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Established methods for nutritional assessment suffer from a number of important

limitations. Diaries are burdensome to complete, food frequency questionnaires only

capture average food intake, and both suffer from difficulties in self estimation of portion

size and biases resulting from misreporting. Online and app versions of these methods

have been developed, but issues with misreporting and portion size estimation remain.

New methods utilizing passive data capture are required that address reporting bias,

extend timescales for data collection, and transform what is possible for measuring

habitual intakes. Digital and sensing technologies are enabling the development of

innovative and transformative new methods in this area that will provide a better

understanding of eating behavior and associations with health. In this article we describe

how wrist-worn wearables, on-body cameras, and body-mounted biosensors can be

used to capture data about when, what, and how much people eat and drink. We

illustrate how these new techniques can be integrated to provide complete solutions

for the passive, objective assessment of a wide range of traditional dietary factors, as

well as novel measures of eating architecture, within person variation in intakes, and

food/nutrient combinations within meals. We also discuss some of the challenges these

new approaches will bring.
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INTRODUCTION

Non-communicable diseases now account for almost three quarters of global mortality, with
cardiovascular disease (CVD) being the leading cause of death. Diet is responsible for more than
half of CVDmortality worldwide (1). The proportion of diet-related deaths has remained relatively
stable since 1990 suggesting interventions to improve food intakes have had limited success (1). A
major issue in combatting diet-related disease is the way in which food intake and eating behavior
are assessed. Accurate measurement of eating is key to monitoring the status quo and responses to
individual or systems level interventions.

Recent years have seen a shift in nutritional science away from a focus on single nutrients
such as saturated fats, toward a recognition that the complexity in patterns of food intake (e.g.,
combinations of foods and nutrients throughout the day), is more important in determining health
(2–4). In addition to what we eat, we need to extend our understanding of eating architecture—the
structure within which food and drinks are consumed. Factors such as the size, timing, and
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frequency of eating are increasingly recognized as independent
determinants of health over and above what food is being eaten
(5, 6). For example, skipping breakfast is consistently associated
with higher body weight and poorer health outcomes (5, 7).
Breakfast tends to be a small meal eaten in the morning made
up of foods higher in fiber and micronutrients and it’s not clear
which of these features (meal size, timing, or food type), if any,
are causing the benefits to health (8).

Traditional methods of dietary assessment, such as food
diaries, 24-h recalls and food frequency questionnaires (FFQs),
are self-reported and prone to substantial error and bias (9–11),
which may distort diet and health associations (12). Misreporting
is one widely recognized limitation of self-reported dietary
assessment methods, with systematic under-reporting of energy
intake identified in upto 70% of adults of adults in the UK
National Diet and Nutrition Surveys (13, 14). Under-reporting
occurs for a range of reasons including; difficulties estimating
portion sizes for ingredients of complex meals, a desire to present
one’s diet positively (social desirability), and poor memory
(11). People tend to under-report between-meal snacks, possibly
because these snacks tend to be less socially desirable or because
they are more sporadic, easily forgotten events (15).

Multi-day food diaries or 24-h recalls compare best with “gold
standard” dietary biomarkers (16). But diaries or recalls are labor
intensive for researchers to interpret and code, and burdensome
for participants, whichmeans data capture is limited to short time
periods, (typically 3–7 days) and can take years to be available
after collection (17). In addition, accurate memory is essential for
24 h recalls and even with prospective methods like food diaries,
reactivity is a problem, where participants report accurately but
eat less than usual because their eating is being recorded (10).

FFQs, although simpler and quicker to use, only capture
average food intakes. Therefore, exposures increasingly
acknowledged as important like the timing of eating (6), the way
that foods are combined within a meal (18) and within person
variation throughout the day or day to day (17) are unmeasured.
With analyses of 4-day food diaries revealing that as much as
80% of food intake variation is within-person and only 20%
variation between people (19), there are many untapped avenues
for research into novel mechanisms relating diet to disease and
identifying opportunities for interventions.

Online versions of “traditional” dietary assessment methods
have been developed, but errors and biases remain. Validation
studies of a range of online 24-h recall and food diary
tools have shown the same problems as their paper-based
equivalents; misreporting, portion size estimation, accurately
matching foods consumed to foods in composition databases,
and high participant burden (16, 20, 21). With the best methods
currently available, on paper or online, a maximum of 80% of true
intake can be captured and there are systematic differences in the
20% of food intake missing (10, 15).

