772.1 72.82%; 86.24%;

57.74%; 64.51% BAL96914.1 85.82%; 86.25%;
73.26%; 81.72%

Rhodospirillum rubrum
F11 (S1) WP_011388917.1 63.71%; 63.80%;

64.17%; 73.31% WP_011388916.1 76.60%; 75.95%;
69.10%; 73.68%

https://yadi.sk/d/RcNgj51liX7npg
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Table A2. Lists of C-terminal sequences of the large subunits of hydrogenases. Four residues comprising the C-end of mature large subunits are shown in bold type;
the residues removed by proteolytic cleavage are shown in italic; the sites of proteolysis are marked by single quotation marks.

Organism (Strain) Large Subunit ID Large Subunit C-Terminus

Thiocapsa roseopersicina BBS AAA27410.1 CATH’IMGPDGEELTRIKVR

Rhodobacter capsulatus (Multistrain) WP_013066512.1 CSTH’VMSAEGAPLTTVKVR

Rhodobacter sphaeroides WS8N WP_002720659.1 CSTH’VLSPDGQELTTVKVR

Rhodopseudomonas palustris CGA009 WP_011156496.1 CSTH’VMSEDGQEMAQVKVS

Rubrivivax gelatinosus IL144 WP_014429772.1 CSTH’VMSEDGRELTTVKVR

Rhodospirillum rubrum F11 (S1) WP_011388917.1 CSTH’ILTPEGGEAISVTVR

Table A3. Lists of sequences removed from the small subunits of hydrogenases before 3d structure modeling. Six residues comprising the N-end of mature small
subunit are shown in bold type. For Rubrivivax gelatinosus, higher score predicting reliable cleavage of TAT peptide was observed when starting from the second
methionine residue.

Organism (Strain) Small Subunit ID Small Subunit N-Terminal Sequence; Signalp5.0 Score

Thiocapsa roseopersicina
BBS AAA27409.1 MPTTETYYEVMRRQGITRRSFLKFCSLTATALGLSPTFAGKIAHAMETKPR

SignalP5.0 score: 0.8429

Rhodobacter capsulatus
(Multistrain) WP_013066511.1 MSDIETFYDVMRRQGITRRSFMKFCSLTAAALGLGPSFVPKIAEAMETKPR

SignalP5.0 score: 0.9668

Rhodobacter sphaeroides
WS8N WP_002720658.1 MPQIETFYDVMRRQGITRRSFMKYCSLTAAALGLGPSFVPKIAHAMETKPR

SignalP5.0 score: 0.9696

Rhodopseudomonas
palustris CGA009 WP_011156495.1 MGAVTETFYEVIRRQGITRRSFVKFCSLTATSLGLGPIGATQIAHALETKPR

SignalP5.0 score: 0.9319

Rubrivivax gelatinosus
IL144 BAL96914.1 MTWNGRSGVSLDQGKAGTHRGCELGQRPNPREEPDPMETFYEVMRRQGISRRSFLKYCSLTATSLGLAPSFVPQIAHAMETKPR

SignalP5.0 score: 0.21 (0.9817 when starting from the second methionine residue)

Rhodospirillum rubrum
F11 (S1) WP_011388916.1 MGETETFYEVIRRQGISRRGFLKFCGVTAAGLGLGAGGAARIAQALETKPR

SignalP5.0 score: 0.9546
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