There is a clear need to enhance dietary assessment methods
to reduce error and bias, increase accuracy, and provide more
detail on food intake over longer periods so that truly causal
associations with health can be identified. A range of reviews
and surveys have provided insights into the use of technology to
advance dietary assessments (22–24). Recent reviews in particular

have highlighted the potential for hybrid approaches that use
multiple sensors and wearable devices to improve assessments
(25–27). We offer an overview of the state of the art in the use
of sensor and wearable technology for dietary assessment that
covers both established and emerging methods, and which has a
particular focus on passive methods—those that require little or
ideally no effort from participants. We illustrate how integrating
data from these methods and other sources could transform
diet-related health research and behaviors.

WHAT WE EAT

The most commonly used methods for objectively identifying
food and portion sizes are image-based. The widespread adoption
of smartphones (28) by most adults in high income countries
means individuals always have a camera to hand as they go about
their daily lives. Many smartphone apps exploring the use of
food photography for dietary assessment have been developed
and validated. Examples include the mobile food record (mFR)
(29) and Remote Food PhotographyMethod (RFPM) (30), where
participants capture images of everything they eat over a defined
time period by taking a photo before and after each meal.
Initial problems with these methods included ensuring all meals
were captured, and that photos captured all foods. There were
also issues in identifying food items, both automatically and
with manual coding systems. These apps were improved by
adding customized reminders [drawing on ecological momentary
assessment methods (31)], real-time monitoring of photos
by researchers to encourage compliance, prompts to improve
photo composition, and requests for supplementary information
alongside photos. For example, users can confirm or correct
tagged foods automatically identified in images (mFR) or add
extra text or voice descriptions (RFPM).

The mFR and RFPM systems have been validated in adults
using doubly labeled water (DLW) to assess the accuracy of
energy intake estimated from several days of food photographs
taken in free-living conditions. The mFR underestimated DLW
measured energy expenditure by 19% (579 kcal/day), while the
RFPM reported a mean underestimate of 3.7% (152 kcal/day),
which is similar, if not slightly better, agreement than seen in self-
reportedmethods (30). However, food photography currently has
considerable researcher and participant burden because of the
requirements for training, real-time monitoring, and provision
of supplementary information. Crucially, participants still have
to actively take photographs of everything they eat, and this may
be affected by issues with memory and social desirability (32).

The introduction of wearable camera systems recording point
of view images addresses some of these issues, by making the
capturing of images of meals largely passive. Among the first
wearable camera systems were those developed for life logging;
recording images of events and activities throughout the day in
order to aid recall for a variety of benefits (33, 34). Feasibility
testing of one such device, SenseCam, which was worn around
the neck and automatically took photographs approximately
every 30 s, indicated it was promising in enhancing the accuracy
of dietary assessment by identifying 41 food items across a
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range of food groups that were not recorded by self-report
methods (35). However, wearing the device around the neck
meant variations in body shape could alter the direction of the
lens, so for some individuals the device did not record images
of meals.

Another passive wearable camera system, e-Button, reduced
the size of the device so that it could be worn attached to the
chest (36). Chest mounting improved the ability of the device
to capture images of meals. However, the system was a bespoke
development, and the use of bespoke solutions produced in
limited numbers brings challenges, including potentially high
unit costs, limited availability of devices, and issues around
ongoing technical support.

Recent studies in other research domains have used mass-
market wearable cameras of a similar shape and size to e-Button.
For example, studies of infant interactions with environments
and parents have used pin-on camera devices that are widely
available online as novelty “spy badges” (37, 38). These devices
have many characteristics that make them ideal for capturing
images of meals; their small form and light weight mean they
can be easily worn on the body, and their low cost facilitates
use at scale. However, these devices typically capture individual
images or video sequences initiated by the user, so they lack the
passive operation of devices like eButton that capture images
automatically throughout the day.

If using camera devices that capture images throughout the
day, the first major challenge is to identify which images contain
food and drink. A camera taking photographs every 10 s and
worn for 12 h a day for a week will capture nearly 30,000 images,
of which perhaps only 5–10% contain eating events (39), so
identifying food-related photographs is a non-trivial first step.
Automatic detection of images containing food using artificial
intelligence shows promise for photos taken in ideal conditions
(achieving an accuracy of 98.7%) (39). However, photos taken
with a wearable camera are uncontrolled and more susceptible to
poor lighting and blurring, and the accuracy of identifying images
that depict food ranges from 95% for eating a meal to 50% for
snacks or drinks (39).

Once meal images have been identified, the next step is
to code food content and portion size. Expert analysis of
photographs by nutritionists is currently the most common
method but requires trained staff, is time-consuming (typically
months to return a dataset), and expensive (>$10 per image).
Alternatively, automated food identification and portion size
assessment, using machine learning (ML) methods, is complex
and computationally intensive. The latest approaches using
convolutional neural networks appear promising, with accuracy
ranging from 0.92 to 0.98 and recall from 0.86 to 0.93 (40)
when classifying images from a food image database (41)
into 16 food groups. However, identification of individual
food items remains limited (42). ML methods require large
databases of annotated food photos to train their algorithms,
which are time-consuming to create. With more than 50,000
foods in supermarkets (21) and product innovation changing
the landscape constantly, considerable challenges remain for
ML approaches.

Humans, on the other hand, have life-long experience
visually analyzing food, and are excellent at food recognition.
Crowdsourcing approaches, in which untrained groups of people
perform a short, simple (usually Internet-based) task for a
small fee, might therefore offer a rapid low-cost alternative to
expensive experts while ML methods develop. Platemate is one
dietary assessment app that employs this approach (43). It is an
end-to-end system, incorporating all stages from photographic
capture of meals through to crowd-based identification of all
foods and their portion sizes and nutrient content. The system
is complex, however, and by involving crowds of up to 20
people per photo it results in an average processing time of
90min and cost of $5 per image. To be feasible for use in
large-scale longitudinal studies or public health interventions,
crowdsourcing of food data from photographs needs to be
fast and low cost. We developed and piloted a novel system,
FoodFinder (44), and found that small (n= 5) untrained crowds
could rapidly classify foods and estimate meal weight in 3min
for £3.35 per photo. Crowds underestimated measured meal
weight by 15% compared with 9% overestimation by an expert.
A crowd’s ability to identify foods correctly was highly specific
(98%—foods not present in the photo were rarely reported)
but less sensitive (64%—certain foods present were missed by
the crowd). With further development crowdsourcing could
be an important stepping-stone to the automated coding of
meal images as ML methods mature. Crowdsourcing could
also play an important role in this development, by creating
annotated databases of meal photographs to facilitate training of
ML algorithms.

In addition to image based methods for assessing meals,
more recent developments in body-worn sensor technology have
aimed to passivelymeasure the consumption of specific nutrients.
Small, tooth mounted sensors in which the properties of reflected
radio frequency (RF) waves are modulated by the presence of
certain chemicals in saliva can detect the consumption of salt and
alcohol in real time (45). Similarly, tattoo like epidermal sensors
that attach to, and stretch and flex with the skin can detect a
variety of metabolites in an individual’s perspiration that relate
directly to their diet (46). For these devices, it is important that
metabolites detected are specific to food intake, and not conflated
with endogenous metabolites produced by the body as a result
of eating.

To date these new oral and epidermal sensors have largely
been tested in laboratory settings and are some way from
becoming widely available. There are clearly compelling uses
for these, for example accurate measurement of salt intake in
patients with high blood pressure and sugar intakes in patients
with diabetes, as well as enhancing food photography methods
by providing non-visual nutritional composition information
(e.g. sugar in tea or salt added in cooking). However, it is
worth noting that these methods alone are not able to identify
the food that contained these nutrients. For some dietary
interests (e.g., changing dietary behaviors), food items need
to be assessed rather than the nutrients they contain, and
in these cases image-based methods for assessing meals will
be required.
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WHEN WE EAT

To advance our understanding of the effects of diet, we require
objective assessments of not just what we eat, but when we
eat too. A variety of approaches for the passive detection of
eating events have been proposed, including; acoustic methods
using ear-mounted microphones to detect chewing (47), throat
microphones to detect swallowing (48) and detection of jaw
movements using different sensor types attached to the head or
neck (49–52).

Although these methods are capable of detecting eating events
passively, they need the individual to wear bespoke sensing
devices attached around the head and neck, and when used on a
daily basis this inevitably introduces a considerable level of device
burden. To address this, one approach is to use sensors that are
embedded in or attached to items that are already part of people’s
daily lives.

One method explored has been the use of sensors that are part
of spectacles. Some approaches to this have used piezoelectric
strain sensors on the arms of glasses that are attached to the
side of the head to measure movements from the temporalis
muscle when chewing (53, 54). High levels of performance have
been reported with this approach, with one study reporting an
area under the curve for chewing detection (in a combination
of laboratory and free-living tests) of 0.97 (55). However, it does
require the sensors be manually attached to the head every time
the glasses are worn. Others have used electromyography, in
which the electrical activity associated with temporalis muscle
contraction is detected using sensors imbedded in the arms of 3D
printed eyeglass frames (56). This also gives good performance,
with recall and precision for chewing bout detection above 77%
in free-living conditions. This approach does not need manual
attachment of sensors, but it does require individually tailored
glass frames to ensure sufficiently good contact of the built-in
sensors with the head. More broadly, not everyone wears glasses,
so there is also the issue of how these approaches would work for
those who do not.

Another method is to use wrist-worn devices equipped with
motion sensors to automatically detect eating events. Data from
gyroscope and accelerometer motion sensors can be used to
identify the signature hand gestures of certain modes of eating
(57, 58). Early adopters of this approach strapped smartphones
to the wrist (59). This functionality is now more conveniently
available in the form of off-the-shelf activity monitors and
smartwatches. These devices can be highly effective in detecting
eating events, with recent reports of 90.1% precision and 88.7%
recall (60). However, building recognition models that can
generalize well in free-living conditions where unstructured
eating activities occur alongside confounding activities can be
challenging, and can result in reduced precision in detection (61).

Recent reviews concluded that smartwatches are of particular
interest for eating as they represent an unobtrusive solution for
both the tracking of eating behavior (62), and the delivery of
targeted, context-sensitive recommendations promoting positive
health outcomes (63), such as Just-in-Time interventions (64).

The latest ML techniques are enabling researchers to go
beyond detection of eating events using wrist-worn wearables,

to also measure within meal eating parameters such as eating
speed. In a recent example, convolutional neural networks
and long short-term memory ML methods were applied to
data from the motion sensors in off-the-shelf smartwatches
worn by 12 participants eating a variety of meal types in a
restaurant (65). Sequences of bites were first detected, which
were then classified into food intake cycles (starting from
picking up food from the plate until wrist moves away from
the mouth).

The ability to passively detect meal onset is an essential
aspect of other healthcare systems too. One example is closed-
loop artificial pancreas systems for the management of blood
glucose in patients with type 1 diabetes. Such systems rely on
detecting a rise in interstitial fluid glucose concentrations (a
proxy for blood glucose) using continuous glucose monitors
(CGM). Meal detection can be challenging as interstitial glucose
rises well after a meal has begun, limiting the current use of
CGM in real-time monitoring systems. However, meal detection
models using CGM have developed from being purely computer-
based simulations to now showing promise when fitted to real-
world data. The mean delay in detecting the start of a meal
has reduced from 45 to 25min (66). CGM could therefore be
another method for the passive, objective detection of meal
timings in future, although further research, particularly in
populations without diabetes, is required. Encouragingly pilot
work in the US indicates that wearing a CGM for up to a
week is as acceptable as wearing accelerometer-based sensors
for 7 days (67). Furthermore, our own pilot work in the
UK ALSPAC-G2 cohort demonstrated that using the latest
CGM devices, which no longer require finger prick tests for
calibration, improves uptake of 6 days of monitoring (68).
This reflects a growing demand for non-invasive methods
for CGM.

Photoplethysmography (PPG) is a technique that detects
changes in levels of reflected light as a result of variation in
properties of venous blood, and which is routinely included
in off-the-shelf smartwatches and activity monitors for the
measurement of heart rate. This same technique can also be
used to non-invasively measure glucose levels, and the latest
enhancements give measurement performance approaching that
of reference blood glucose measurement devices (69). This
opens the possibility that non-invasive CGM using commercially
available smartwatches and activity monitors may be widely
available in the near future, and theoretically devices of this kind
could detect glucose patterns associated with meal start and end
times. Once again though, the latency between start of meal
and detection would need to be determined, and meal detection
algorithms evaluated.

INTEGRATING METHODS

The methods outlined above individually provide objective
measurements of when, what and how much someone is eating.
Integrating these methods offers the possibility of objectively
capturing more complete and detailed pictures of dietary intake,
while minimizing participant burden.
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FIGURE 1 | Integrating methods for objective assessment of diet using digital and sensing technologies.

One previous proposal for an integrated system for objective
dietary assessment involves combining smartwatch motion
sensors with a camera built into the smartwatch (70). The motion
sensors detect the start and stop of an eating event, and this
triggers the camera to take an image of the meal for subsequent
offline analysis. While this is a compact solution minimizing
device burden, it does need the individual to direct the watch
camera toward the meal to capture an image. More importantly,
trends in smartwatch design have changed, and smartwatches
typically no longer come equipped with built in cameras.

A more recent proposal again had a wrist-worn activity
monitor to detect eating events, but this time combined with on-
body sensors for detecting chewing and swallowing to capture
more detailed information on bite count and bite rate within
a meal (22). An interesting aspect of this system was the use
of the individual’s smartphone as the basis of a Wireless Body
Area Network (WBAN) (71) to link up the activity monitor
and different sensors. This enabled local communication between
sensors via the smartphone, without the need to connect the
sensors to a static wireless network or a cellular data connection.

In Figure 1 we propose a new architecture for an integrated
system for objective assessment of diet. We draw on some
elements of these previous proposals, but also incorporate new

and future developments in wearable sensing technology for

objective dietary assessment. The operation of the system can be
conceptualized as follows:

1. The individual wears a smartwatch containing accelerometer
and gyroscope motion sensors. Classification algorithms
applied to the motion data in real time on the watch can detect
the beginning and end of an eating event, the mode of eating,
and provide “within meal” metrics such as speed of eating. In
the future the smartwatch may also have PPG-based CGM,
which provides additional data on meal timing and size.

2. The individual is also wearing a chest-mounted camera
capturing images from their viewpoint. To keep battery
consumption and data storage requirements low (minimizing
device size and maximizing time between charges), the camera
takes still images at short intervals (e.g., every 10 s) and stores
them for a brief period (e.g., for 5min). Images are then
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deleted unless the smartwatch detects the start of an eating
event, in which case images before, during and after eating
are stored as a complete visual record of the meal. Saving
multiple photos maximizes the chances of capturing high
quality images unaffected by temporary issues with lighting,
camera angle, blur, etc.

3. On-body sensors including oral tooth-mounted sensors and
epidermal tattoos could be added to provide more detailed
nutritional assessments for monitoring of specific nutrients or
calibrate estimates from other tools.

4. The individual’s smartphone forms the basis of a WBAN
around their body. Most devices (e.g., activity monitors,
cameras) will communicate with the smartphone using a
Bluetooth connection. Oral and epidermal sensing devices
that do not currently have power supplies or data storage
or transfer capabilities could use Near Field Communication
(NFC) as a power source and to transfer data from the sensor
to the smartphone.

5. Segmentation, food item recognition, and volumetric
estimates of portion sizes are initially computed locally on the
smartphone using data from sensors and images, and these
may be used to support Just-in-Time type eating behavior
change interventions.

6. The smartphone also provides a secure connection to a
cloud-based central dietary profile for the individual. Data
captured by sensors is processed on the smartphone and
the processed data are regularly uploaded to the central
profile, perhaps when the individual is at home and
their smartphone connects to their home wireless network.
Processed data can then, at the individual’s discretion, be
linked to other sources of their own health data, including
omics, clinical, and imaging data. Raw data from sensors
are not uploaded to reduce privacy concerns and data
transfer requirements.

7. Depending on the needs of the particular scenario, and
balancing speed, accuracy, and cost, data from the central
profile may be sent for further analysis. For example, images
of meals may be sent to a crowd-based application (44),
or a dietician to refine food item identification and portion
sizes (72).

The resultant cloud-based central dietary profile represents a
detailed view of a person’s food intake and eating behavior that
will provide the following benefits:

A) Summaries of the individual’s data for their personal use.
B) Dietary data that is stored and made available for future

research on eating [for example prospective cohort studies like
Children of the 90s (73)].

C) Information that can be automatically analyzed within
computer-based personalized nutrition behavior change
interventions involving monitoring progress in achieving
changes in diet-related goals [e.g., see (74)].

D) Information that feeds into health professional consultations
[e.g., enabling a dietician to get a better picture of an
individual’s overall intake and eating behavior so they can
spend more time on behavior change techniques rather than

having to assess diet as part of the appointment—for example
see (75)].

DISCUSSION

In this article we briefly looked at how emerging digital and
sensing technologies are enabling new objective assessments
of dietary intake. These new methods have the potential to
address many of the issues associated with current paper and
online dietary assessment tools around bias, errors, misreporting,
and high levels of participant or researcher burden. They
do so by automating the detection and measurement of
eating events, food items and portion sizes, and by providing
detailed information on specific nutrients and within meal
eating behaviors.

Image-based methods remain the most popular approach
for objective assessment of food items and portion size. The
use of on-body cameras to passively capture images of meals
for subsequent processing has a number of advantages. As the
individual does not have to manually initiate the capture, this
helps mitigate issues such as the stigma of photographing their
meals. The reliance on an individual’s memory or willingness
to self-report is also removed, therefore burden and bias are
reduced. However, having to wear the camera device does
represent a different burden, and there are issues around privacy,
for example concerns from others that they may be inadvertently
recorded. For nutritional assessment, image capture could be
limited to eating occasions, so while concerns remain, they would
hopefully be reduced.

In terms of camera devices, future developments should
combine the passive operation and ease of use of a system like
e-Button (36), with the low weight, size and cost, and broad
availability of commercially available products. If such a device
was of utility to multiple research domains (following the model
of e-Button), and particularly if it had compelling mass market
health or dietary use cases, demand could be sufficient for
commercial production. Integration of such a device into other
items already accepted for daily use (clothing, jewelery, etc.)
could possibly increase acceptability further.

The emergence of sensors that attach directly to teeth or to
the skin holds the promise of real time measurement of specific
nutrients. These devices are at the proof of concept stage, and
there are important considerations to address around durability,
and how to power and read data from these devices. However,
many of the mobile and wearable devices we currently use have
capabilities that could possibly be adapted to work with these
new sensors. For example, the near field communication wireless
technology now included in most smartphones to make wireless
card payments uses high frequency radio signals that could
potentially be adapted to power and communicate with oral and
dermal sensors (76).

In terms of detecting when people are eating, smart glasses
could potentially detect the movement of, or electrical signals
from the muscles used to chew, although there are the issues
of sensor attachment and positioning, and how this approach
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would work for people who do not normally wear glasses. Wrist-
worn wearables such as smartwatches have the ability to detect
the signature hand movements unique to eating. Consumer
demand for these devices continues to grow, with worldwide
shipments predicted to exceed 300 million by 2023 (from under
30 million in 2014) (77). Smartwatches are worn by individuals
as part of their daily routine so they do not represent additional
device burden. In addition, such devices have the capability
to run 3rd party applications providing the opportunity for
delivering just-in-time behavior change interventions based on
the eating behaviors detected. However, battery life continues to
be an issue, with smartwatches typically needing to be charged
daily. Continuous monitoring of eating behaviors will exacerbate
this. Also, the detection of eating behaviors from motion data
often use computationally intense machine learning algorithms
(e.g., convolutional neural networks) that cannot currently be
used on wearable devices to detect eating in real time. This
may change in the future as the processing power and battery
life of smartwatches and other wearables improve and more
sophisticated classification algorithms can run on these devices.

In the current review, we have proposed an architecture for an
integrated system for the objective assessment of diet. Integrating
methods will enable researchers to build a more detailed and
complete picture of an individual’s diet, and to link this with a
wide range of related health data (e.g., omics, clinical, imaging).
Storing this information in a central location will enable
healthcare professionals, researchers and other collaborators the
individual wishes to interact with to have controlled access to
their detailed dietary data. However, this raises a number of
important questions. Should cloud-based storage be used and
where this would be hosted? What format to use for the stored
data to maximize utility across applications? What model should
be used for making the data available, given the rise of new
models in which individuals can monetise their own data? (78).

Another key issue for new methods will be that they need
to be financially sustainable over time. For integrated systems,
architectures are required that minimize the time and cost of
maintaining operation of the system when one component (e.g.,
a sensor) changes. For example, systems arranged with central
hubs to which each sensor/device connects and communicates

reduce the impact of a change in one component compared
with fully connected architectures in which each sensor/device
communicates to many others.

For all of these new techniques for passive measurement of
dietary intake, it will be important to understand if they introduce
unexpected measurement errors and biases. New methods for
estimating multiple sources of error in data captured using the
latest technologies could help in this respect. These are able, for
example, to separate out the effects of factors such as coverage
(access to the technology), non-response and measurement
error (79).

Finally, whether these methods, individually or integrated,
become widely adopted will rest largely with the individuals that
use them. Extensive feasibility testing will be required to explore
which of these new methods people are happy to use, and which
ones they are not.
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